A Causality-Based Runtime Check for (Rollback) Atomicity

Serdar Tasiran

Tayfun Elmas

Koc University, Istanbul, Turkey
{stasiran,telmas}@ku.edu.tr

Atomicity is used widely for expressing interference-fiem re-
quirements between code blocks in executions of concupemt
grams. In this study, we propose a new notion of atomicityedal
“rollback atomicity”.

Commonly used definitions of atomicity have the followingfo
A concurrent execution o "¢ of a program is atomiciff there ex-
ists an equivalent, serialized execution o*“" in which every atomic
block by thread t is executed with no interruption by actions of other
threads. Rollback atomicity fits into this template as well. In roltsa
atomicity, we require a particular kind of match betweenstages of
o "¢ and the withess executiar’®” at certain points in each exe-
cution approximately corresponding to completion poirftatomic

blocks. A subsef” of the shared data variables is designated by the

user as the “focus” variables. The rest of the shared vasaphe set
P) are called “peripheral” variables. The valuation of fovasiables
in o*¢" right after an atomic bloclA completes is required to match
a valuation obtained frora“°"¢ by (i) considering the program state
at the point whereA completes irs“°"¢ and (i) by rolling back the
effects of other atomic blockB that commit later, i.e. appear later
thanA in o*“".

Formalizations of atomicity in the literature differ in timetion
for the equivalence of executions that they use to intervetdefi-
nition above. Reduction and its variants ([2, 5]) are definasked on
actions that are left-, right- and both-movers and actibasare non-
movers. They require that it be possible to obtaifi” from "¢
by swapping actions that commute. Conflict-serializapil@équires
thato®®" consist of the same accesses as " and that the order
of accesses to each variable remain the same. View-sahdity
is a more relaxed notion for atomicity. It requires thdt” consist
of the same accesses asdiff"*, that the final write to each vari-
able in both executions be the same, and that the write seeadby
read be the same in both executions. In commit atomicityf@,fi-
nal state of a concurrent execution is required to matchdhamn
execution in which atomic blocks are run one at a time, in the o
der of the occurrence of their commit points in the concure
ecution. Rollback atomicity is a weaker requirement thatuction
and conflict-serializability, but is incomparable with wieserializ-
ability and commit-atomicity. It provides more observéigiat more
points along the execution, but is more permissive in othgards.
We highlight some of the differences in Figure 1 where we jg®v
an example in which view-serializability as well as redontiand
conflict-serializability are unnecessarily restrictive.

In this example, several concurrent threads can each ruetiie
method of a differentsg object. TheMsg objects that are to be sent
wait in a queue calledoSendQueue, thus,toSendQueue is shared
among different threads. The static fiéldg.KBSentThisSec and

the pool of bytes to be serftendPool are also shared among threads.

EachMsg object has a boolean fiekknt that indicates whether it
has been sent or not. Tkend method copies the contents of the

0: class Msg {

1: long msgld;

2 static long KBSentThisSec = 0; /* @Periph */
3 boolean sent = false; /* Q@Focus */
4: byte[] contents; /% @Focus */
5:

6: static synchronized long getKBSentThisSecIncr() {
7 return ++KBSentThisSec;

8 }

9:

10:

11: synchronized atomic void send() {

12:

13: if (sent || !toSendQueue.isIn(this))

14: abort; // Caller must retry

15:

16: if (Msg.getKBSentThisSec() > MaxRate)

17: abort; // Caller must retry

18:

19: int i = 0;

20: while (i < contents.length) {

21:

22: sendPool.insert(msgld, i, content[i]);
23: if ((i++ % 1000) == 0)

24: if (Msg.getKBSentThisSecIncr() > MaxRate)
25: abort; // Caller must retry

26: }

27:

28: sent = true;

29: toSendQueue.remove (this) ;
30: } //Commit point
31: }

Figure 1. Example 1: Focus variables and rollback atomicity

terminating executions dfend, it does not affect the functionality

of the method. This field is reset every second, and is inanésde

by all threads manipulatingsg objects. The user does not need the
complete sequence of updates to this field within a singleugien

of send to be atomic. Also, the read-write dependencies between
concurrent executions afend caused by this field are not really
significant. They do not really point to a data dependencyéetn

the atomic blocks.

