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Temporal Assertions with Parametrised
Propositions

Volker Stolz <vs@iist.unu.edu>
United Nations University

Institute for Software Technology (UNU-IIST)

January 26, 2007

In this work, we present an extension to our previous approach to runtime
verification of a single finite path against a formula in Next-free Linear-Time
Logic (LTL) with free variables and quantification.

We introduce parametrised propositions that consist of a proposition name
(p, q, . . .) with arity. The payload of such a proposition occurring on a trace
contains values from some object domain according to its arity. In a formula, a
proposition contains the appropriate amount of variables, e.g. p(X, Y ) or q(Z).

Variables get instantiated if a proposition matches during evaluation of a
trace. Multiple occurrences of the same variable are permitted and work similar
to Prolog: if a variable is already bound when a proposition is evaluated, both
the proposition occurring in the current state and the bound variables must
match.

From our experience with J-LO, the Java Logical Observer [2, 1], we
found it necessary to distinguish between read and write accesses to variables,
based on a static analysis of the formula. Furthermore, evaluation of uninstanti-
ated propositions had to be considered. As interpretation (through a human) of
those formulae resulted difficult and error prone due to the binding semantics,
in this article we introduce a special binary binding operator ·→ that simplifies
our design in the following aspects:

• simpler binding semantics

• no static analysis necessary

• more general through quantification.

The left-hand side contains a single parameterised proposition, the right-hand
side a temporal parametrised formula that may refer to the variables bound in
the proposition, e.g.

ψ := p(X) ·→ ϕ(X).

Negation is only permitted in propositional subformulae, We call the entire
construct a binding expression.

Furthermore, we require that every variable occurring in a parametrised
formula has previously been bound through the left-hand side of a binding op-
erator. We can thus ensure by construction that evaluation will only encounter
completely instantiated propositions, i.e. propositions, where a value for every



variable is known. If the left-hand side does not match the current state during
evaluation, the overall expression is evaluated to false.

Quantification plays a role when more than one matching proposition holds
in the current state. Matching the proposition p(X) against the state {p(1), p(3)}
yields two distinct bindings for variable X : X/1 and X/3. Quantifiers may only
occur together with a parametrised proposition on the left-hand side of the bind-
ing operator. In a binding expression, all newly introduced variables through a
proposition must also be quantified.

Additionally to the usual notion of LTL formulae augmented by quantified
variables and bindings, we also permit predicates and functions over bound
variables that can be used, for example, to compare values for inequality.

As an example, we consider the Lock-Order Reversal pattern [3], which
captures a common error pattern where two processes repeatedly compete for
two resources (locks), albeit in different order. This behaviour has the potential
for a dead lock which can be detected by monitoring the order in which each
process locks/unlocks the resources.

Ψ = G [∀ti∀lx : lock(ti, lx) ·→ ([¬unlock(ti, lx) U ∃lz′ : lock(ti, lz′) ·→ lz′ $= lx]
→ ¬unlock(ti, lx) U ∃lz : lock(ti, lz)

·→ [lz $= lx
∧ ∀ly : lock(ti, ly)

·→ (ly $= lx ∧ G ¬(∃tj : lock(tj , ly)
·→ [ti $= tj

∧ (¬unlock(tj , ly) U lock(tj , lx))]))])]

lock and unlock are binary propositions, binding a thread- and a lock-id, $= is
a predicate.

A declarative semantics is given by expanding quantified variables through
values from the finite object domain and combining them through conjunction
or disjunction according to the quantifier. Operationally, evaluation of such
a Temporal Assertion proceeds by means of a variant of Alternating Finite
Automata, augemented with a dictionary to maintain the current bindings for
each subformula. For runtime verification, we give an algorithm based on sets in
disjunctive normal form that traverses the automaton in a breadth-first fashion
which requires processing each state in a path exactly once and in order. It is
thus suitable for online checking where an error should be detected immediately.
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Extended Abstract 
Runtime monitoring of software systems requires the insertion into runnable software of moni-

tors that gather information on system states and their evolution. A simple approach to run time 
monitoring consists of modifying the software source code to implement monitoring functional-
ities. The very nature of such monitors, however, makes such modifications repetitive and scat-
tered across the whole code base. Aspect oriented languages have been introduced exactly to ad-
dress repetitive code changes crosscutting the code. They enable a compact representation of such 
code modifications. Thus, using aspects to specify such monitors seams a promising avenue. 

We focus our research on distributed, loosely coupled systems. This system class is based on a 
well defined communication infrastructure with systems’ functionalities emerging from interac-
tions between components over this communication infrastructure. The runtime verification of 
such systems requires, therefore, monitoring the communications between components and veri-
fying that the expected communication patterns are observed. 

We have developed a specification technique for distributed systems based on the use of Mes-
sage Sequence Charts (MSC) to capture the interaction patterns between entities. Our models are 
based on a thorough formal foundation and allow for consistent refinement and refactoring. The 
MSC graphs can, therefore, be used to capture the temporal properties of the interaction inter-
faces of the distributed system. In particular, it is possible to use the models for verification pur-
poses by generating state machine representing the communication behavior of each node of the 
system. We have applied this strategy, for instance, for conformance testing of components by 
runtime monitoring  [1], generation of executable prototypes for efficient evaluation of multiple 
architecture candidates ( [4],  [3]), and to support product-line engineering  [5]. 

When analyzing the relationships between our interaction specification technique and aspect-
oriented programming languages ( [3],  [4],  [5]), we were able to identify many similarities be-
tween our interaction specifications and aspects. Aspects promote the compact representation of 
functionalities that spread across different parts of a system’s source code. Similarly, our MSC 
descriptions compactly capture the interaction of logically or physically distributed entities in the 
system collaborating to provide some functionality. Then, aspects map crosscutting concerns to 
elements in the program code (pointcuts), whereas MSCs  [3] map crosscutting interaction con-
cerns to nodes in the distributed system. 

These observations motivate the use of aspect-oriented languages as implementation technique 
for our interaction based models. Thus, we have developed M2Aspects, a code generation tool 
leveraging the AspectJ language and producing executable system simulations. M2Aspects trans-
lates interactions into aspects and uses weaving techniques  [2] to establish the mapping between 
one abstract interaction specifications and low level deployment models. Aspect-orientation 
propagates the separation of cross-cutting concerns into aspects, maintaining a one to one map-
ping between models and code. 

We propose to combine our interaction specification approach with aspect-oriented technolo-
gies to enable an easy modification of distributed systems implementations. We can then embed 
system monitors into the executable based on models, thus increasing software dependability. We 



are investigating enhancements to our M2Aspects tool, resulting in the creation of run-time moni-
tors out of MSC based interaction descriptions. The monitors leverage AspectJ to directly modify 
an existing Java implementation. We can compactly specify a monitor observing the protocols 
implemented by the system and insert it into the existing code using the AspectJ weaver without 
the need of complex code refactorings. 

One difficulty is to match aspect language pointcuts, based on code patterns, with the phases of 
the protocol implemented by the code; this is, in particular, true for systems developed without 
run time monitoring in mind. We are exploring extensions of M2Aspects that leverage pointcuts 
that are generally easy to identify at the code level: message send and receive. We leverage our 
capability to convert interaction patterns to state machines and weave them into the system to 
keep explicit track of the protocol state. Those state machines can then be used to establish the 
right pointcuts where the code for monitoring, verifying or even modifying the interactions can be 
inserted. The generation of the automata, weaved into the system, is based on our algorithm to 
transform MSCs into state machines, presented in  [7]. 

The use of interaction based specifications has emerged as a powerful abstraction to describe a 
vast set of real systems. In particular it has been identified as a distinguishing element of service 
oriented specifications. The notion of service has attracted increasing attention both in industry 
and academia as a mechanism to achieve coupling to address integration of large distributed sys-
tems. Service-oriented techniques have been successfully applied in ultra-large scale (ULS) sys-
tems. Examples of ULS systems include avionics, automotive, command and control, as well as 
telematics and public safety systems, to name just a few. In all these domains, the primary chal-
lenge to software and systems engineering is the integration of a wide variety of subsystems, their 
associated applications, data models and sources, as well as the corresponding processes, into a 
high quality system of systems under tight time-to-market, budget, security, policy, governance 
and other cross-cutting constraints. These requirements characteristics have led to a high demand 
for loosely-coupled integration architectures  [6]. Therefore, the use of interaction based specifica-
tions as a starting point for runtime verification of systems has tremendous potential for 
increasing quality of real industrial applications. 

More work is needed to have a complete and general translation to Aspects implemented in the 
M2Aspects tool. Moreover, experiments are currently in progress to establish the practicality and 
usability of this approach in practical applications. Finally, we are investigating the integration of 
runtime verification, based on the outlined technique, with a full service oriented development 
process for fail safe systems. We expect this integration to allow us to specify and integrate into 
existing systems, failure management code to increase the reliability of distributed systems with-
out incurring in the risks introduced by substantial refactoring. 
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1. Introduction
Software testing, including runtime verification, is essential for de-
veloping reliable software products. As is often the case with the
development of industrial software products, the scale of a test pro-
gram tends to be larger than that of a product program. As the test
program is inherent in the product program, it is often structured in
an ad hoc manner. We consider that improving modularity, reusabil-
ity and portability of a test program constitutes an important issue.
Since a test program is concerned with its target program in cross-
cutting manner, the paradigm of aspect-oriented programming [1]
is useful for improving the composition of a test program.

Even today many industrial software products, such as embed-
ded software, are written in C/C++, and popular software develop-
ment tools, which are commonly available in various platforms, are
classic tools, such as symbolic debuggers and performance profil-
ers. Meanwhile, most of aspect-oriented language are designed for
Java language, or are not available in embedded platforms. Consid-
ering these circumstances in industrial software development, we
have designed a practical tool named aspect-oriented runtime ver-
ification environment (ARVE). ARVE enhances the capability of
a symbolic debugger by employing aspect-oriented technology. In
ARVE, a test program is written in aspect-oriented script language
and can be dynamically woven into a target program.

We briefly present the features, structure and evaluation results
of ARVE and explain simple applications. We also explain work-
in-progress and speculative future work concerning ARVE.

2. Recent work
For illustration of ARVE’s functionality, we firstly present an ap-
plication of ARVE to an event sequence checker. The following
scriptRegexpCheckergathers events of file handling operations in
target program execution, and checks whether or not the operation
sequence satisfies the pattern specified in regular language. Hav-
ing found the operation deviating from the specified sequence, this
checker breaks the execution of the target program and dumps the
execution stack.

[Copyright notice will appear here once ’preprint’ option is removed.]

import "RegexpChecker.pl";
aspect FileRegexpChecker extends RegexpChecker {
pointcut mark() : call(^fopen$) || call(^fread$)

|| call(^fwrite$) || call(^fclose$);
sub new () {

my $class = shift;
my $self = RegexpChecker->new(

"A-fopen[-1] (B-fread[3]|B-fwrite[3])* B-fclose[0]");
return bless $self, $class;

}
}

This ARVE script is written in the Perl-based language equipped
with aspect-related syntax similar to AspectJ [2]. The concrete as-
pectFileRegexpCheckerinherits the abstract aspectRegexpChecker,
and describes the event and the pattern by overriding pointcut
mark()and constructornew(..)argument. The parent aspectRegex-
pCheckeris a reusable aspect, which contains the algorithm to gen-
erate DFA (Deterministic Finite Automaton) from the regular ex-
pression and to drive the DFA by invocation of advice related with
pointcutmark(). The meaning of the terminal symbol in the reg-
ular expression is ”(after or before)-(name of joinpoint)[argument
index of file handler]”. We applied this aspect to monitor the API
usage of socket handling in the server process, such as Apache
and Squid, and conformed that it worked properly. In this example,
the basic mechanism of aspect-oriented programming improves the
modularity of the checker, and especially inheritance mechanism
improves the reusability of the checker.

Figure 1 is an architecture diagram of the ARVE system consist-
ing of ARVE script, ARVE kernel, symbolic debugger, script inter-
preter and target program. The symbolic debugger works as a pe-
ripheral system for the ARVE kernel, and provides the functionality
of breakpoint management, the target’s symbol table management,
and the target’s memory access for the ARVE kernel. The ARVE
system utilizes the debugger’s function via a clear-cut debugger in-
terface. This interface layer ensures the independence of the ARVE
kernel from a specific debugger. Any debugger satisfying this in-
terface can work in the ARVE system. In this implementation, we
adopted the debugger GDB [3], which is a popular debugger and
supports many embedded platforms.

We evaluated runtime performance of the prototyped ARVE
system. In a laptop PC (Dynabook TECRA 9000, Pentium-III
1.2GHz, Linux 2.4.20 and gdb 6.4), the elapsed time for a sub-
routine call is about 10 nanoseconds, and the elapsed time for the
same call with an empty advice is about 6 microseconds. Installing
an advice at each subroutine call, the program execution will take
600 times longer time. However, this situation will be extreme;
many applications will use fewer advice calls than in this case.
Typical overhead time is 6 microseconds, and this value will be
acceptable for monitoring appropriately selected places in network
communication or user interactive application.

