Multi-threading using Pthreads package

05-15-2002
Real-Time Java Working Group

University of Pennsylvania

0. Synopsis

This document explains multi-threading in RTSJ using Posix threading package.
1. Overview of multi-threading using Pthreads

Pthreads is a standardized model for dividing a program into subtasks whose execution can be interleaved or run in parallel. The “P” in Pthreads comes from POSIX(Portable Operating System Interface), the family of IEEE OS interface standard in which Pthreads is defined.

Compared to the green-thread model where a single thread of control is shared by multiple logical tasks, Pthreads offers one-to-one mapping between language-level threads and OS light-weight processes. This offers the following benefits:
a. potential parallelism: multiple threads can be executed simultaneously when underlying OS
 and H/W support it.
b. precise scheduling: OS takes over the burden of thread scheduling, such that precise timing is attained.

c. cleaner and easier implementation: language implementers are relieved from run-time stack and registers management.

In addition, Pthreads is standardized and offered by multiple OS vendors so that the program is guaranteed to be portable.

The real-time Java working group at Penn decided to employ the Pthreads as part of on-going research on RTSJ. More specifically, we are exploring various research topics regarding RTSJ based about the RTSJ reference implementation and the real-time kernel offered by Timesys. We have verified that Timesys kernel offers the superior timing guarantee over standard Linux.
2. Basic Pthreads calls

The following Pthreads calls are identified as basis for native threading of RT Java implementation, and will be referred frequently in this document.
a. managing conditional variables

pthread_cond_init(cond, attr) // initializes conditional variable cond

pthread_cond_destroy(cond) // destroys conditional variable

b. suspending a thread on given conditions

pthread_cond_timedwait(cond,mutex,time) // places the calling thread into a wait state for time specified or until the cond is signaled

pthread_cond_wait(cond,mutex) // places calling thread into a wait state

c. resuming a thread(s) which is in a wait state

pthread_cond_signal(cond) // unblocks a thread waiting on cond

pthread_cond_broadcast(cond) // unblocks all threads waiting on cond

z. triggering signals

pthread_kill(thread, sig)
 // delivers a signal sig to the thread
3. Pthreads creation in RTSJ
When a new Java runnable object
 is initiated, it is translated into actual pthread creation call through JNI. For CVM
,
start() (
JVM_StartThread() (
CVMthreadCreate() (
POSIXthreadCreate() (
POSIXthreadCreateEX()
and finally, the skeleton of POSIXthreadCreateEx is:

POSIXthreadCreateEx(CVMSize stackSize, CVMInt16 priority, CVMInt16 policy,

 void (*func)(void *), void *arg)

{

. . .

pthread_attr_init(&attr); // initialize thread attribute as specified by attr
pthread_attr_setstacksize(&attr, stackSize); // set thread stackSize
pthread_attr_setschedparam(&attr, ¶m); // set scheduling parameter
pthread_create(&pthreadID, &attr, start_func, args); // finally creates one

. . .

}

4. Thread Suspend and resume

Thread suspension and resumption is controlled by the wait-on-conditional-variable mechanisms offered by the Pthreads package. Making respective calls to the Pthreads package, a thread can put itself into a wait state by waiting on a conditional variable(See 2.b and 2.c above). The pthread_cond_timedwait() library call also makes it possible to implement timed wait of a thread. A thread is awakened either by i) condition variable, or ii) timer expiration. The condition variable is protected by a mutex which is also offered as part of Pthreads packages. Figure 1 shows how a thread suspends for a condition variable and resumes when signaled.

[image: image1]
A (user) Java thread may also be suspended by a signal sent by other threads. This will be further explained in the next section. In its essence, a thread can send a signal to other thread, and the signal is handled by the signal handler. Again, the condition variable wait is activated to initiate the wait.
Here we show the call flow of CVM thread suspension and resumption.

...\share\javavm\runtime\jvm.c:JVM_SuspendThread(env, thread)

mutex-lock for whole CVM

set thread status as "SUSPENDED"

CVMthreadSuspend()

(calls linuxSyncSuspend

mutex unlock for CVM

...linux\javavm\\runtime\sync_md.c:linuxSyncSuspend()

{

 if (POSIX_COOKIE(t) == thr_self()) {

t->suspended = 1;

pthread_kill(POSIX_COOKIE(t), SIGUSR1);

 } else {

mutex_lock(&t->lock);

if (!t->suspended) {

 t->suspended = 1;

 /*

 * If the thread is performing a wait, we do special handling,

 * to avoid the use of signals.