Consider two normally-terminating concurrent executiarfs
send for Msg objectsm1 andm2. Suppose that an increment that
ml.send() performs onMsg.KBytesSentThisSec is interleaved
between two updates to the same static fieldmBysend() run-
ning on another thread. Conflict serializability does ndbvalthe
reads and updates tigg . KBytesSentThisSec bym1.send () and
m2.send() to be re-ordered. Likewise, view-serializability does
not allow such a re-ordering either, as it requires that dieer of
Msg.KBytesSentThisSec seen by each increment operation to be
the same in the concurrent and serial executions. Theretfoese
two criteria declare such an execution unserializable. pbissible to
construct other interleavings for which commit atomicitguid flag

message (a byte array) to a pool byte by byte where each bgte ha a warning because the valueMaig . KBytesSentThisSec at the end
a message id and a sequence number. The programmer wants thef a serial execution does not match that at the end of a coamtur

modifications of thesent fields and thezoSendQueue to be atomic.

one. However, in terms of the other shared variabteS¢ndQueue,

While the sentPool data structure is also a shared variable, since contents andMsg.sent) these concurrent executions can be seri-

the network can already re-order messages, it is not negefsa
the sequence of updates ¢entPool by eachsend method to be
atomic. ThekBytesSentThisSec static field is shared (read and
written to) by all threads. It is used for rate control andasionally

causes aend method to abort, but otherwise, in non-exceptionally-

alized in the order that1 andm2 are removed fronmtoSendQueue.
Declaring this latter set of variables as our focus varsidile
designating the rest of the shared variables as peripharibles,
rollback atomicity gives us a way of expressing the requéenthat
toSendQueue, contents andsent be updated atomically by each

2007/3/4

execution ofsend while Msg.KBytesSentThisSec only have a
consistent value that allows these executions to comptataaily.

In the full paper, we provide examples where view serialigtb
and commit atomicity of a single execution may not provideieyh
observation points along the execution to reveal bugs.dsetexam-
ples, rollback atomicity provides the necessary early grn

1. Rollback Atomicity

We focus only on well-synchronized Java programs whoseuexec
tions are free of race conditions and thus sequentiallyistarg. We
suppose that the programmer has annotated certain codestdsc
atomic. We work withstrong atomicity, where all other actions mod-
ifying or reading focus variables are considered to be atditcks
as well. Our definition is based on a partition of the set ofrstha
variables into focus and peripheral variabl&sJ P.

Consider a concurrent executieri°"“ of a program with a set
of atomic code blockslt¢Bik. Let us suppose that a every execution
of an atomic block that occurs in“" is given a unique id from
the setXI1d. We say that“°"“ is rollback atomic iff there exists an
executiono*“" of the program with the following properties

e For each thread, the projection of the two executions onto
proj(c®“",t) andproj(c ", t), consist of the same sequence
of atomic blocks for each thread idExploiting this fact, we use
the same id fromXId to refer to corresponding occurrences of
an atomic block execution by the same threadifi ando“"°.
Let us define theommit order on XId as follows:ac <.t 0 iff
a = [or a occurs befored in . If a <.m: 3, we say that
« commits before 3.

Let 05" denote the state of**" right after the block with id
a has completed executing. Lsf°"° = proj(cd", F') be the
projection of the state;*" onto the focus variables. Let;""*
be the state inr“"¢ right after atomic block execution with id
« has performed the last write access to a variablé’in_et
se’t = proj(o$™°, F) be the projection of the statef”™ onto
the focus variables. LeRIBk(s?°") be obtained frons{®" as
follows:

» Letv € F. If v was last written by a transactigh<.,,: ain
o thenRIBEk(s5T) (v) = s&r™ (v).

= Otherwise, ifv was last modified before:’"“ by an atomic
block that commits before, then find the most recent write
w to v in c°™ by a block that has committed before
RIBE(s2°")(v) is assigned the value written by this most
recent committed write. If no such write exists, the value of
is set to its initial value.

We require that for each, RIBk(sg™")(v) =

se2m¢(v).