We briefly summarize the difference from related work. ARVE
uses a symbolic debugger to weave aspect into the target, and this
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ARVE System Architecture
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Figure 1. ARVE System Architecture

feature differs from usual dynamic weaving techniques based on
JVM (Java Virtual Machine) reported in articles [4, 5]. ARVE uses
script language to describe aspect, and this feature differs from
the usual dynamic instrumentation techniques reported in articles
[6, 7].

Compared to the usual dynamic instrumentation techniques, the
ARVE approach has a disadvantage in terms of runtime efficiency;
however, the ARVE approach has an advantage in terms of plat-
form portability. The aspect of ARVE is written in script language.
ARVE has a definite interface with the symbolic debugger, and can
use a different symbolic debugger for each platform. Thus the script
of ARVE remains independent of the platform. This feature will
improve portability of a test program.

3. Work in progress
We are working on two plans. The first plan is to extend the ARVE
kernel to support multi-process environments. In our experiment
on an Apache server, we had difficulty in tracing many processes
forked by the server. If ARVE supports an aspect among multi-
processes and automatically attaches to multiple processes, the run-
time verification aspect concerning IPC (Inter Process Communi-
cation) can be naturally described in a single aspect.

The second plan is to design ARVE script to check an event se-
quence specification written in LTL (Linear Temporal Logic). We
have already prototyped the event sequence checker based on regu-
lar expression. Analogous to the case of the regular expression, the
reusable abstract aspect implements the automaton, which is con-
structed by existing tableau construction techniques and is driven
by execution event.

4. Highly speculative work
We have two plans concerning speculative future work. The first
plan is to apply ARVE to an execution environment for model-
based testing [8]. In order to utilize the capability of ARVE, we
feel a strong need to connect ARVE usage and upstream design.
In model-based testing, we can extract a test suite from the formal
specification of a target. Converting the test suite to ARVE script,
ARVE can execute the conformance test. Since ARVE has a de-
bugger’s capability, it can not only monitor the relation between
input and output in testing, but also monitor the internal state of
IUT (Implementation Under Test).

The second plan is to make ARVE and static analysis comple-
ment each other. The static analysis, such as ESP [9], has an ad-

vantage in terms of full path coverage without execution, but has a
disadvantage in lack of information due to abstract interpretation.
Since the advantage and disadvantage of dynamic analysis are op-
posite of those, the complementary combination of each analysis is
expected to constitute a powerful approach. The specification lan-
guage, such as ESP’s OPAL, describing the finite state machine, can
be viewed as an aspect-oriented automaton description language.
Unifying the specification language between dynamic analysis and
static analysis, will be a good starting point to make the two analy-
sis methods complement each other.

5. Summary
We have presented a practical tool, ARVE, which enables devel-
opment of a test program in script language and in aspect-oriented
paradigm, and achieves independence from an underling symbolic
debugger. As work in progress, an extension for multi-process sup-
port and a development for LTL-based verifying aspect are pre-
sented. As a highly speculative work, combination with model-
based testing or static analysis is presented. All these approaches
are aimed at improving reusability, portability and modularity of a
test program in industrial software development.
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In the verification community it is now widely accepted that, in particular for
large programs, verification is often incomplete and hence bugs still arise in deployed
code on the machines of end users. Yet, in most cases, verification code is taken out
prior to deployment due to large performance penalties induced by current runtime
verification approaches. Consequently, if errors do arise in a production environment,
bugs are hard to find, since the available debugging information is often very limited.

In previous work on tracematches [1], we have shown that in many cases runtime
monitoring can be made much more efficient using static analysis of the specification
[2] and program under test [3]. Most often, the imposed runtime overhead can be
reduced to under 10%. However, the evaluation we performed also showed that
some classes of specifications and programs exist for which those optimizations do
not perform as well and hence large overheads remain. According to researchers in
industry [5], larger industrial companies would likely be willing to accept runtime
verification in deployed code if the overhead is below 5%. Hence, additional work is
required in order to make runtime verification scale even better.

In this work, we tackle this problem by applying methods of remote sampling [4]
to runtime verification. Remote sampling makes use of the fact that companies which
produce large pieces of software (which are usually hard to analyze) often have access
to a large user base. Hence, instead of generating a program that is instrumented
with runtime verification checks at all necessary places, one can generate different
kinds of partial instrumentation (“probes”) for each such user. A centralized server
then combines results of all runs of those users. This method is generally very flexible.
In particular, we see the following advantages over a complete runtime verification.

Less runtime overhead per user. The program each user runs is only partially
instrumented and hence the instrumentation overhead can be kept to a moderate
level.

Better coverage of relevant paths. In order for runtime verification to be com-
plete, perfect path coverage is necessary. In general, this is nearly impossible to
achieve. If instrumentation could be dynamically adapted, it could be focused
on paths that are actually being executed during users’ program runs.

Assigning priorities. Similarly, usage data could be used to assign priorities to
bugs that are triggered by many users.

Automatic analyses. The server that receives the event data in the end can apply
arbitrarily sophisticated analyses on the received data and automatically attach
this information to a bug report. This is in contrast to existing error reporting
systems, which are mostly operated manually.



In this work we focus on the first part, reducing the runtime overhead, and
present experiments for providing such an infrastructure based on static compila-
tion of tracematches. Since tracematches allow for per-object specifications via free
variables, special attention has to be paid to object bindings. Using a flow-insensitive
whole-program analysis proposed in [3], we obtain groups of related instrumentation
points which need to be triggered at runtime in order to obtain a property viola-
tion. Each probe is defined as such a set of instrumentation points. We extended
our compiler such that each probe is guarded by a Boolean flag whose status can be
dynamically changed.

As we will show, it is safe to freely enable and disable probes while still preserving
the correct tracematch semantics. In general, this approach gives up completeness,
though. Hence, we explain how techniques from Liblit et al. [4] can be used to express
probabilities with which a given piece of software is correct if no errors are detected.
In the situation where there exist at least as many users as different probes and
if probes are evenly distributed amongst those users, this probability can amount
up to 100%. In those cases no precision is lost with respect to a fully instrumented
program.

In order to prove the feasibility of our approach, we applied our modified compiler
to some of our largest benchmarks from previous evaluations [3]. Our results show
that in many cases, the instrumentation overhead can indeed be lowered from as
much as 250% to less than 10% (for each user). We also identified two possible
sources of problems. As mentioned in [3], under some unfortunate circumstances
(imprecise points-to sets, very long-lived objects) probes can become larger than
usual. Consequently, in those cases the instrumentation overhead per user might be
higher. Secondly, the reconfigurable instrumentation which we statically insert may
impede other static optimizations due to the introduction of a more complicated
branching structure. We discuss approaches to overcoming those problems as well
as the possibility of dynamic reconfiguration of probes on the level of a Java virtual
machine.
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3. Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged static program analy-
sis to improve the performance of runtime monitoring. Technical Report abc-2006-4,
http://www.aspectbench.org/, 12 2006.

4. Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via re-
mote program sampling. In Proceedings of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Implementation, San Diego, California, June 9–11
2003.

5. Wolfgang Grieskamp (Microsoft Research), January 2007. Personal communication.



Static and Dynamic Detection of Behavioral Conflicts
between Aspects

Pascal Durr, Lodewijk Bergmans, Mehmet Aksit
University of Twente

{durr,bergmans,aksit}@ewi.utwente.nl

ABSTRACT
Aspects have been successfully promoted as a means to improve
the modularization of software in the presence of crosscutting con-
cerns. The so-called aspect interference problem is considered to
be one of the remaining challenges of aspect-oriented software de-
velopment: aspects may interfere with the behavior of the base
code or other aspects. Especially interference between aspects is
difficult to prevent, as this may be caused solely by the composi-
tion of aspects that behave correctly in isolation. A typical situation
where this may occur is when multiple advices are applied at the
same, or shared, join point.

In [1] we explained the problem of behavioral conflicts between
aspects at shared join points. We presented an approach for the de-
tection of behavioral conflicts that is based on a novel abstraction
model for representing the behavior of advice. This model allows
the expression of both primitive and complex behavior in a sim-
ple manner that is suitable for automated conflict detection. The
presented approach employs a set of conflict detection rules, which
can be used to detect both generic conflicts, as well as, domain-
or application specific conflicts. The application of the approach
to Compose*, which is an implementation of Composition Filters,
demonstrates how the use of a declarative advice language can be
exploited for aiding automated conflict detection.

This paper presents the need for and a possible approach to a
runtime extension to the described static approach. The approach
uses the declarative language of Composition Fillers. This allows
us to reason efficiently about the behavior of aspects. It also enables
us to detect these conflicts with minimal overhead at runtime.

An example conflict: Security vs. Logging.
We first briefly present an example of a behavioral conflict. As-

sume that there is a base system which uses a Protocol to interact
with other systems. Class Protocol has two methods: one for trans-
mitting, sendData(String) and for receiving, receiveData(String).
Now image that we would like to secure this protocol. To achieve
this, we encrypt all outgoing messages and decrypt all incoming
messages. We implement this as an encryption advice on the exe-
cution of method sendData. Likewise, we superimpose a decryp-
tion advice on method receiveData. Now imagine a second aspect
which traces all the methods and possible arguments. The imple-
mentation of the tracing aspect uses a condition to dynamically de-
termine if the current method should be traced, as tracing all the
methods is not very efficient. The tracing aspect can, for instance,
be used to create a stack trace of the execution within a certain
package.

These two advices are superimposed on the same join point, in
this case Protocol.sendData1. As the advices have to be sequen-
tially executed, there are two possible execution orders here. Now
assume that we want to ensure that no one accesses the data be-
fore it is encrypted. This constraint is violated, if the two advices
are ordered in such a way that advice tracing is executed before
advice encryption. We may end up with a log file which contains
“sensitive” information. The resulting situation is what we call a
behavioral conflict. We can make two observations, the first is that
there is an ordering dependency between the aspects. If advice
trace is executed before advice encryption, we might expose sen-
sitive data. The second observation is that, although this order can
be statically determined, we are unsure whether the conflicting sit-
uation will even occur at runtime, as advice trace is conditionally
executed.

Approach.
An approach for detecting such behavioral conflicts at shared

join points has been detailed in [1]. A shared join point has multi-
ple advices superimposed on it. These are, in most AOP systems,
executed sequentially. This implies an ordering between the ad-
vices, which can be (partially) specified by the aspect programmer.
This ordering may or may not cause the behavioral conflict. The
conflict in the example, is the case where the ordering causes the
conflict. However there are conflicts, like synchronization and real-
time behavior, which are independent of the chosen order.

One key observation we have made, is the fact that modelling the
entire system, is not only extremely complex but it also does not
model the conflict at the appropriate level of abstraction. With this
we mean, that during the transformation, of behavior to read and
write operations on a set of variables, we might loose important in-
formation. In our example we encrypt the arguments of a message
to provide some level of security. Modelling this as a write on the
arguments can work in some cases, however this makes expressing
application specific conflict patterns hard. i.e. we do not want to
consider all changes of all arguments of all messages conflicting.
Also semantically, the encrypt operation does not change the value
of the arguments, it only presents the data in a different form.

Our approach revolves around abstracting the behavior of an ad-
vice into a resource operation model. Here the resources present
common or shared interactions (e.g. a semaphore). These resources
are thus potential conflicting “areas”. Advices interact with re-
sources using operations. As the advices are sequentially composed
at a shared join point, we can also sequentially compose the opera-
tions for each (shared) resource. After this composition, we verify
whether a set of rules accepts the resulting sequence of operations

1Here, we only focus on join point Protocol.sendData, but a simu-
lar situation presents itself for join point Protocol.receiveData.



for that specific resource. These rules can either be conflict rules,
i.e. a pattern which is not allowed to occur, or an assertion rule, i.e.
a pattern which must always occur. These rules can be expressed
as a regular expression or a temporal logic formula.

In [1], an instantiation of the presented model for the Composi-
tion Filters approach is shown. We adopted this approach, as the
filter language is to a large extent declarative, and the composi-
tional semantics are well-defined. This improves reasoning about
the combination of multiple advice at the same join point. In ad-
dition, the filters provide encapsulation of the behavior through the
use of filter types, which can be reused. However, there are el-
ements which are filter instance specific and must be analyzed for
each instance of a filter, such as the condition and matching parts of
the filter. The conflict detection model can be enriched with domain
or application specific information to capture more application or
domain specific conflicts.

There are many steps involved in processing and analyzing a se-
quence of filters on a specific join point. One such step is to analyze
the effects of each of the composed filters. A filter can either ex-
ecute an accept action or a reject reject, given a set of conditions
and a message. Next we have to determine which filter actions can
be reached and whether, for example, the target has been read in
the matching part. These actions perform the specific tasks of the
filter type, e.g. the Encrypt action of filter type Encryption will en-
crypt the arguments. Likewise, the Trace action of the filter type
ParameterTracing will trace the message. Most filter types exe-
cute the Continue action if the filter rejects. Imagine the following
composed filter sequence on method Protocol.sendData in our ex-
ample. The result is the following composed filter sequence:

1 trace : ParameterTracing = { ShouldTrace => [*.*] };
2 encrypt : Encryption = { [*.sendData] }

Listing 1: Composed filter sequence example.

