
A Causality-Based Runtime Check for (Rollback) Atomicity

Serdar Tasiran Tayfun Elmas
Koc University, Istanbul, Turkey
{stasiran,telmas}@ku.edu.tr

Atomicity is used widely for expressing interference-freedom re-
quirements between code blocks in executions of concurrentpro-
grams. In this study, we propose a new notion of atomicity called
“rollback atomicity”.

Commonly used definitions of atomicity have the following form:
A concurrent execution σconc of a program is atomic iff there ex-
ists an equivalent, serialized execution σser in which every atomic
block by thread t is executed with no interruption by actions of other
threads. Rollback atomicity fits into this template as well. In rollback
atomicity, we require a particular kind of match between thestates of
σconc and the witness executionσser at certain points in each exe-
cution approximately corresponding to completion points of atomic
blocks. A subsetF of the shared data variables is designated by the
user as the “focus” variables. The rest of the shared variables (the set
P) are called “peripheral” variables. The valuation of focusvariables
in σser right after an atomic blockA completes is required to match
a valuation obtained fromσconc by (i) considering the program state
at the point whereA completes inσconc and (ii) by rolling back the
effects of other atomic blocksB that commit later, i.e. appear later
thanA in σser .

Formalizations of atomicity in the literature differ in thenotion
for the equivalence of executions that they use to interpretthe defi-
nition above. Reduction and its variants ([2, 5]) are definedbased on
actions that are left-, right- and both-movers and actions that are non-
movers. They require that it be possible to obtainσser from σconc

by swapping actions that commute. Conflict-serializability requires
thatσser consist of the same accesses as inσconc and that the order
of accesses to each variable remain the same. View-serializability
is a more relaxed notion for atomicity. It requires thatσser consist
of the same accesses as inσconc, that the final write to each vari-
able in both executions be the same, and that the write seen byeach
read be the same in both executions. In commit atomicity[3],the fi-
nal state of a concurrent execution is required to match thatof an
execution in which atomic blocks are run one at a time, in the or-
der of the occurrence of their commit points in the concurrent ex-
ecution. Rollback atomicity is a weaker requirement than reduction
and conflict-serializability, but is incomparable with view serializ-
ability and commit-atomicity. It provides more observability at more
points along the execution, but is more permissive in other regards.
We highlight some of the differences in Figure 1 where we provide
an example in which view-serializability as well as reduction and
conflict-serializability are unnecessarily restrictive.

In this example, several concurrent threads can each run thesend
method of a differentMsg object. TheMsg objects that are to be sent
wait in a queue calledtoSendQueue, thus,toSendQueue is shared
among different threads. The static fieldMsg.KBSentThisSec and
the pool of bytes to be sent,SendPool are also shared among threads.
EachMsg object has a boolean fieldsent that indicates whether it
has been sent or not. Thesend method copies the contents of the
message (a byte array) to a pool byte by byte where each byte has
a message id and a sequence number. The programmer wants the
modifications of thesent fields and thetoSendQueue to be atomic.
While thesentPool data structure is also a shared variable, since
the network can already re-order messages, it is not necessary for
the sequence of updates tosentPool by eachsend method to be
atomic. TheKBytesSentThisSec static field is shared (read and
written to) by all threads. It is used for rate control and occasionally
causes asend method to abort, but otherwise, in non-exceptionally-

0: class Msg {
1: long msgId;
2: static long KBSentThisSec = 0; /* @Periph */

3: boolean sent = false; /* @Focus */
4: byte[] contents; /* @Focus */

5:
6: static synchronized long getKBSentThisSecIncr() {
7: return ++KBSentThisSec;

8: }
9:

10:
11: synchronized atomic void send() {

12:
13: if (sent || !toSendQueue.isIn(this))
14: abort; // Caller must retry

15:
16: if (Msg.getKBSentThisSec() > MaxRate)

17: abort; // Caller must retry
18:
19: int i = 0;

20: while (i < contents.length) {
21:

22: sendPool.insert(msgId, i, content[i]);
23: if ((i++ % 1000) == 0)

24: if (Msg.getKBSentThisSecIncr() > MaxRate)
25: abort; // Caller must retry
26: }

27:
28: sent = true;

29: toSendQueue.remove(this);
30: } //Commit point
31: }

Figure 1. Example 1: Focus variables and rollback atomicity

terminating executions ofsend, it does not affect the functionality
of the method. This field is reset every second, and is incremented
by all threads manipulatingMsg objects. The user does not need the
complete sequence of updates to this field within a single execution
of send to be atomic. Also, the read-write dependencies between
concurrent executions ofsend caused by this field are not really
significant. They do not really point to a data dependency between
the atomic blocks.

