
From Interaction Patterns to Aspects: a Mechanism for
Systematic Runtime Monitoring

Ingolf Krüger, Massimiliano Menarini
University of California, San Diego
9500 Gilman Drive, Mail Code 0404

La Jolla, CA 92093-0404, USA
{ikrueger, mmenarini}@ucsd.edu

Michael Meisinger
Technische Universität München

Institut für Informatik
Boltzmannstr. 3, 85748 Garching, Germany

meisinge@in.tum.de

Extended Abstract
Runtime monitoring of software systems requires the insertion into runnable software of moni-

tors that gather information on system states and their evolution. A simple approach to run time
monitoring consists of modifying the software source code to implement monitoring functional-
ities. The very nature of such monitors, however, makes such modifications repetitive and scat-
tered across the whole code base. Aspect oriented languages have been introduced exactly to ad-
dress repetitive code changes crosscutting the code. They enable a compact representation of such
code modifications. Thus, using aspects to specify such monitors seams a promising avenue.

We focus our research on distributed, loosely coupled systems. This system class is based on a
well defined communication infrastructure with systems’ functionalities emerging from interac-
tions between components over this communication infrastructure. The runtime verification of
such systems requires, therefore, monitoring the communications between components and veri-
fying that the expected communication patterns are observed.

We have developed a specification technique for distributed systems based on the use of Mes-
sage Sequence Charts (MSC) to capture the interaction patterns between entities. Our models are
based on a thorough formal foundation and allow for consistent refinement and refactoring. The
MSC graphs can, therefore, be used to capture the temporal properties of the interaction inter-
faces of the distributed system. In particular, it is possible to use the models for verification pur-
poses by generating state machine representing the communication behavior of each node of the
system. We have applied this strategy, for instance, for conformance testing of components by
runtime monitoring [1], generation of executable prototypes for efficient evaluation of multiple
architecture candidates ([4], [3]), and to support product-line engineering [5].

When analyzing the relationships between our interaction specification technique and aspect-
oriented programming languages ([3], [4], [5]), we were able to identify many similarities be-
tween our interaction specifications and aspects. Aspects promote the compact representation of
functionalities that spread across different parts of a system’s source code. Similarly, our MSC
descriptions compactly capture the interaction of logically or physically distributed entities in the
system collaborating to provide some functionality. Then, aspects map crosscutting concerns to
elements in the program code (pointcuts), whereas MSCs [3] map crosscutting interaction con-
cerns to nodes in the distributed system.

These observations motivate the use of aspect-oriented languages as implementation technique
for our interaction based models. Thus, we have developed M2Aspects, a code generation tool
leveraging the AspectJ language and producing executable system simulations. M2Aspects trans-
lates interactions into aspects and uses weaving techniques [2] to establish the mapping between
one abstract interaction specifications and low level deployment models. Aspect-orientation
propagates the separation of cross-cutting concerns into aspects, maintaining a one to one map-
ping between models and code.

We propose to combine our interaction specification approach with aspect-oriented technolo-
gies to enable an easy modification of distributed systems implementations. We can then embed
system monitors into the executable based on models, thus increasing software dependability. We

are investigating enhancements to our M2Aspects tool, resulting in the creation of run-time moni-
tors out of MSC based interaction descriptions. The monitors leverage AspectJ to directly modify
an existing Java implementation. We can compactly specify a monitor observing the protocols
implemented by the system and insert it into the existing code using the AspectJ weaver without
the need of complex code refactorings.

One difficulty is to match aspect language pointcuts, based on code patterns, with the phases of
the protocol implemented by the code; this is, in particular, true for systems developed without
run time monitoring in mind. We are exploring extensions of M2Aspects that leverage pointcuts
that are generally easy to identify at the code level: message send and receive. We leverage our
capability to convert interaction patterns to state machines and weave them into the system to
keep explicit track of the protocol state. Those state machines can then be used to establish the
right pointcuts where the code for monitoring, verifying or even modifying the interactions can be
inserted. The generation of the automata, weaved into the system, is based on our algorithm to
transform MSCs into state machines, presented in [7].

The use of interaction based specifications has emerged as a powerful abstraction to describe a
vast set of real systems. In particular it has been identified as a distinguishing element of service
oriented specifications. The notion of service has attracted increasing attention both in industry
and academia as a mechanism to achieve coupling to address integration of large distributed sys-
tems. Service-oriented techniques have been successfully applied in ultra-large scale (ULS) sys-
tems. Examples of ULS systems include avionics, automotive, command and control, as well as
telematics and public safety systems, to name just a few. In all these domains, the primary chal-
lenge to software and systems engineering is the integration of a wide variety of subsystems, their
associated applications, data models and sources, as well as the corresponding processes, into a
high quality system of systems under tight time-to-market, budget, security, policy, governance
and other cross-cutting constraints. These requirements characteristics have led to a high demand
for loosely-coupled integration architectures [6]. Therefore, the use of interaction based specifica-
tions as a starting point for runtime verification of systems has tremendous potential for
increasing quality of real industrial applications.

More work is needed to have a complete and general translation to Aspects implemented in the
M2Aspects tool. Moreover, experiments are currently in progress to establish the practicality and
usability of this approach in practical applications. Finally, we are investigating the integration of
runtime verification, based on the outlined technique, with a full service oriented development
process for fail safe systems. We expect this integration to allow us to specify and integrate into
existing systems, failure management code to increase the reliability of distributed systems with-
out incurring in the risks introduced by substantial refactoring.

References
[1] J. Ahluwalia, I. Krüger, M. Meisinger, W. Phillips. Model-Based Run-Time Monitoring of End-to-End

Deadlines. In Proc. of the Conference on Embedded Systems Software (EMSOFT 2005), 2005.
[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect

Oriented Programming. Technical report, Xerox Corporation, 1997
[3] I. Krüger, G. Lee, M. Meisinger. Automating Software Architecture Exploration with M2Aspects. In

Proc. of the ICSE 2006 Workshop on Scenarios and State Machines (SCESM'06) ACM Press, 2006.
[4] I. Krüger, R. Mathew, M. Meisinger. Efficient Exploration of Service-Oriented Architectures Using

Aspects. In Proc. of the 28th Intl Conference on Software Engineering (ICSE 2006), ACM Press, 2006.
[5] I. Krüger, R. Mathew, M. Meisinger. From Scenarios to Aspects: Exploring Product Lines. In Proc. of

the ICSE 2005 Workshop on Scenarios and State Machines (SCESM'05), ACM Press, 2005.
[6] I. Krueger, M. Meisinger, M. Menarini, S. Pasco. Rapid Systems of Systems Integration – Combining

an Architecture-Centric Approach with Enterprise Service Bus Infrastructure. In Proceedings of the
IEEE International Conference on Information Reuse and Integration (IRI 2006), 2006.

[7] I. Krüger, R. Grosu, P. Scholz, M. Broy: From MSCs to Statecharts, in: Franz J. Rammig (ed.): Dis-
tributed and Parallel Embedded Systems, Kluwer Academic Publishers, 1999