This filter sequence can be translated to the filter execution graph
in figure 1. The italic labels on the transitions are evalutions of
the conditions (e.g. ShouldTrace), and the message matching, e.g.
message.sel(ector) == sendData. The bold labels on the transi-
tions show the filter actions. The underlined labels are resource-
operations tuples corresponding to the evaluation of the conditions,
matching parts and the filter actions.

ShouldTrace ! ShouldTrace

sel == sendData

Encrypt

Trace

sel != sendData sel == sendData sel != sendData

Continue Encrypt Continue

ContinueShouldTrace.read

sel.read sel.read

args.read

args.encrypt args.encrypt

Figure 1: Filter execution graph example

From this graph we can see that in the left most path, the argu-
ments are read before they are encrypted. This path thus violates
the encryption requirement described in the example.

In Compose* we analyze the conflicts statically. However, it is
not always possible to determine statically whether certain conflicts
occur. There are three situations where dynamic verification is rel-
evant:

1. If a program uses dynamic or conditional superimposition,
and we detect a conflict in the program, we can only issue

a warning at compile time. Only at runtime can we be sure
that the conflict occurs.

2. Similarly, if the program uses conditional or dynamic advice
execution. Here we also have to monitor the system at run-
time to detect the conflict.

3. Concurrency can cause a wide variation of interleavings, in-
cluding potentially conflicting sequences. This requires full
monitoring of the advice at shared join points.

For the dynamic and conditional superimposition or advice ex-
ecution, we can only issue a warning at compile time but we have
to monitor the execution to detect the conflict at runtime. However,
we can use the analysis results from the compile time to determine
which paths of the composed program at a shared join point may
potentially lead to a conflict.

As illustrated in figure 1, we have an internal representation of
the sequence of filters at a shared join point. This representation
is an execution graph, in which all the possible messages are sim-
ulated. Each end state of this graph corresponds to an unique path
through the filter sequence. The graph branches if a condition is
used within the filters. It also accounts for the various ways a mes-
sage can flow through the filter sequence.

For each such path we know which conflict rule matches and
which assertion rule rule does not match. We also know the tran-
sitions required to reach the erroneous end state. This information
can be used to inject bookkeeping information at the transitions
with are part of the path leading to the erroneous end state. This
bookkeeping information performs the operations on the specific
resources. If a, possible erroneous, final state is reached, we verify
whether the conflict rules match or whether assertion rules do not
match. If so, we can throw an exception, which can be handled by
the user.

Conclusion.
The presented approach does not only provide feedback in an

early stage of software development, i.e. while writing and com-
piling the aspect, it also provides an optimized way of checking
whether certain conditional or dynamic conflicts actually occur at
runtime. We only monitor those cases where it is known that a con-
flict could occur, but can not be completely statically determined.
The declarative language of Composition Filters enables us to only
verify those combinations which may lead to a conflict. It also en-
ables us to reason about aspects without detailed knowledge of the
base code, i.e. we only need to know the join points of the system,
thus providing some form of isolated reasoning. Currently, only
static verification has been implemented, in Compose*. However,
we do plan to implement the proposed runtime extension in the near
future.

This work has been partially carried out as part of the Ideals
project under the responsibility of the Embedded Systems Institute.
This project is partially supported by the Netherlands Ministry of
Economic Affairs under the Senter program. This work is sup-
ported by European Commission grant IST-2-004349: European
Network of Excellence on Aspect-Oriented Software Development
(AOSD-Europe).
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1 Introduction

Although early research in aspect-oriented pro-
gramming focussed on aspects that are triggered at
a single join point, more recent research has evolved
towards aspects that are triggered based on the oc-
currence of a series of join points in the execution
of a program. These types of aspects were dubbed
event-based aspects, stateful aspects [2] and context-
aware aspects [10], and a number of novel pointcut
languages with direct support for these kinds of as-
pects are currently being developed [9, 5, 1].

One of the most challenging aspects of develop-
ing an aspect language that supports these history-
based aspects, is managing the join point history. In
an ideal situation, we would keep all data about join
points in memory forever, so that we could write ar-
bitrary pointcuts over this history. However, in re-
ality, this is not feasible. Currently a series of static
analysis techniques (e.g. AspectJ [8], Alpha [7])
have been proposed where one analyzes the base
code and aspect code to derive join point shadows,
which are places in the base code that generate a
join point that could possibly trigger a pointcut.
Henceforth an optimal weaver can be build that
omits generating unnecessary join points and hence
the recorded join point history is reduced. In this
paper we take a look at how the join point history
can be managed at runtime so that data about join
points can be deleted once it is no longer relevant
for resolving pointcuts. More concretely, we discuss
the weaver of the HALO language.

The logic-based language HALO provides sup-
port for writing history-based aspects that are de-

fined in terms of temporal relations between join
points. For this purpose, HALO offers a predefined
set of higher-order temporal predicates – derived
from temporal logic programming – for connecting
pointcuts. The latter is exploited by the HALO
weaver: because of the predefined set of temporal
relations the weaver can – in some cases – with
certainty decide whether data about a specific join
point will ever (again) be used in matching a point-
cut. Hence we can effectively reduce the join point
history as the program runs.

2 The HALO language

HALO is an extension of Common Lisp, allow-
ing one to express history-based aspects over a
CLOS program. In addition HALO (similarly to
CARMA [4] and Alpha [9]) is based on logic pro-
gramming and as such pointcuts are expressed as
logic queries over the join point history. The
built-in pointcut predicates in HALO capture the
key events in the execution of a CLOS program.
For this discussion, explaining the pointcut pred-
icate for capturing generic function calls suffices.
(gf-call ?gfName ?arguments) captures generic
function call join points and exposes the generic
function’s name and argument list through the logic
variables ?gfName and ?arguments. In addition,
pointcuts can be composed from other pointcuts by
means of the higher-order temporal predicates. In
this discussion we consider the temporal predicates:
most-recent, all-past and since. For example,
the pointcut below matches at a generic function
call named checkout and also captures the most



recent generic function call named buy along with
the most recent call to checkout before the latter.

(at ((gf-call ’checkout ?user1)
(most-recent (gf-call ’checkout ?user2)

(most-recent (gf-call ’buy ?user2 ?article2))))
(format t "~s just bought ~s" ?user2 ?article2))

3 HALO weaver

The bulk of the HALO weaver consists of a query
engine that matches logic facts generated for each
join point against pointcuts; The latter query en-
gine is based on the Rete forward chaining algo-
rithm [3]. Put briefly, logic queries (or pointcuts
in HALO) are represented as a network of nodes in
Rete. Each such node has a memory table that is
used to cache partial matches of the query, which
are computed by propagating facts through the net-
work. In standard Rete the two main types of nodes
are filter nodes and join nodes. Filter nodes store
logic facts, whereas join nodes cache conjunctions
of the latter. We have extended the Rete forward
chaining algorithm with novel types of join nodes
to implement the different temporal predicates in
HALO. In addition we extended the Rete algorithm
to incorporate removing old conclusions when prop-
agating inserts through these nodes.

As an example the Rete network for the point-
cut discussed above is depicted in figure 1. A
sample program run is depicted in the same fig-
ure. In addition, the figure displays tables labelled
LT (life time): the intervals stored by these ta-
bles indicate the begin and end point for the in-
terval during which entries in the memory tables
are kept. Note that though the entries in the third
filter node are removed as new entries are made,
the derived conclusions are not also removed at the
same time: at time 7 for example, when the en-
try made for (gf-call ’buy <lotte> <dvd>) is
removed, the derived conclusion for time 5 in the
first most-recent join node is kept. This ensures
that at time 8 it can be used to match the point-
cut. But this does not mean the derived conclusion
is kept forever. The first most-recent join node is
itself the input of another most-recent join node.
The input nodes of this second join node share
no variables. So the entry for time 5 in the out-
put memory table of the first join node is removed
when any other entry is made, which in this exam-
ple will happen the next time a user checks out if

he bought something (e.g. if the user lotte does
another checkout).

mr

...

mr
7 <lotte> <book>

<lotte> <dvd>4

gf-call ?article2
<game><lotte>3

?user2'buyT2

[7,..]
[4,6]
[3, 3]

LT

?user2
<lotte> <dvd>5

?article2T3
[5, ...]

LT?article2
<dvd>

?user1
<kris> <lotte>8

?user2T3
[8, ...]

LT

8 <kris>

gf-call
<lotte>5
?user2'checkoutT1

[8,8]
[5,5]
LT

<kris>8

gf-call
<lotte>5
?user1'checkoutT1

[8,8]
[5,5]
LT

(login <lotte> <shop>)
(login <kris> <shop>)
(buy <lotte> <game>)
(buy <lotte> <dvd>)
(checkout <lotte>)
(login <lotte> <shop>)
(buy <lotte> <book>)
(checkout <kris>)

Figure 1: Garbage collection of the join point his-
tory.

4 Presentation Outline

The goal of this presentation is to discuss the pos-
sible benefits of enabling a dynamic management
of the join point history, and to contrast our ap-
proach with the static analysis techniques used to
avoid generating join points. For this purpose, we
are currently benchmarking a web application we
extended with two new features using HALO [6].
The results from this experiment will then be pre-
sented and used to validate our approach.
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Abstraction is a technique intensively used in the verification of large, com-
plex or infinite-state systems. Due to inherent limitations model checkers are
unable to deal with such systems directly, instead abstraction can reduce or dis-
cretize the state space. During the past decade a significant amount of research
has focussed on finding abstraction methods reducing the state space sufficiently
while preserving necessary precision. With abstraction algorithms getting more
and more complex it is often difficult to see whether valid abstractions are gen-
erated. However, for using abstraction in model checking it has to be ensured
that properties verified for the abstract system also hold in the concrete. In prin-
ciple, there are two ways to guarantee correctness of abstractions: Abstraction
algorithms (and their implementations!) can be verified once and for all or a
tool can be build that verifies the abstraction results for each distinct run of the
algorithm’s implementation.

In this work, we will show how to use the second variant. For verifying a
system abstraction, we set up a tool that is given a concrete system and a prop-
erty to be checked. As output it produces an abstract system, a corresponding
abstract property and furthermore a proof script that the abstraction is prop-
erty preserving. The abstraction is correct if the proof script succesfully passes
a theorem prover. Thus, the abstraction algorithm’s implementation is runtime
verified.

Our work towards runtime verification of system description abstractions is
inspired by a translation validation [8] based approach for compilers [5]. In the
area of compiler verification it has turned out that runtime verification of com-
pilers is often the method of choice for achieving guaranteed correct compilation
results.

While previously correctness of abstractions was established by showing sound-
ness for all possible systems [2, 3], in our approach the abstraction is proved
correct for a specific system and properties to be verified. Runtime verification
of abstractions allows to view the tool generating abstractions as black box, al-
though this black box may still provide basic hints on the performed abstraction.
If the abstraction algorithm is replaced it is not always necessary to change the
generation mechanism of the correctness proofs. Correctness proofs for distinct
abstractions are usually less complex and easier to establish than proofs for a
general abstraction algorithm. Also note, that in this approach the correctness
of abstractions is proved formally using a theorem prover instead of a paper-
and-pencil-proof.

We formalise concrete and abstract system semantics in the theorem prover
Isabelle/HOL[7]. Additionally, we formulate a correctness criterion based on sim-



ulation between original and abstract system. The correctness criteria are based
on property preservation of temporal logic fragments under simulation, for in-
stance the universal fragment of CTL* is preserved under simulation [1] which
can further be extended to fragments of the mu-calculus [6, 4]. The actual proof
of simulation consists of two main tasks. First, a concrete simulation relation
satisfying the correctness criterion has to be found. Each class of abstractions
has its own requirements on the selection of this relation. Second, proof scripts
to be run in Isabelle/HOL have to be generated. These are highly dependant
on the original system and performed abstractions. Hence, for both steps hints
provided by the abstraction algorithm are desirable. It is furthermore crucial for
the verification process that the produced proof scripts do not only allow the
derivation of a correct proof but can also be checked in adequate time.

The proposed technique is applied for the verification of embedded adaptive
systems in the automotive sector [9]. Beside potentially unbounded data domains
the size of the considered systems is huge. For model checking, these systems
can in a first step be abstracted by mapping unbounded data domains to finite
abstract domains to reduce and discretise the state space. We have successfully
applied runtime verification of this kind of data abstraction.

For future work, we aim at extending our approach to a broader class of
abstraction techniques and plan to combine abstraction with modular reasoning
applying runtime verification for correctness of resulting system transformations.
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Abstract
One of the goals of program verification is to show that a program
conforms to a specification written in a formal logic. Oftentimes,
this process is hampered by errors in both the program and the spec-
ification. The time spent in identifying and eliminating these errors
can even dominate the final verification effort. A runtime checker
that can evaluate formal specifications can be extremely useful for
quickly identifying such errors. Such a checker also enables verifi-
cation approaches that combine static and dynamic program analy-
ses. Finally, the underlying techniques are also useful for executing
expressive high-level declarative languages.