 */

 if (t->in_wait) {

t->suspended_in_wait = 1;

 } else {

pthread_kill(POSIX_COOKIE(t), SIGUSR1);

 }

}

mutex_unlock(&t->lock);

 }

}

Figure 2. thread suspension in CVM using Pthreads

...share\javavm\runtime\jvm.c:JVM_ResumeThread(JNIEnv *end, jobject thread)

current environment information which contains thread status info

get mutex

CVMthreadResume

(calls linuxSyncResume()

change state to resume

release mutex

...\linux\javavm\runtime\sync_md.c:linuxSuncResume()

void linuxSyncResume(CVMThreadID *t)

{

 pthread_mutex_lock(&t->lock);

 if (t->suspended) {

t->suspended = 0;

if (t->suspended_in_wait) {

t->suspended_in_wait = 0;

pthread_cond_signal(&t->suspend_cv); // unlocks a thread from the wait

} else {

pthread_kill(POSIX_COOKIE(t), SIGUSR1);

}

 }

 pthread_mutex_unlock(&t->lock);

}

Figure 3. thread resumption in CVM using Pthreads
5. Asynchronous Transfer of Control (ATC)
ATC is handled through signals in the reference implementation (RI). Every running thread incorporates a signal handler which responds to the reception of signals. When a signal is received, the thread immediately stops execution of its job and switches to the signal handler function. The signal handler function then takes an appropriate action.

In order to support thread suspend and resume, the signal handler must be able to cause the thread to stop execution. This is done by sending a signal to the thread when it is supposed to stop. The signal handler is switched in when the signal is received and it can then put the thread to sleep using the pthread_cond_wait() library call.

It is of little use to put a thread to sleep unless we can wake it up again. This is also done through signals. When the suspended thread receives a signal, it activates its signal handler which then wakes it up.

Here, we explain how CVM incorporates ATC in the context of synchronization in Java threads. If an exception is thrown outside the thread's try-catch block, then it will propagate out and have the effect of terminating the thread. This is why AsynchronouslyInterruptedExceptions (AIEs) are not thrown at methods unless the methods have indicated that they wish to handle ATC.

ATC sections of code indicate their susceptibility to asynchronous interruption (AI) by declaring that they catch the AIE. If they do not explicitly declare that they catch this exception, then they can not be asynchronously interrupted.

When t.interrupt() is called on a RealtimeThread t, one of two things happens. If t is in ATC-deferred code (code which does not catch AIE), then the AIE is not thrown until execution enters an AI method. If t is in an AI method, then the AIE is thrown immediately.

At the moment of t.interrupt() call, the state of AsynchronouslyInterruptedException is set to pending:

public synchronized void interrupt(){
AsynchronouslyInterruptedException genericAIE = AsynchronouslyInterruptedException.getGeneric();

if(!genericAIE.isDoInterruptibleInProcess()){

 postAIE(genericAIE);

 super.interrupt();

 return;

 }

 if(genericAIE.isEnabled()){

 postAIE(genericAIE);

 super.interrupt();

 } else {

 pending = true;

 }

 }

Figure 4. Example of ATC handling in RTSJ-RI
If AIE is enabled (i.e., we can catch AIE), then postAIE is called. If AIE is not enabled, then the AI will be caught when AIE becomes enabled. If AIE is never enabled, then the AI will never be caught. When postAIE is called, it calls the following native code:

private native boolean postAIE(RealtimeThread target);

The native code for postAIE interrupts the Pthreads which mirrors the java thread we want to interrupt. It does this by sending a signal to the thread which is caught by the thread's signal handler. The signal handler is set up to switch control to the exception handler for the AIE.
The code for suspend and resume is largely the same. Both functions use the same signal handler and they both trigger it in the same way.