2. Checking Rollback Atomicity

Using the infrastructure built for the Vyrd tool [6] we trathe ac-
cesses to the shared variables throughout the executiope¥ftam

a view refinement check as described in [6] where the abgiract
function is given byRIBk as described above. The view refinement
check requires that the order of atomic blockssiti" be explicitly
provided by the user. In order to allow more flexibility in tbleoice

of this order, we instead try to infer it from causality rédatships.
We construct two graphs of causality dependencies betwmasses

in order to infer this orderCGr andCGryp. The rules for con-
structing the two graphs are the same. The former is constianly
using accesses tB' variables while the latter uses accesses to all
shared variables.

In this directed graph, called the causality graph, eaobmic
block in the execution and each individual read and writéoact
correspond to a unique node. The graph has the followingddets
edges:

¢ For each read action and the write that it see$y/ (r), an edge
from the node representind’ (r) to the node representing If

any of these actions happen inside some atomic block, the edg
starts/ends at the node representing that atomic block.

e For each read actionand the write actiom to the same variable
that happens immediately afterthere is an edge from the node
representing to the node representing. If any of these actions
happen inside some atomic block, the edge starts/endsadee
representing that atomic block.

e Within each atomic block, if the block contains a write to and
a subsequent read of the same variable, there is an edgehto eac
read action from the last write to the same variable in theesam
atomic block.

e For each pair of nodea and 3 representing actions or atomic
blocks ordered by program order, there is an edge tamG.

We updateCGr and CGrup as we processes each access in
order, by iteratively adding nodes and edges. We searchyfiex
in each graph after adding an edge that starts/ends at a epde r
resenting aratomic block [4]. At each such point, there are three
possibilities:

e NeitherCGr nor CGrup have a cycle containing an atomic
block. In this case, we obtain a commit order of atomic blocks
by applying the algorithm in [4] tadCGrup. In this case the
entire execution is conflict-serializable and it is not reseay to
perform a rollback atomicity check.

e CGrup has a cycle containing an atomic block UG » does
not. In this case, we obtain a witness order usthG r only.

e CGpr andCGryp both have cycles. In this case, we take as the

commit order the order of the last focus variable writes loyrat
blocks.

If there is aread actionto which there is more than one causality
edge from write actions ilCG r, an error is declared. This latter

warning captures a form of interference in the atomic bldwek tvill
be discussed in the full paper.

In case our algorithm declares a warning, we were not able-to o

tain a serialized execution satisfying the rollback atatyicheck. In
this case, the implementation could truly have undesiréatier, or
it could be the case that we were not able to find the right ordeaf
the atomic blocks. If the latter is the case, however, thaegs order-
ing conflicts certain causality dependencies between featiables.
The programmer can aid our atomicity check by explicitlyyitong
commit point annotations.

References

[1] F. Chen and G. Rosu. Predicting Concurrency Errors attifie
using Sliced Causality. Technical Report: UIUCDCS-R-22660.
Department of Computer Science, University of lllinois abaha-
Champaign. 2005.

[2] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atotyici
Checker for Multithreaded Programs. In Proc. 31st ACM Sysiyro
on Principles of Programming Languages. pp. 256-267, 2004.

[3] C. Flanagan Verifying Commit-Atomicity Using Model Ctling
Model Checking Software. 11th International SPIN Workshop
Barcelona, Spain, April 1-3, 2004, Proceedings. Lectureéeslan
Computer Science 2989, pp. 252—-266.

[4] D. J. Pearce, P. H. Kelly, and C. Hankin. Online Cycle [B&t: and
Difference Propagation: Applications to Pointer AnalysBoftware
Quality Control 12, 4 (Dec. 2004), 311-337.

[5] L. Wang and S. D. Stoller. Accurate and efficient runtineedtion of
atomicity errors in concurrent programs RPoPP '06: Proc. of the
11th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 137-146.

[6] T. EImas, S. Tasiran, and S. Qadeer. Vyrd: verifying eorent
programs by runtime refinement-violation detectionPLD| ' 05: Proc.
of the 2005 ACM S GPLAN Conference on Programming language
Design and Implementation, pp. 27-37.

2007/3/4