This paper describes the run-time checker we are developing in
the context of the Jahob verification system. One of the challenges
in building a runtime checker for a program verification system is
that the language of invariants and assertions is designed for sim-
plicity of semantics and tractability of proofs, and not for run-time
checking. Some of the more challenging constructs include existen-
tial and universal quantification, set comprehension, specification
variables, and formulas that refer to past program states. In this pa-
per, we describe how we handle these constructs in our runtime
checker, and describe several directions for future work.

1. Introduction
This paper describes a run-time checker we are developing in the
context of the Jahob verification system. The primary goals of this
run-time checker are debugging specifications and the program and
using run-time information in loop invariant inference.

Jahob [5,18] is a program verification system for an imperative,
sequential, memory-safe language that is a subset of Java.1 Spec-
ifications are written as special comments within the source code,
so developers can compile and run programs using standard Java
interpreters and runtimes. Jahob specifications are written as for-
mulas in higher-order logic (HOL), using the syntax of the input
language to the Isabelle proof assistant [20].

Jahob specifications include declarations and definitions of
specification variables (similar to model fields in JML), data struc-
ture invariants, procedure pre- and postconditions, as well as as-
sertions. Specification variables are abstract fields defined by the
programmer that can be referenced in the invariant, pre- and post-
conditions, and assertions. In the standard program verification
usage of Jahob, the data structure invariants, pre- and postcondi-
tions, and assertions are guaranteed to hold using a combination of
static analysis and theorem proving. Our runtime checker ensures
that these properties hold by evaluating them dynamically.

Contributions. This abstract presents the current state of our run-
time checker for Jahob. The checker evaluates a subset of higher-
order logic formulas containing quantifiers, set comprehensions, in-
teger and object expressions, sets, and relations. Among the inter-

1 Jahob’s implementation language does not support reflection, dynamic
class loading, multi-threading, exceptions, packages, subclassing, or any
Java 1.5 features.

esting features of our checker is the evaluation of certain expres-
sions that denote infinite sets, and the evaluation of formulas that
refer toold values of fields of an unbounded number of objects.

2. Quantifiers and set comprehensions
While Jahob’s specifications are written in HOL, for practicality
purposes we restrict the runtime checker to support only first-order
quantification. Even with first-order quantification, however, it is
possible to write formulas that cannot be executed, as is the case
when the domain of the quantifier is unbounded. Consider, for
example, the formula∀x : T.P (x). Note thatx refers not only
to all objects of typeT in the heap, but to all possible objects of
typeT , which would be highly impractical to compute. Therefore,
in most cases, the runtime checker checks only those quantified
formulas where the domain of the quantification is bounded. For
integers, this means that quantification must be restricted to a range
of integers. For objects, Jahob has a built-in notion of the set of
allocated objects, so that quantification over all allocated objects
of type T is written ∀x : T.x : AllocatedObjects −→ P (x).
The same applies to set comprehensions, which also need to be
confined to a bounded domain in order to be evaluated. (There
is an interesting case in which the runtime checker can handle
even unbounded quantification, which we explain in the following
section.)

Even bounded domains, however, may be large, and we would
like to avoid considering all objects in the heap if at all possible. For
example, in the formula∀x : Tx∀y : Ty.x : AllocatedObjects ∧
y : AllocatedObjects ∧ x.next = y −→ P (x, y), the quantified
variabley is introduced for the purposes of naming and can be
easily evaluated without enumerating all elements of the heap. The
runtime checker handles these cases by searching into the body
of quantified formulas, through conjunctions and implications, to
determine if the bound variable is defined by an equality. If so, we
can evaluate the body of the formula without having to enumerate
a large number of objects. While it may be possible to write the
same formula without introducing a quantified variable, being able
to do so may not only make a specification easier to understand,
it can also make its evaluation more efficient. If the bound variable
appears more than once in the body of the formula, the introduction
of the quantified variable identifies a common subexpression that
is essentially being lifted, so that the runtime checker need only
evaluate it once.

3. Specification variables
Jahob supports two types of specification variables: standard speci-
fication variables and ghost variables. These are sometimes referred
to as model fields and ghost fields, respectively, as in JML [19].

A standard specification variable is given by a formula that de-
fines it in terms of the concrete state of the program. When the run-
time checker evaluates a formula that refers to a standard specifica-
tion variable, it evaluates the formula that defines the specification
variable in the context of the current program state.



A ghost variable, on the other hand, is updated by the program-
mer using special comments in the code. They behave very much
like normal variables in the program. In general, they are treated
similarly by the runtime checker, though in addition to standard
program types such as booleans, integers, and objects, the runtime
checker also supports ghost variables of types tuple and set.

When ghost variables are updated, the right-hand side of the as-
signment statement consists of a formula that the runtime checker
evaluates to produce the new value of the ghost variable. It then
stores the resulting value in the same way as it would for the as-
signment of a normal program variable. This formula is a standard
Jahob formula and may contain quantifiers, set comprehensions,
set operations, and other constructs not typically available in Java
assignment statements.

Since ghost variables of type set are allowed, it is also possible
to write the following code:

//: private ghost specvar X :: int set;
int y = 0;

//: X := {z. z > 0};
//: assert y ~: X;
y = y + 1;
//: assert y : X;

The above code is an interesting case because the ghost variablex
is assigned to the value of an unbounded set. The runtime checker
handles this case by deferring the evaluation ofx until it reaches
the assert statements. It then applies formula simplifications that
eliminate the set comprehension. Of course, the runtime checker
uses the same simplifications when presented with a formulay ∈
{z.z > 0}, but the above case is an interesting example of being
able to check formulas that one might not expect to be able to
check.

4. Theold construct
The old construct is common to most program specification lan-
guages for referring to the value of an expression in an earlier state
of the program. In Jahob, anold expression refers to the value of
the enclosed expression as evaluated on entry to the current proce-
dure. Unlike theold construct in JML [19], which is syntactically
restricted so that anold expression can be fully evaluated in the pro-
cedure pre-state,old expressions in Jahob are not restricted in this
way. While this makes the Jahob specification language more ex-
pressive, it also makes it necessary for a runtime checker to access
past program state in order to evaluate such expressions.

One simple but inefficient method of providing the checker
access to past program state would be to snapshot the heap before
each procedure invocation. Unfortunately, this approach is unlikely
to be practical in terms of memory consumption; the memory
overhead would be a product of the size of the heap and the depth
of the call stack.

Instead, the runtime checker obtains access to the pre-state by
means of a recovery cache (also known as a recursive cache) [14]
that keeps track of the original values of modified heap locations.
It is implemented as a stack that behaves as follows. On entry to a
procedure, the runtime checker pushes a new, empty frame onto the
stack. When a write occurs, the checker notes the memory address
of the write, as well as the original value of the location before
the write. Subsequent writes to the same address do not require an
update to the frame. When the checker needs to evaluate anold
expression, it simply looks up the necessary values in the topmost
frame. If it does not find a value there, that means that the heap
location was not changed, and that the current value is also theold
value.

There are several features of this solution worth noting. First,
it takes advantage of the fact that we need only know the state of
the heap on procedure entry, and not the state of any intermediate
heaps between procedure entry and the assertion or invariant to be

evaluated. Also, where the state of a variable is unchanged, theold
value resides in the heap, so that reads do not incur a performance
penalty excepting reads ofold values. Finally, one of the ideas
underlying this solution is that we expect the amount of memory
required to keep track of the initial writes to be small relative to the
size of the heap. While there is a trade-off between memory and
performance—there is now a performance penalty for each write—
the overhead is greatest for initial writes, and less for subsequent
writes to the same location.

5. Related Work
Run-time assertion checking has a long history [9]. Among the
closest systems for run-time checking in the context of static ver-
ification system are tools based on the Java Modeling Language
(JML) and the Spec# system [2].

JML [19] is a language for writing specifications of Java pro-
grams. Tools are available both for checking JML specifications at
runtime and for verifying statically that a program conforms to its
JML specification [6]. As such, the work on JML shares at least
one of the goals of the work in this paper—that of being able to
use a runtime checker to aid in the process of verifying programs
with respect to their specifications. The JML compiler, jmlc [8], is
the primary runtime assertion checking tool for JML. It compiles
JML-annotated Java programs into bytecode that also includes in-
structions for checking JML invariants, pre- and post-conditions,
and assertions. Other assertion tools for JML include Jass [3] and
jmle [17].

One of the goals in the design of JML was to produce a speci-
fication language that was Java-like, to make it easier for software
engineers to write JML specifications. It also makes JML specifi-
cations easier to execute. Jahob, on the other hand, is first and fore-
most a program verification system, and, as such, uses an expres-
sive logic as its specification language. The advantage of this design
is that the semantics of the specifications is clear, and the verifica-
tion conditions generated by the system can easily be traced back
to the relevant portions of the specification, which is very helpful
in the proof process.

Spec# is another system [2] for which both runtime checking
and program verification tools are available. Spec# is a superset
of C# and includes a specification language. The Spec# system
compiles its specifications into inline checks, which may also be
verified using the Boogie verifier [1]. The Spec# specifications that
we are aware of do not contain set comprehensions and transitive
closure expressions.

We are not aware of any techniques used to execute such specifi-
cations in the context of programming language run-time checking
systems. Techniques for checking constraints on databases [4, 12,
13,15,21,22] contain relevant techniques, but use simpler specifica-
tion specification languages and are optimized for particular classes
of checks.

To evaluateold expressions in our specifications, we use a re-
covery cache, or recursive cache, a technique from fault-tolerant
computing [14]. Fault-tolerant systems use recovery caches to re-
store the program state to a previous state in the presence of a fail-
ure.

6. Conclusions and Future Work
The Jahob run-time checker is currently built as an interpreter and
is meant for debugging and analysis purposes as opposed to the
instrumentation of large programs. Among the main directions for
future work are compilation of run-time checks [7, 10] to enable
checking of the assertions that were not proved statically [11], and
combination with a constraint solver to enable modular run-time
checking [16].
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Summary

Eagle was introduced in [2] as a general purpose rule-

based temporal logic for specifying run-time monitors.

A novel and relatively efficient interpretative trace-

checking scheme via stepwise transformation of an Ea-

gle monitoring formula was defined and implemented.

However, application in real-world examples has shown

efficiency weaknesses, especially those associated with

large-scale symbolic formula manipulation. For this

presentation, first we reflect briefly on the strengths and

weaknesses of Eagle and then we introduce RuleR, a

primitive conditional rule-based system, which can be

more efficiently implemented for run-time checking, and

into which one can compile various temporal logics used

for run-time verification.

Background and motivation

A plethora of logics have been used for the specifica-
tion of behavioural system properties that can be
dynamically checked either on-line throughout an
execution of the system or off-line over an execu-
tion trace of the system. Some form of linear-time
temporal logic usually forms the basis for the speci-
fication logic. This large variety of logics prompted
the search for a small and general framework for
defining monitoring logics, which would be power-
ful enough to capture most of the existing logics,
thus supporting future and past time logics, inter-
val logics, extended regular expressions, state ma-
chines, real-time and data constraints, and stochas-
tic behaviour. The framework should support the
definition of new logics easily and should support
the monitoring of programs with their complex pro-
gram states. Eagle was the result.

The Eagle logic is a restricted first order, fixed-
point, linear-time temporal logic with chop (con-
catenation) over finite traces. As such, the logic
is highly expressive and, not surprisingly, Ea-

gle’s satisfiability (validity) problem is undecid-
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able; checking satisfiability in a given model, how-
ever, is decidable and that is what’s required for
run-time verification. The syntax and semantics of
Eagle is succinct. There are four primitive tem-
poral operators: © — next,

⊙
— previously, ·

— concatenation, and ; — chop (overlapping con-
catenation, or sequential composition). Temporal
equations can be used to define schema for tempo-
ral formulae, where the temporal predicates may
be parameterized by data as well as by Eagle for-
mulas. The usual boolean logical connectives ex-
ist. For example, the linear-time , U and S
temporal operators can be introduced through the
following equational definitions.

max Always(Form F ) = F ∧©Always(F )

min Until(Form F1,Form F2) =
F2 ∨ (F1 ∧©Until(F1, F2))

min Since(Form F1,Form F2) =
(F2 ∨ (F1 ∧

J
Since(F1, F2)))

The qualifiers max and min indicate the posi-
tive and, respectively, negative interpretation that
is to be given to the associated temporal predi-
cate at trace boundaries — corresponding to max-
imal and minimal solutions to the equations. Thus
©Always(p) is defined to be true in the last state
of a given trace, whereas ©Until(p, q) is false in
the last state.

Even without data parametrization, the primi-
tive concatenation temporal operators in conjunc-
tion with the recursively defined temporal predi-
cates takes the logic into the world of context-free
expressivity. Parametrization of temporal predi-
cates by data values allows us to define real-time
and stochastic logical operators.

We will reflect on two related questions: Is Ea-

gle too expressive for run-time monitoring? If not,
is Eagle expressive enough? For example, there
are arguments to use deterministic versions of tem-
poral concatenation and chop for run-time moni-
toring — and there are several different forms of
deterministic cut, e.g. left minimal, left maximal,
right minimal, right maximal, etc..