The signal is sent as follows:

void inuxSyncResume(CVMThreadID *t){

 pthread_mutex_lock(&t->lock);

 if (t->suspended) {

t->suspended = 0;

if (t->suspended_in_wait) {

 t->suspended_in_wait = 0;

 pthread_cond_signal(&t->suspend_cv);

} else {

 pthread_kill(POSIX_COOKIE(t), SIGUSR1);

}

 }

 pthread_mutex_unlock(&t->lock);

}
Figure 5. Sending a signal for thread suspension
Then the signal is caught as follows:

static void sigfunc0(int sig) {

 CVMThreadID *self = CVMthreadSelf();

 assert(POSIX_COOKIE(self) == pthread_self());

 if (self->in_sigsuspend) {

return;

 }

 if (self->targetMutex != NULL) {

setOwner(self);

 }

 if (self->suspended) {

sigset_t sig_set;

pthread_sigmask(SIG_SETMASK, NULL, &sig_set);

sigdelset(&sig_set, SIGUSR1);

do {

 /* wait for thread resume or set-owner request */

 self->in_sigsuspend = 1;

 sigsuspend(&sig_set);

 self->in_sigsuspend = 0;

 if (self->targetMutex != NULL) {

setOwner(self);

 }

} while (self->suspended);

 }

}

Figure 6. Catching a signal to handle
When sigfunc0 catches the signal, it wakes up the AIE handler, which then runs the handler code.

6. Two-level Scheduler

In a two-level scheduler architecture, the most complicated switching occurs when it is time to switch between lower level schedulers. For instance, if the system has a RM scheduler and an EDF scheduler and it is time to go from RM to EDF. In this case, the sequence of events would be as follows:

1) The currently running thread (under the RM scheduler) comes to the end of its time slice. The timer which was started at the beginning of its timeslice expires, and a signal is sent from the timer to the thread.

2) The thread receives the signal and switches to its signal handler.

3) The signal handler sends a signal to the RM scheduler thread to wake up and puts this thread to sleep.

4) The RM scheduler thread signal handler receives the signal and wakes up the meta-scheduler, then puts itself to sleep since it is at the end of its execution time.

5) The meta-scheduler receives the signal to wake up and activates its scheduler. The scheduler sees that it is time for the EDF scheduler to be swapped in, and sends a signal to the EDF scheduler thread. Then the meta-scheduler goes back to sleep.

6) The EDF scheduler signal handler receives the signal from the meta-scheduler, wakes up, and starts the scheduling algorithm.

7) The EDF Scheduler wakes up the thread which was suspended when the EDF scheduler was swapped out.

It should be clear from this example that signal handler latency is a great concern in developing a real-time scheduler based upon signals and signal handlers. Individual latencies are small, but they are multiplied by the number of levels which must be crossed in a two-level scheduler.

Signal handler latency can be divided into two kinds: installation overhead and signal handling overhead. Installation overhead is not of great concern for our application since it is incurred only at the creation of a new handler. Our concern is mainly with overhead, which is the time for a single thread to switch from the main function it is executing to the signal handler function. Our multi-level scheduling mechanism will also incur a number of delays from context switches which are likely to be of more concern than the delays from signal handlers.

At this point, we do not have any definite goals for speed of thread switching or response to asynchronous events. On 1 - 2 GHz systems, signal handler overhead is likely to be on the order of 3 - 10 microseconds, and we consider this an acceptable level. LMBench is a popular benchmarking utility which provides details of signal handling latency as well as other detailed results.

7. On-going Research about RTSJ at Penn

The Real-Time Java Working Group at Penn is now investigating topics including mixed-mode thread scheduling, timing/performance analysis of, and integration of Monitoring and Checking-Steering(MaCS) with RTSJ.
Only the priority scheduler is required in accordance to the RTSJ and offered in the reference implementation. We feel that other well-known scheduling schemes must be designed and implemented to validate usability of RTSJ as a practical real-time language. More specifically, we are currently investigating issues of implementing Earliest Deadline First (EDF) scheduler.

As we extend non real-time Java into real-time Java, precise and reliable timing of the behavior of threads is another key issue. This is more of an issue to us since one of our goals is to implement synchronous MaCS and use it on RTSJ applications. Extensive timing measurement and analysis on common threading artifacts is under way.

pthread_cond_signal()

pthread_cond_wait()

 3. A resumes

 2. thread B wakes A up

thread A resumes

thread A suspends

thread A waiting

for condition

 1. thread A waits for condition

Time

Fig. 1. Thread_A suspends, and Thread_B wakes it up

mutex

mutex

cond

conditional

variable

Thread B

Thread A

� since a pthreads package is usually offered by the same vendor as the OS, we will consider pthreads calls as part of OS service

� the name kill is originated from the naming convention of traditional UNIX signal handling

� this is in addition to all default threads such as a main thread, a signal handler and/or GC threads

� CVM is Timesys reference VM implementation for CLDC profile in Java - Micro Edition

PAGE
8