What can be said about the computational effec-
tiveness of algorithms for Eagle trace-checking?
Firstly, trace-checking of full Eagle can be under-



taken on a state-by-state basis, even though the
logic has the same temporal expressiveness over the
past as over the future; basically, our published
trace-check algorithm maintains sufficient knowl-
edge about the past in the evolving monitor for-
mulas. Unfortunately, given the presence of data
arguments in temporal predicates, an explosion in
the size of the evolving monitor formula may occur.

What was clear to us at the time was that there
were some practically useful and efficiently exe-
cutable subsets of Eagle. One such fragment for
which we computed complexity results was the LTL
(past and future) fragment of Eagle [3]. Despite
the nice features of Eagle, we still believed we
should continue to search for a powerful and sim-
pler “core” logic, one that is easy and efficient to
evaluate for monitoring purposes.

Introducing RuleR

The Eagle trace-checking algorithm is essentially
interpretative. Given a monitor formula and an in-
put state, the trace-checker computes a new moni-
tor formula that will need to hold in the next state
for the original monitor formula to hold on the cur-
rent input; recursively defined temporal predicates
are replaced by their definitions and separated into
what has to hold now and in the future. Consid-
erable formula rewriting, i.e. data structure ma-
nipulation, is required. The question thus arises:
what compilation strategy might be possible in or-
der to optimize the interpretation process? Perhaps
some form of predicated automata can be compiled.
Similar issues arose when interpretation improve-
ments were being sought for the executable logic
MetateM [1]. Fisher’s separated normal form
was developed [4], leading to improved temporal
resolution-based theorem-proving techniques.

As an experiment, we have constructed a sim-
ple rule system into which one can compile vari-
ous forms of linear-time temporal logic. The rules
bear a strong resemblance to the step rules used
in graph-based temporal resolution. Let us give a
flavour for the propositional case of RuleR. Let
the letters a, b, c, etc., denote propositional atoms
that can be evaluated in a given input state, and
the letters r1, r2, r3, etc., denote rule names, which
in turn are associated with conditional monitoring
step rules. A rule name is also treated as a propo-
sitional atom. Rule definitions are of the form:

ruleName : antecedent −→◦ consequent

where the antecedent is a conjunctive list of atoms,
and the consequent is a disjunctive list of conjunc-
tive lists of atoms. Here’s an example of a set of
rules representing the temporal monitoring formula

((
⊙

(aS b)) ⇒ g(a ∨ gc)), assuming we have
r0, r1 and r3 initially active.

r0 : −→◦ r0, r1, r3 r3 : r2 −→◦ a |r4

r1 : b −→◦ r2 r4 : −→◦ c

r2 : a −→◦ r2

The evaluation of a rule name in a state determines
the associated rule’s activity status. Only active
rules are applied, and the consequent of a rule is ap-
plied only if the rule’s antecedent holds (an empty
antecedent is always true). Thus when the rule r0 is
applied, the next rule activation state must contain
rules r0, r1 and r3. The rule r1 requires, however,
that the atom b is true in order for the consequent
to apply in the next activation state. The rule r3

has an antecedent of r2, which means that r2 must
be a currently active rule in order for the conse-
quent of r3 to be applied. The latter gives a choice:
the next state must have atom a true or rule r4

must be active. Monitoring a sequence of states
with such rule sets proceeds as follows.

create an initial set of initial rule

activation states

while observations exist do

obtain next observation state

merge observation state with the set of

rule activation states

raise monitoring exception if there’s

total conflict

for each of the current merged states,

apply activated rules to generate a

successor set of activation states

union successor sets to form the new frontier

of rule activation states

od

The merge of observation state with the set of rule
activation states results in a set of consistent rule
activation sets. If no consistent sets results, we say
a total conflict with given rule set has occurred,
i.e. the observation trace has failed to satisfy the
given rule set. For rule set satisfaction, we need to
state which rule names are allowed to be active once
the whole observation trace has been monitored —
similar to max and min in Eagle. Whilst we
can’t show any details of this working, we assert
that this primitive rule system can be more effi-
ciently executed than the direct interpretation of
Eagle.

Naturally, our full paper will provide semantic
details for RuleR and translations from various
temporal logic subsets. In addition, we will discuss
other variations on these primitive rules, such as
universality (in the above example, rule r0 acted
as a generator for r1 and r3), interpretations for
negation of rules (forced non activation) and giving
rules priorities for use in conflict resolution.



A rather fuller bibliography will be provided in the full

paper!
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The good, the bad, and the ugly, but how ugly is ugly?
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Abstract. When monitoring a system w. r. t. a property defined in some temporal logic, e. g., LTL, a major
concern is to settle with an adequate interpretation of observable system events; that is, models of temporal
logic formulae are usually infinite streams of events, whereas at runtime only prefixes are available.
This work defines a four-valued semantics for LTL over finite traces, which extends the classical semantics,
and allows to infere whether a system behaves (1) according to the monitored property, (2) violates the
property, (3) will possibly violate the property in the future, or (4) will possibly conform to the property in
the future, if the system has stabilised. Notably, (1) and (2) correspond to the classical semantics of LTL,
whereas (3) and (4) are chosen whenever an observed system behaviour has not yet lead to a violation or
acceptance of the monitored property.
This logic called FLTL seems to correspond with the semantics realised by the Temporal Rover and has, to
the best of our knowledge, not been formally captured elsewhere. We further present a monitor construction
for FLTL properties.

1 Introduction

While the syntax and semantics of LTL on infinite traces is well accepted in the literature, there is no consensus
on defining LTL over finite strings. Several versions of a two-valued semantics for LTL on finite strings have
been proposed. For instance, Eisner et al. give a good overview on the topic [EFH+03]. Further, in [BLS06], a
three-valued semantics is proposed which extends the classical semantics over finite traces in a natural manner:
a property is true, respectively false , w. r. t. a finite observation, iff the observation is either a satisfying prefix,
respectively violating prefix, of all possible infinite extensions; otherwise, the observation is said to be inconclu-
sive, and the property assigned a ?. This scheme coincides well with the notion of safety (e. g., Gp—always p)
and co-safety (e. g., Fp—eventually p) properties, since these are either finitely refutable or satisfiable.

However, monitoring a system w. r. t. a safety property that does, in fact, never exhibit violating behaviour,
results in infinitely many inconclusive results from the monitor, likewise with co-safety properties. Further, when
monitoring a liveness property [AS84] that is not co-safety, i. e., finitely satisfiable, then neither the violation nor
the satisfaction of the property can be determined using a finite stream of observations, and not much is said
about the possible future.

Contribution. In this work, we submit the idea that an inconclusive result of a monitor should be more detailed,
allowing to draw conclusions what the future may hold for a system w. r. t. a trace seen so far and the type of
property being monitored; that is, we define a four-valued semantics for LTL that not only results in either true,
false , or ?, but yields possibly true and possibly false whenever the system’s behaviour so far is not conclusive
in the strictly Boolean sense. We call the resulting logic Finite Linear Temporal Logic (FLTL).

Further, we have defined a translation from formulae in FLTL to Mealy machines, which then form a suitable
foundation for runtime verification, in that the output alphabet of the automata corresponds to the four truth
values sketched above.

2 FLTL at a glance

As discussed in [MP95], the difficulty for an LTL semantics over finite strings lies in the next-state operator X .
Given a finite string u = a0 . . . an−1 of length n, it is unclear whether u, n−1 |= Xϕ holds. Hence, a first axiom
of a sound truncated path semantics would be to require that

– Xϕ means there exists a next state and this state satisfies ϕ (∃X)

which we term the existential-next view, abbreviated by (∃X). Consequently, the above example is false , as there
is no next state. A second axiom we consider essential is that negation, indeed, expresses that a formula’s truth
value is complemented, formulated as



– a formula and its negation yield complementary truth values. (¬=C)

Then, however, a negated next-state formula should be true. This, however, conflicts the classical equivalence
¬Xϕ ≡ X¬ϕ, which can no longer hold on finite strings (unless true equals false). It is, therefore, helpful
to distinguish a strong or existential (denoted by X ) and a weak or universal version (denoted by X̄ ) of the
next-state operator.

This view is meaningful in a setting, in which we are faced with only maximal traces. In runtime verification,
however, we are given a prefix of an infinite trace. Therefore, it is clear that there will be a next state, but not
known what it will be.

It can also be argued (see, e. g., [HR02]) that the finally operator F is of existential nature, as some property
should finally hold, while the globally operator G is of a universal character, in a sense that something should
hold in every position of a path. Accordingly, one can argue that Fϕ should evaluate to false if ϕ does not hold
in the currently known prefix, while Gϕ should be true, if ϕ is not violated in the currently known prefix, and in
both cases nothing is known about the successor states.

In LTL, it holds that Fϕ ≡ ϕ ∨ XFϕ, as well as, Gϕ ≡ ϕ ∧ XGϕ. Consequently, XFϕ should be false ,
if no subsequent state exists, while XGϕ should be true in the same situation. This contradiction is elegantly
solved by having the existential as well as the universal version of the next-state operator, opening the possibility
of having the equivalence Fϕ ≡ ϕ ∨ XFϕ and Gϕ ≡ ϕ ∧ X̄Gϕ.

Therefore, for runtime verification, we postulate two further axioms. The first can be stated as

– say true or false only, if the future does not matter. (Sound)

The string a (of length 1) clearly satisfies the proposition p iff p ∈ a. While, understanding a as a prefix of an
infinite string, the value of Xϕ is of less certainty, as the successor state of a is not known. Choosing either true
or false (depending on whether to understand X strongly or weakly) would diminish the qualitative difference
of the knowledge on p and Xϕ based on the string a. Therefore, we require a semantics to yield four values:
true, possibly true, possibly false, and false. Roughly, true and false are used for Boolean combinations of
propositions and possibly true and possibly false for statements for which the future is important.

Actually, this view seems to be already adopted in the runtime verification tool Temporal Rover [Dru00].
However, no formal semantics of Rover’s employed LTL is available. Note that identifying possible true and
true as true, respectively possible false and false as false , yields the finite trace semantics as proposed in
[MP95].

So far, we have disregarded a further issue that we consider important. When considering Xϕ in the last state
of a finite string u, there is no reason to go for false (or possibly false), if every possible continuation of u satisfies
ϕ. A trivial example would be Xtrue. While every single letter extension of u would make Xtrue true in u’s
last position, the semantics discussed so far would come up with false or possibly false. Therefore, we require
that

– if the future does not matter, say true or false. (Precise)

FLTL captures the ideas formulated as (∃X), (¬=C), (Sound), and (Precise), and can be efficiently translated
into Mealy machines, whose output alphabet corresponds to the four truth values.
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In this paper, we describe an Aspect Oriented extension to the verification tool Java 

Monitoring and Checking (Java-MaC) [1]. This approach generates AspectJ aspects from 
Java-MaC specifications. We then use these aspects to monitor the program during 
execution [2]. To demonstrate the described approach, we apply it to a “benchmark” from 
formal methods research [3], a safety-critical railroad crossing system composed of a 
train, a gate and a controller. In this system, the gate must be down while the train is 
crossing and up when no train is crossing.  

The Java-MaC framework allows users to specify system states to be monitored, 
define high-level events based on run-time system states, and describe correctness 
properties in terms of high-level events. The framework uses a runtime component called 
a filter to track the collection of probes inserted into the target program and a separate 
runtime component called an event recognizer to detect events from the state information 
received from the filter. The Meta-Event Definition Language (MEDL) is based on an 
extension of linear-time temporal logic and is used to express a large subset of safety 
properties of systems, including real-time properties such as “when a train is crossing, the 
gate is down”. The Primitive Event Definition Language (PEDL) is used to describe 
events and conditions in terms of system objects such as methods and variables. PEDL 
specifications define the events recognized by the event recognizer, and these event 
definitions are used to automatically instrument the original program. The event 
recognizer emits event streams to the run-time checker, which verifies the sequence of 
events with respect to the specified properties [4]. 

Aspect-Oriented Programming (AOP) aids programmers in the encapsulation of cross-
cutting concerns, i.e., specific requirements that span different modules in a system and 
that cannot be modularized into one component. Aspects can include fields and methods, 
which are merged with classes by a program called a weaver. Aspect weaving can occur 
at the source code level, at post compilation, or at class-load time [5, 6]. Aspects provide 
the benefit of good modularity: code simplicity, ease of development and maintenance, 
and potential for reuse [7]. AspectJ [8] is an AOP implementation for the Java 
programming language. A join point is a place in the code where additional behavior is 
required. A pointcut is a specification of a set of join points. There are two types of 
pointcuts: primitive and user defined. User-defined pointcuts are Boolean combinations 
of primitive pointcuts. Pointcuts may match a method invocation at either the call site or 
the method site, at an assignment or read from a field, or at a point where some condition 
holds. For example, one could verify if variable x is updated by using the construct: 
pointcut checkx() : set(int Class.x). Where checkx() identifies the aspect, set() recognizes 
when the specified non-private field is updated, and int Class.x specifies field x in class 
Class as the field of interest. The behavior of the program can be changed at each join 
point by specifying a construct called advice, which is code to be executed at a join point.  

Since primitive events in PEDL correspond to transfer of control between methods or 



assignments to variables, PEDL events represent pointcuts in a program. MEDL 
properties correspond to safety requirements, or the advice for each pointcut.  While 
Java-MaC provides for runtime verification of stand-alone applications, it requires full 
access to the source code of the application. Aspect orientation provides a way to weave 
aspects without having to access the source code, thus providing a black box approach to 
instrumentation and monitoring.  

 Our goal is to automatically generate AspectJ aspects from MEDL and PEDL 
specifications. In order to generate aspects, we define a one-way mapping from MEDL 
and PEDL grammars to the AspectJ grammar. MEDL and PEDL specifications are used 
to identify properties to be monitored and instrumentation locations. An aspect is created 
and is woven into either the source code or the byte code. Depending on the needs of the 
user, the aspect-enhanced code may monitor and detect violations, it may emit data to the 
event recognizer, or it may emit an event stream to the runtime checker. This allows the 
Java-MaC architecture to be used in emerging technologies such as web and grid 
services. 

The MEDL and PEDL files for the railroad crossing example were defined as 
described in [4]. The PEDL file contained the following events: startIC occurs when a 
train reaches the crossing; endIC occurs when the last train passes the crossing; startGD 
occurs when the gate is closed; and endGD occurs when the gate starts to rise. The 
MEDL file contained the properties IC, which means a train is crossing, and GD, which 
means a gate is down. These conditions are represented as Cond IC= [startIC, endIC] 
and Cond GD= [startGD, endGD], with the safety condition safeRRC= !IC || GD. The 
aspect generated from this specification consists of the safety condition safeRRC= !IC || 
GD. Two pointcuts are generated to monitor each part of the condition. Pointcut IC is 
triggered when train_x + train_length > cross_x && train_x <= cross_x + cross_length, 
which represents the train crossing. Pointcut GD is triggered after Gate.gd() is executed, 
but before Gate.gu() is called, which represent the gate going down or up, respectively. 
The aspect monitors the safety condition and, if it is violated, an alarm is raised. Once the 
aspect was generated, it is woven into the railroad application. The simple aspect-
instrumented version detected the same violations as the Java-MaC-monitored version.  

The aspect generation is not yet fully automated. In the near future, we anticipate 
being able to support the MEDL and PEDL languages in their entirety.  
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Summary

In [4] we developed a revision-based logical mod-
elling approach for evolvable systems, built as hi-
erarchical assemblies of components. A component
may encapsulate horizontal compositions of inter-
acting sub-components as well as specially paired
vertical compositions of supervisor and supervisee
subcomponents. Our work here extends this
logical framework to incorporate programs within
each component. We first consider a setting where
the programs associated with both supervisor and
supervisee components are written in the same
guarded command style imperative language. How-
ever, as supervisor programs typically follow a mon-
itor, diagnose and revise pattern, we then illustrate
how temporal logic rule based supervisor programs,
mixing declarative and imperative styles, can be
semantically incorporated. Indeed, our modelling
framework can fibre as many different programming
languages as are necessary for the natural expres-
sion of the desired evolvable system behaviour. We
use a model of a reactively planned remote roving
vehicle as a motivating example.

Background and Motivation

We are interested in developing theories and tools
to support the construction and running of safe,
robust and controllable systems that have the ca-
pability to evolve or adapt their structure and be-
haviour dynamically according to both internal and
external stimuli. We distinguish such evolution-
ary changes from the normal computational flow
steps of a program; in particular, such changes may
involve the revision of fixed structural elements,
replacement of components and/or programs, or
larger scale reconfigurations of systems. Evolution
steps may be determined by internal monitoring of
a system’s behaviour identifying a need for change
in structure or computation, or may be triggered
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†Department of Computer Science, Kings College Lon-
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by some external influence, e.g. a human user or
some other computational agent. We refer to such
systems in general terms as evolvable systems.

Many computational systems are naturally struc-
tured and modelled as evolvable systems. Exam-
ples include: business process modelling, which
adapt their processes according to internal and
external imperatives [1]; supervisory control sys-
tems for, say, reactive planning [9, 13]; systems for
adaptive querying over changing databases [7]; au-
tonomous software repair [12], data structure re-
pair [6]; hybrid systems [11] that change their com-
putational behavior in response to environmental
factors that they may themselves influence. Fea-
tures of evolvable systems, such as the monitor-
ing of aspects across components, are also found
in Aspect-oriented Programming [10] and Monitor-
oriented Programming [5]. Clearly, the work in the
field of runtime verification, addressing the moni-
toring of system behaviour against desired proper-
ties, or specification, is highly relevant to the design
and structuring of such evolvable systems.

Our logical account of evolvable computational
systems given in [4] aimed at a more refined un-
derstanding of these complex system behaviours.
We introduced evolution at a level of abstraction
that allows us to describe systems that are con-
structed as a hierarchical assembly of software and
hardware components. Software (and hardware)
components are modelled as logical theories built
from predicates and axioms. The state of a compo-
nent is a set of formulae of the theory; the formulae
record observations that are valid at that stage of
the computation. As components compute, their
states change. For normal computational steps,
these changes are described as revisions to the set
of formulae, in a style familiar in revision-based
logic [8]. This is just one particular approach to
describing computational behaviour, however, it is
an approach with built-in persistence — an impor-
tant feature for describing evolutionary behaviour.

Components may also be constructed as a pairing
of a supervisor and supervisee component in which
the supervisor component embodies a process of
monitoring and possibly evolving its supervisee



component. Although the supervisor is a compo-
nent, it stands in a special relationship to its su-
pervisee. In our logical account, this relationship
is that of the supervisor theory being meta to the
object-level supervisee theory. In other words, the
supervisor theory has access to the (entirety of the)
logical structure of the theory of the supervisee,
thus including its predicates, formulae, state, ax-
ioms, revision actions, and its subcomponent the-
ories. This equips the supervisor with sufficient
capability to describe evolutionary object-level su-
pervisee changes. Thus, not only can meta-level
(supervisor) states record observations of its own
state of computation, but they can also record ob-
servations about the object-level (supervisee) sys-
tem. Revision actions at the meta-level update the
state of the supervisor and, as a consequence of
being meta to the supervisee, may also induce a
transformation of the object-level, or supervisee,
system. It is in this way that we capture evolu-
tionary change. By introducing tree-structured
logical descriptions and associated revision opera-
tions, we showed how the framework could be ex-
tended to evolvable systems built from hierarchies
of evolvable components.

Programs for evolution

In this presentation, we outline how our modelling
approach can be extended with the introduction of
programs over the actions of the component theo-
ries. Without digressing into the debate on whether
components should be viewed as active, or pas-
sive service providers, we enhance our component
model and theory so that each component (and
hence all of its subcomponents) comes equipped
with its own “main” program, which is executed
upon component instance creation. This choice of
active componentry is not restrictive as it can easily
be used to model passive service-provider compo-
nent models. Furthermore, component instances of
different component schema may use different pro-
gramming languages. Of course, this is common in
practice; for example, shell scripts supervising the
execution of particular programs (in different lan-
guages), or temporal logic (or history/trace) based
languages used for monitoring imperative C or Java
programs. Seldom, however, do such combinations
come equipped with a logical account of the com-
bined systems.

A structural operational semantics, as well as a
trace-based denotational semantics, has been pro-
vided for the various ways that component pro-
grams may be combined, including, in particular,
the supervisor-supervisee combination of evolvable
components. This provides not only a foundation

for static proof analysis of an evolvable component
hierarchy but also a natural setting for dynamic,
reasoned and programmed, control of a system’s
evolution as a generalization of standard runtime
verification techniques. In addition, we illustrate
a temporal rule-based language, blending concepts
from Eagle [3] and MetateM [2], for supervisory
programming.

A roving example

We will motivate our approach to the inclusion of
programs in component models using an abstrac-
tion of a reactive planning-based remote roving ve-
hicle. Let us here give just an informal idea. At the
base level, we model a rover as a simple linear-plan
execution engine. The rover’s plans, i.e. programs,
are sequences of actions such as taking a picture,
setting a destination heading, and driving towards
the destination. A reactive planner is then mod-
elled as a supervisor for this base engine. The su-
pervisor sets an initial plan, then monitors the exe-
cution engine’s behaviour. If a planned action fails,
e.g. a drive action fails because of some unexpected
obstruction, the supervisor must diagnose the prob-
lem, replan and reinstall a more appropriate plan
for the rover. In this basic application, the super-
visory control is modelled using a straightforward
guarded command programming language; moni-
toring is reduced to looking for action failures. Ob-
viously, more complex monitoring, both temporal
and spatial, would be required for a more sophisti-
cated, potentially predictive, supervisor. Further-
more, a hierarchy of supervisors may also be neces-
sary. For example, suppose the replan action of a
first-level supervisor fails because there is no unob-
structed route to the given destination. A higher-
level supervisor (re-planner) may well revise the
goal to drive to another location or may be able
to employ some other technology to remove part of
the obstruction.

Whilst supervisory control of planning-based sys-
tems is hardly new, this example neatly illustrates
how the architecture of such systems and their pro-
grams are modelled in a logical framework that pro-
vides foundation for static and dynamic reasoning.
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ABSTRACT 
A significant number of cyber assaults are attempted against open 
source internet support software written in C, C++, or Java.  
Examples of these software packages include the Apache web 
server, open source DHCP servers, and network share software 
such as Samba.  These attacks attempt to take advantage of 
inadvertent flaws left in software systems due to a lack of 
complete testing, inexperienced developers, intentional backdoors 
into the system, and other reasons. Detecting all of the flaws in a 
large system is still a daunting, unrealistic task. If it is not possible 
to completely secure a system, there is a desire to at least detect 
intrusion attempts in order to stop them while in progress, or 
repair the damage at a later date.  

The information assurance area of expertise known as “intrusion 
detection” attempts to sense unauthorized attempts to obtain 
access to or manipulate information, or to deny the information to 
other legitimate users. There are several traditional methods used 
for intrusion detection, which can be categorized into two broad 
classes: Anomaly Detection, and Misuse Detection.  

Anomaly Detection uses statistical approaches and pattern 
prediction techniques to generate profiles of “typical” user 
interaction with a system. For example, a certain percentage of the 
page accesses on a web site may be to a log-in page, and a certain 
percentage may refer to a page showing the users “shopping cart”. 
Occasionally the user will mistype their password and the log in 
will fail; for this and other reasons it is likely that more references 
would be made to the login page than the shopping cart page. If, 
though, certain pages are suddenly referenced far more frequently, 
this is an unusual activity and may indicate an intrusion attempt. 
The advantages of this technique include the capability to detect 
intrusions which other methods miss, and the fact that the 
systems are generally adaptable to change over time. But anomaly 
detection via statistical approaches suffers from a few drawbacks. 
For example, a nefarious user who knows that the system is 
adaptable can gradually change the probability for future events 
until the behavior is considered to be normal. At that point the 
attacker can penetrate the system without triggering any of the 
detection alarms. As a counter to these approaches, many 
anomaly intrusion detection systems also incorporate some form 

of neural network, which learns to predict a user’s next activity 
and signals an alarm when this prediction is not met. 

Misuse Detection systems are typified by expert system software 
which has knowledge of many known attack scenarios and can 
monitor user behavior searching for these patterns. A misuse 
detection system can be thought of as more similar to anti-virus 
software, which continually searches files and memory for known 
attack patterns, and alerts the user if any are matched. Misuse 
systems include a state-based component called an “anticipator”, 
which tries to predict the next activity that will occur on a system. 
A knowledge base contains the scenarios which the expert system 
uses to make this prediction, and the audit trail in the system is 
examined by the expert system to locate partial matches to these 
patterns. A wildly differing “next event” in a pattern could be an 
indicator that an intrusion attempt is in progress. 

Both types of intrusion detection systems can rely on a variety of 
data sources in order to build an accurate picture of the normal 
versus abnormal system activity. However these data sources are 
almost exclusively comprised of two types: network traffic, and 
audit logs [1].  

This research presents a new approach to generating records for 
intrusion detection by means of enhancements to the GCC 
compiler suite. These modifications automatically insert 
instrumentation calls into the compiled code; the intent of the 
instrumentation is to generate trace data for intrusion detection 
systems. Open source code such as a web server can be compiled 
in this manner, and the execution path of the server can be 
observed externally in near real-time. (We claim only “near” real-
time since the instrumentation is typically queued for a short 
period between the producing instrumented program and the 
intrusion detection software.) This method thus creates a 
completely new source of intrusion detection data which can be 
incorporated into a detection system.  

This “instrumentation compiler” is used for software which is run 
in a controlled environment in order to gather typical usage 
patterns. These patterns are ideal for an “anticipator” module in a 
misuse detection system, as they are made up of the actual 
execution path of the software under typical usage scenarios. The 
data included in the instrumentation tracks each procedure entry 



and exit point in the software as well as the entry to each basic 
block in the compiled code. 

In a sense the tool appears similar to the Linux utility “gcov” and 
similar software engineering programs which are used for verifying 
that each line of code has been executed and tested. However 
“gcov” and similar tools operate in a batch mode where they first 
collect statistics, and then later display the program coverage. Our 
modifications create trace information as each block of the original 
code is executed. The data generated includes the currently 
executing function name, the line number in the original software, 
and the basic block number (for debugging our system) within the 
function itself. The data could obviously be saved to a file for later 
analysis, similar to “gcov”. But the data is readily available as the 
program executes and thus can serve as an immediate data feed to 
our misuse detection system.  In addition, our system can change 
the coverage dynamically during runtime by indicating which 
functions are to be monitored without restarting the system. 

This research paper outlines our intrusion detection scheme and 
includes two main foci.  

First, we discuss the techniques used to modify the internal 
representations used by the GCC compilers to allow this 
instrumentation. The compiler uses an internal representation 
called RTX. Additional calls to the instrumentation functions are 
automatically generated in RTX just prior to emitting assembly 
language output. The research paper addresses the techniques for 
locating the instrumentation points and avoiding problems when 
software is compiled with optimization. We also present figures 
addressing the slowdown due to the instrumentation overhead and 
the additional memory requirements that result by including our 
instrumentation. The slowdown in compute-bound programs is 
significant, but our focus is typified by heavily I/O bound 
processes such as web servers. 

Secondly, we have designed and describe a simple a priori domain 
specific language which we use in order to test for intrusion 
attempts. Since we are implementing a proof of concept system to 
determine the feasibility of this method for intrusion detection, 
our system does not currently encompass any learning modes; 
instead we manually enter rules based on the past known good 
observed behavior of the software we are compiling for 
instrumentation.  

Our domain language is a way in which we can specify possible 
sequences of events which are expected from the instrumentation 
output, along with the probability of each successor to that event. 
In this way, potential state transitions create a DFA-like 
automaton. There is one automaton structure for each possible 
sequence, and these automatons are traversed in parallel according 
to the instrumentation output of the program being observed. 
Final states in the DFA correspond to acceptable sequences of 
events, while a sufficient number of invalid transitions may be an 
indicator of an intrusion attempt. Reaching a final state causes all 
automatons to reset to their initial state. Our language is thus 
compiled from a human readable format into this set of 
automatons, which the intrusion detection system then matches 
against the instrumentation coming from the server program in 
near real-time. 

Our paper lastly outlines the results of this research in general and 
the issues we have raised but have not yet addressed.  

 

[1] See for example: DARPA Intrusion Detection Evaluation 
Data Sets, Lincoln Laboratory, Massachusetts Institute of 
Technology. Available at 
http://www.ll.mit.edu/IST/ideval/index.html. 
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Atomicity is used widely for expressing interference-freedom re-
quirements between code blocks in executions of concurrentpro-
grams. In this study, we propose a new notion of atomicity called
“rollback atomicity”.

Commonly used definitions of atomicity have the following form:
A concurrent execution σconc of a program is atomic iff there ex-
ists an equivalent, serialized execution σser in which every atomic
block by thread t is executed with no interruption by actions of other
threads. Rollback atomicity fits into this template as well. In rollback
atomicity, we require a particular kind of match between thestates of
σconc and the witness executionσser at certain points in each exe-
cution approximately corresponding to completion points of atomic
blocks. A subsetF of the shared data variables is designated by the
user as the “focus” variables. The rest of the shared variables (the set
P ) are called “peripheral” variables. The valuation of focusvariables
in σser right after an atomic blockA completes is required to match
a valuation obtained fromσconc by (i) considering the program state
at the point whereA completes inσconc and (ii) by rolling back the
effects of other atomic blocksB that commit later, i.e. appear later
thanA in σser .

Formalizations of atomicity in the literature differ in thenotion
for the equivalence of executions that they use to interpretthe defi-
nition above. Reduction and its variants ([2, 5]) are definedbased on
actions that are left-, right- and both-movers and actions that are non-
movers. They require that it be possible to obtainσser from σconc

by swapping actions that commute. Conflict-serializability requires
thatσser consist of the same accesses as inσconc and that the order
of accesses to each variable remain the same. View-serializability
is a more relaxed notion for atomicity. It requires thatσser consist
of the same accesses as inσconc, that the final write to each vari-
able in both executions be the same, and that the write seen byeach
read be the same in both executions. In commit atomicity[3],the fi-
nal state of a concurrent execution is required to match thatof an
execution in which atomic blocks are run one at a time, in the or-
der of the occurrence of their commit points in the concurrent ex-
ecution. Rollback atomicity is a weaker requirement than reduction
and conflict-serializability, but is incomparable with view serializ-
ability and commit-atomicity. It provides more observability at more
points along the execution, but is more permissive in other regards.
We highlight some of the differences in Figure 1 where we provide
an example in which view-serializability as well as reduction and
conflict-serializability are unnecessarily restrictive.

In this example, several concurrent threads can each run thesend
method of a differentMsg object. TheMsg objects that are to be sent
wait in a queue calledtoSendQueue, thus,toSendQueue is shared
among different threads. The static fieldMsg.KBSentThisSec and
the pool of bytes to be sent,SendPool are also shared among threads.
EachMsg object has a boolean fieldsent that indicates whether it
has been sent or not. Thesend method copies the contents of the
message (a byte array) to a pool byte by byte where each byte has
a message id and a sequence number. The programmer wants the
modifications of thesent fields and thetoSendQueue to be atomic.
While thesentPool data structure is also a shared variable, since
the network can already re-order messages, it is not necessary for
the sequence of updates tosentPool by eachsend method to be
atomic. TheKBytesSentThisSec static field is shared (read and
written to) by all threads. It is used for rate control and occasionally
causes asend method to abort, but otherwise, in non-exceptionally-

0: class Msg {
1: long msgId;
2: static long KBSentThisSec = 0; /* @Periph */

3: boolean sent = false; /* @Focus */
4: byte[] contents; /* @Focus */

5:
6: static synchronized long getKBSentThisSecIncr() {
7: return ++KBSentThisSec;

8: }
9:

10:
11: synchronized atomic void send() {

12:
13: if ( sent || !toSendQueue.isIn(this))
14: abort; // Caller must retry

15:
16: if (Msg.getKBSentThisSec() > MaxRate)

17: abort; // Caller must retry
18:
19: int i = 0;

20: while (i < contents.length) {
21:

22: sendPool.insert(msgId, i, content[i]);
23: if ( (i++ % 1000) == 0 )

24: if (Msg.getKBSentThisSecIncr() > MaxRate)
25: abort; // Caller must retry
26: }

27:
28: sent = true;

29: toSendQueue.remove(this);
30: } //Commit point
31: }

Figure 1. Example 1: Focus variables and rollback atomicity

terminating executions ofsend, it does not affect the functionality
of the method. This field is reset every second, and is incremented
by all threads manipulatingMsg objects. The user does not need the
complete sequence of updates to this field within a single execution
of send to be atomic. Also, the read-write dependencies between
concurrent executions ofsend caused by this field are not really
significant. They do not really point to a data dependency between
the atomic blocks.

Consider two normally-terminating concurrent executionsof
send for Msg objectsm1 and m2. Suppose that an increment that
m1.send() performs onMsg.KBytesSentThisSec is interleaved
between two updates to the same static field bym2.send() run-
ning on another thread. Conflict serializability does not allow the
reads and updates toMsg.KBytesSentThisSec by m1.send() and
m2.send() to be re-ordered. Likewise, view-serializability does
not allow such a re-ordering either, as it requires that the value of
Msg.KBytesSentThisSec seen by each increment operation to be
the same in the concurrent and serial executions. Therefore, these
two criteria declare such an execution unserializable. It is possible to
construct other interleavings for which commit atomicity would flag
a warning because the value ofMsg.KBytesSentThisSec at the end
of a serial execution does not match that at the end of a concurrent
one. However, in terms of the other shared variables (toSendQueue,
contents andMsg.sent) these concurrent executions can be seri-
alized in the order thatm1 andm2 are removed fromtoSendQueue.
Declaring this latter set of variables as our focus variables while
designating the rest of the shared variables as peripheral variables,
rollback atomicity gives us a way of expressing the requirement that
toSendQueue, contents andsent be updated atomically by each



execution ofsend while Msg.KBytesSentThisSec only have a
consistent value that allows these executions to complete normally.

In the full paper, we provide examples where view serializability
and commit atomicity of a single execution may not provide enough
observation points along the execution to reveal bugs. In these exam-
ples, rollback atomicity provides the necessary early warning.

1. Rollback Atomicity
We focus only on well-synchronized Java programs whose execu-
tions are free of race conditions and thus sequentially consistent. We
suppose that the programmer has annotated certain code blocks as
atomic. We work withstrong atomicity, where all other actions mod-
ifying or reading focus variables are considered to be atomic blocks
as well. Our definition is based on a partition of the set of shared
variables into focus and peripheral variables:F ∪ P .

Consider a concurrent executionσconc of a program with a set
of atomic code blocksAtBlk . Let us suppose that a every execution
of an atomic block that occurs inσconc is given a unique id from
the setXId . We say thatσconc is rollback atomic iff there exists an
executionσser of the program with the following properties

• For each threadt, the projection of the two executions ontot,
proj(σser , t) andproj(σconc , t), consist of the same sequence
of atomic blocks for each thread idt. Exploiting this fact, we use
the same id fromXId to refer to corresponding occurrences of
an atomic block execution by the same thread inσser andσconc .
Let us define thecommit order onXId as follows:α ≤cmt β iff
α = β or α occurs beforeβ in σconc. If α ≤cmt β, we say that
α commits before β.

• Let σser

α denote the state ofσser right after the block with id
α has completed executing. Lets

conc

α = proj(σser

α ,F ) be the
projection of the stateσser

α onto the focus variables. Letσconc

α

be the state inσconc right after atomic block execution with id
α has performed the last write access to a variable inF . Let
s
ser

α = proj(σconc

α ,F ) be the projection of the stateσconc

α onto
the focus variables. LetRlBk(sserα ) be obtained froms

ser

α as
follows:

Let v ∈ F . If v was last written by a transactionβ ≤cmt α in
σconc thenRlBk(sserα )(v) = s

ser

α (v).
Otherwise, ifv was last modified beforeσconc

α by an atomic
block that commits beforeα, then find the most recent write
ω to v in σconc by a block that has committed beforeα.
RlBk(sserα )(v) is assigned the value written by this most
recent committed write. If no such write exists, the value ofv
is set to its initial value.

We require that for eachα, RlBk(sserα )(v) = s
conc

α (v).

2. Checking Rollback Atomicity
Using the infrastructure built for the Vyrd tool [6] we trackthe ac-
cesses to the shared variables throughout the execution. Weperform
a view refinement check as described in [6] where the abstraction
function is given byRlBk as described above. The view refinement
check requires that the order of atomic blocks inσser be explicitly
provided by the user. In order to allow more flexibility in thechoice
of this order, we instead try to infer it from causality relationships.
We construct two graphs of causality dependencies between accesses
in order to infer this order:CGF andCGF∪P . The rules for con-
structing the two graphs are the same. The former is constructed only
using accesses toF variables while the latter uses accesses to all
shared variables.

In this directed graph, called the causality graph, eachatomic
block in the execution and each individual read and write action
correspond to a unique node. The graph has the following setsof
edges:

• For each read actionr and the write that it sees,W (r), an edge
from the node representingW (r) to the node representingr. If

any of these actions happen inside some atomic block, the edge
starts/ends at the node representing that atomic block.

• For each read actionr and the write actionw to the same variable
that happens immediately afterr, there is an edge from the node
representingr to the node representingw. If any of these actions
happen inside some atomic block, the edge starts/ends at thenode
representing that atomic block.

• Within each atomic block, if the block contains a write to and
a subsequent read of the same variable, there is an edge to each
read action from the last write to the same variable in the same
atomic block.

• For each pair of nodesα andβ representing actions or atomic
blocks ordered by program order, there is an edge fromα to β.

We updateCGF andCGF∪P as we processes each access in
order, by iteratively adding nodes and edges. We search for cycles
in each graph after adding an edge that starts/ends at a node rep-
resenting anatomic block [4]. At each such point, there are three
possibilities:

• NeitherCGF nor CGF∪P have a cycle containing an atomic
block. In this case, we obtain a commit order of atomic blocks
by applying the algorithm in [4] toCGF∪P . In this case the
entire execution is conflict-serializable and it is not necessary to
perform a rollback atomicity check.

• CGF∪P has a cycle containing an atomic block butCGF does
not. In this case, we obtain a witness order usingCGF only.

• CGF andCGF∪P both have cycles. In this case, we take as the
commit order the order of the last focus variable writes by atomic
blocks.

If there is a read actionr to which there is more than one causality
edge from write actions inCGF , an error is declared. This latter
warning captures a form of interference in the atomic block that will
be discussed in the full paper.

In case our algorithm declares a warning, we were not able to ob-
tain a serialized execution satisfying the rollback atomicity check. In
this case, the implementation could truly have undesired behavior, or
it could be the case that we were not able to find the right ordering of
the atomic blocks. If the latter is the case, however, the witness order-
ing conflicts certain causality dependencies between focusvariables.
The programmer can aid our atomicity check by explicitly providing
commit point annotations.
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1. INTRODUCTION
Many runtime verification properties can be expressed as a

pattern that is matched against the trace of runtime events.
In our previous work on so-called tracematches, the pattern
language consists of regular expressions over events; further-
more the regular expressions contain free variables [1]. The
latter feature is indispensable when tracking the behaviour
of a clique of objects. The formal semantics of tracematches
was worked out in [1]: that paper both gives a declarative
semantics and proves it is equivalent to an operational se-
mantics, which in turn is the basis of an efficient implemen-
tation.

When comparing tracematches against other formalisms
in runtime verification (for instance the PQL system [3]),
an important difference is the use of an exact-match seman-
tics (where every relevant event must be matched by the
pattern) instead of a skipping semantics (any event may
be skipped during matching). Under skipping semantics,
‘A B’ means ‘A implies eventually B’, while under exact-
match, ‘A B’ means ‘A implies next B’. It appears that the
exact-match semantics are favoured by systems originating
in aspect-oriented programming [2, 4, 5], while skipping se-
mantics are more common for systems with roots in runtime
verification. Indeed, one could argue that skipping is more
natural for specifying temporal properties.

This paper investigates the formal relation between these
two styles of specification. In particular, we show that a
skipping semantics is no more expressive than exact-match.

2. SEMANTICS OF TRACE PATTERNS

2.1 Exact-match languages
Since the pattern language of tracematches [1] is the only

one that comes equipped with a formal semantics, we shall
make it the starting point of our investigation.

In a nutshell, each tracematch declares a set of symbols,
which pick out the events of interest (in fact, they are As-
pectJ pointcuts). We can think of these as predicates on
events, following the intuition suggested by temporal logics.
Matching such a predicate (i.e. symbol) to an event either
results in failure, or in success (possibly subject to a certain
instantiation of the tracematch’s formal variables).

The pattern itself is a regular expression over the alphabet
of symbols, and is matched against all suffixes of the filtered,
instantiated trace — that is, first, the sequence of program
events is filtered to a sequence of symbols (i.e. propositions
that are true at each event), and this is then instantiated for
each possible set of variable bindings, resulting in a sequence

of ground symbols. Since tracematches use an exact-match
semantics, matching the regular expression against strings
of ground symbols is well-understood.

2.2 Skipping languages
As a first step, we shall provide a formal definition of

a simple tracematch-like skipping language: We require an
alphabet of declared symbols over which patterns will range,
and we shall try to follow the syntax of regular expressions
as closely as possible.

It is clear that explicit negation is needed in a skipping
language, as otherwise it would be impossible to specify pat-
terns that preclude certain events from occurring in the mid-
dle of a match. However, if negation is unrestricted and can
apply to general patterns, then a matcher (and hence a se-
mantics) for the language must be capable of arbitrary back-
tracking, which significantly complicates matters. PQL [3]
solves this problem by only permitting negation on a single
declared symbol; we go somewhat beyond that by allowing
negations of alternations of symbols (or, equivalently, sym-
bol sets).

Note that in order to ensure this, we have to use negated
terms with care. In particular, they cannot be used freely
in sequential composition: since ˜a ˜b would match exactly
the same traces as ˜(a b), it is equivalent to a negated com-
pound pattern. We refer to terms that do not start or end
in negation as closed (cf. Figure 1), and only such terms
may be freely sequentially composed.

pattern := closedTerm
| closedTerm ’ | ’ pattern

closedTerm := simplePattern
| s implePattern closedTerm
| s implePattern ’˜ ’ symbolSet

closedTerm

simplePattern := symbol
| ’ ( ’ pattern ’ ) ’

symbolSet := symbol
| ’ ( ’ symbol ’ | ’ symbolSet ’ ) ’

Figure 1: The grammar of our simple skipping lan-

guage

It is interesting to observe that the Kleene star is not
present in our skipping language definition. This is not an
oversight: Under a skipping semantics, a b∗ c would match



[[ cTerm | pat ]] =⇒
[[ cTerm ]] | [[ pat ]]

[[ sPat cTerm ]] =⇒
[[ sPat ]] Σ∗ [[ cTerm ]]

[[ sPat ˜α cTerm ]] =⇒
[[ sPat ]] (Σ \ α)∗ [[ cTerm ]]

[[ symbol ]] =⇒ symbol

Figure 2: Rewrite rules translating into the trace-

match language

precisely when a c matches, since any events are permitted
between a and c. Thus, Kleene closure does not add expres-
siveness, since the matcher could always choose to match
it against the empty program trace, and then skip over an
arbitrary sequence.

To specify the semantics of this language, we proceed by
providing a set of simple syntax-directed rewriting rules that
translate a skipping pattern into a standard tracematch pat-
tern (the semantics of which is well-understood). The trans-
lation proceeds by structural induction on the skipping pat-
tern; full details are given in Figure 2 (where cTerm is of
type closedTerm, pat is a pattern, sPat is a simplePattern,
α is an alternation of symbols, interpreted as a set, and Σ
is the set of all declared symbols).

As expected, the basic structure of the pattern carries
over. Alternation is mapped to alternation, and each indi-
vidual symbol is mapped to the same symbol. The inter-
esting cases concern sequential composition: either with or
without an intervening negated set of symbols.

In the negation-free case, we want to capture the fact that
“an arbitrary number of events of any kind are allowed in
between consecutive matched statements” [3]. The natural
way to ensure this is to add Σ∗ between the two patterns:
Since Σ is the entire alphabet of symbols, this has the desired
effect.

When there is a negated set of symbols, the translation is
similar, but we allow any number of events matching sym-
bols in Σ\α to occur. If we interpret the Kleene closure of
the empty set to only match the empty trace, then this has
exactly the effect of prohibiting the symbols in α under a
skipping semantics.

This simple set of rewrite rules suffices to pin down the
semantics of our small skipping language; we therefore con-
clude that changing the interpretation of patterns from exact-
match to skipping does not by itself increase expressiveness.

3. EXPRESSIVENESS OF SKIPPING LAN-
GUAGES

Our translation showed that a regular expressions-based
skipping language is not more expressive than the corre-
sponding exact-match language. At the same time, we were
forced to do without Kleene closure, since any Kleene-starred
expression can be dropped from a skipping pattern without
altering matching behaviour.

Note that the claim above is only true if we insist that
Kleene-starred terms are not closed terms in the sense of the
condition on sequential composition imposed above. What
would happen if we were to consider them closed?

Unfortunately, the answer is that we end up with a non-
compositional semantics, meaning that it is not valid to
substitute equivalent subexpressions for each other. Con-
sider the following two patterns: a b∗ c and a c. They
clearly match the same set of traces, so (a b∗) and (a)
are equivalent subexpressions. Now consider the context
C(X) := (X ˜b c), defined for all closed instantiations of
X. Since both our subexpressions would be closed, we can
plug each of them into the context to obtain the patterns
a b∗ b˜ c and a ˜b c, respectively. But the former matches
the trace A B C, while the latter doesn’t.

Thus, it would seem that the skipping language is strictly
less expressive than the tracematch language. This notion
is formalised in the paper by giving a backwards translation
from a subset of the tracematch language to the skipping
language (it turns out that to get an equivalent language,
we need to restrict Kleene closure to symbol sets, mirroring
the restriction on explicit negation).

4. CONCLUSIONS AND FUTURE WORK
This work examines the semantics of skipping-based trace

monitoring languages, and gives a formal semantics for a
simple regular expressions-based skipping language, as well
as an argument of equivalence to a subset of the trace lan-
guage of tracematches [1].

Since it was shown that a skipping interpretation pre-
cludes the use of Kleene closure, it is interesting to investi-
gate in how far the results presented here carry over when
we consider more expressive languages (context-free gram-
mars, or their closure under intersection — this is the class
of languages accepted by [3]).

The small trace language described above has been im-
plemented as an extension to the tracematches system and
will be made available in the very near future.
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Abstract

Probabilistic correctness is another important aspect of reliable systems. A soft real-time
system, for instance, exhibits probabilistic behaviors from tolerating some degrees of deadline
misses. Since probabilistic systems may behave differently from their probabilistic models
depending on their current environments, checking the systems at runtime can provide another
level of assurance for their probabilistic correctness.

Runtime verification is a technique for checking correctness of a system at runtime by
observing a system execution and checking it against its property specification. To check
probabilistic properties, runtime verification can adopt a statistical technique used in model
checking to check probabilistic properties. The statistical technique simulates, samples many
execution paths, and estimates probabilities by counting successful samples against all sam-
ples. One particular difficulty in using this technique in runtime verification, however, is that
runtime verification has only one execution path and cannot simply collect many different ex-
ecution paths as in statistical probabilistic model checking. Therefore, this one execution path,
usually in a form of a trace of states or events, needs to be broken down into different individ-
ual samples, which can be done only if a probabilistic system being observed has repeated or
periodic behaviors such as soft real-time schedulers or network protocols.

To break apart one execution, runtime verification must be able to distinguish one repeated
behavior from another by just looking at the system trace. The trace may also contain other
states or events unrelated to probabilistic properties. Nonetheless, breaking apart one execution
can be done via conditional probabilities. Written in terms of probabilistic properties, one can
specify as given a condition A, does the probability that an outcome B occurs fall within a
given range? For example, given that a real-time task has started, is the probability that it
finishes within its deadline greater than 0.8? If we can relate the condition A to the outcome
B within the trace, a set of A and B can be collected as one individual sample, and a sequence
of the set can be collected as many different individual samples. The probability observed
from the system can be estimated by counting the condition A with the outcome B against all
A. After the probabilities are estimated, runtime verification uses statistical analysis such as
hypothesis testing to provide a systematic procedure with an adequate level of confidence to
determine statistically whether a system satisfies a probabilistic property.

The above statistical technique for checking probabilistic properties is applied to a runtime
verification framework called MaC or Monitoring and Checking. MaC provides expressive
specification languages based on Linear Temporal Logics to specify system properties. Once
the properties are specified, MaC observes the system by retrieving system information from



probes instrumented into the system prior to the execution. MaC then checks the execution
against the system properties and reports any violations. The main aspect of MaC is its formal
property specification. MaC specification is built upon two elements: events and conditions.
Events occur instantaneously during execution, whereas conditions represent system states that
hold for a duration of time and can be true or false . For example, an event denoting a call to
a method init occurs at the instant the control is passed to the method, and a condition v <
5 holds as long as the value v is less than 5. Events and conditions can be composed using
boolean operators such as negation, conjunction, disjunction, and other temporal operators.

Probabilistic properties can be specified by quantifying these events with probabilities. Us-
ing conditional probabilities to break one execution path into several samples, the probabilistic
events are defined as follows. Given that an event a occurs, does the probability that an event
b occurs fall within a given range? The probabilities are estimated by counting the number of
an event b that occurs in response to an event a against the total number of an event a. The hy-
pothesis testing is then used to decide whether the estimated probability falls within the given
range of a probability quantified in a probabilistic event. A common statistics technique of
z-score is used to tell statistically how far apart the estimated probability from the quantified
probability. A threshold is set up with some levels of confidence to test whether the estimated
probability falls with the quantified probability. If not, a violation is reported. We have applied
this technique to check probabilistic properties in wireless sensor network applications.

The implementation is done using sliding windows by collecting a fixed number of samples
and shifting the window appropriately over time. The sliding windows can detect different
probabilistic behaviors over time. For example, a soft real-time system may behave well during
normal loads but poorly during overloaded periods. When using all samples without the sliding
windows, the difference in these situations may not be detected.

MaC does not provide probabilistic conditions because of possible inconsistency in the
results of hypothesis testing. To understand the reason, we give possible definitions of proba-
bilistic conditions. One can specify them as given that a MaC condition a is true, what is the
probability that a MaC condition b is true? The sample can be collected by counting the num-
ber of states (or the time duration) where a and b are true against the number of states (or the
time duration) where a is true. These definitions are sensitive to the way the system is instru-
mented or the time metric used to measure the duration of time. Fine-grained instrumentation
(or time metric) gives more states (or larger duration) than coarse-grained ones. In either case,
the resulted probability estimation using different levels of instrumentation or time metric may
still be the same, only the numbers of samples that are different. However, z-score is sensi-
tive to the number of samples and may produce different results even though the estimated
probabilities are the same leading to possible inconsistency in reporting violations.

Other existing runtime verification frameworks that provide probabilistic properties do not
use any statistical analysis to support the estimated probabilities. Most of their semantics also
uses propositions, equivalent to MaC conditions, as their basic elements and are subject to the
possible inconsistency of hypothesis testing results. MaC however provides events in addition
to conditions and can use the statistical technique to check probabilistic events.

Our contributions are: 1) we provide a general statistical technique for checking probabilis-
tic properties at runtime, 2) the technique is applied to and implemented in an existing runtime
verification framework called MaC, and 3) a discussion is given about possible inconsistency
when using the statistical technique with conditions or other runtime verification frameworks.