Consider two normally-terminating concurrent executionsof
send for Msg objectsm1 and m2. Suppose that an increment that
m1.send() performs onMsg.KBytesSentThisSec is interleaved
between two updates to the same static field bym2.send() run-
ning on another thread. Conflict serializability does not allow the
reads and updates toMsg.KBytesSentThisSec by m1.send() and
m2.send() to be re-ordered. Likewise, view-serializability does
not allow such a re-ordering either, as it requires that the value of
Msg.KBytesSentThisSec seen by each increment operation to be
the same in the concurrent and serial executions. Therefore, these
two criteria declare such an execution unserializable. It is possible to
construct other interleavings for which commit atomicity would flag
a warning because the value ofMsg.KBytesSentThisSec at the end
of a serial execution does not match that at the end of a concurrent
one. However, in terms of the other shared variables (toSendQueue,
contents andMsg.sent) these concurrent executions can be seri-
alized in the order thatm1 andm2 are removed fromtoSendQueue.
Declaring this latter set of variables as our focus variables while
designating the rest of the shared variables as peripheral variables,
rollback atomicity gives us a way of expressing the requirement that
toSendQueue, contents andsent be updated atomically by each

1 2007/3/4

execution ofsend while Msg.KBytesSentThisSec only have a
consistent value that allows these executions to complete normally.

In the full paper, we provide examples where view serializability
and commit atomicity of a single execution may not provide enough
observation points along the execution to reveal bugs. In these exam-
ples, rollback atomicity provides the necessary early warning.

1. Rollback Atomicity
We focus only on well-synchronized Java programs whose execu-
tions are free of race conditions and thus sequentially consistent. We
suppose that the programmer has annotated certain code blocks as
atomic. We work withstrong atomicity, where all other actions mod-
ifying or reading focus variables are considered to be atomic blocks
as well. Our definition is based on a partition of the set of shared
variables into focus and peripheral variables:F ∪ P .

Consider a concurrent executionσconc of a program with a set
of atomic code blocksAtBlk . Let us suppose that a every execution
of an atomic block that occurs inσconc is given a unique id from
the setXId . We say thatσconc is rollback atomic iff there exists an
executionσser of the program with the following properties

• For each threadt, the projection of the two executions ontot,
proj(σser , t) andproj(σconc , t), consist of the same sequence
of atomic blocks for each thread idt. Exploiting this fact, we use
the same id fromXId to refer to corresponding occurrences of
an atomic block execution by the same thread inσser andσconc .
Let us define thecommit order onXId as follows:α ≤cmt β iff
α = β or α occurs beforeβ in σconc. If α ≤cmt β, we say that
α commits before β.

• Let σser

α denote the state ofσser right after the block with id
α has completed executing. Lets

conc

α = proj(σser

α ,F) be the
projection of the stateσser

α onto the focus variables. Letσconc

α

be the state inσconc right after atomic block execution with id
α has performed the last write access to a variable inF . Let
s
ser

α = proj(σconc

α ,F) be the projection of the stateσconc

α onto
the focus variables. LetRlBk(sserα) be obtained froms

ser

α as
follows:

Let v ∈ F . If v was last written by a transactionβ ≤cmt α in
σconc thenRlBk(sserα)(v) = s

ser

α (v).
Otherwise, ifv was last modified beforeσconc

α by an atomic
block that commits beforeα, then find the most recent write
ω to v in σconc by a block that has committed beforeα.
RlBk(sserα)(v) is assigned the value written by this most
recent committed write. If no such write exists, the value ofv
is set to its initial value.

We require that for eachα, RlBk(sserα)(v) = s
conc

α (v).

2. Checking Rollback Atomicity
Using the infrastructure built for the Vyrd tool [6] we trackthe ac-
cesses to the shared variables throughout the execution. Weperform
a view refinement check as described in [6] where the abstraction
function is given byRlBk as described above. The view refinement
check requires that the order of atomic blocks inσser be explicitly
provided by the user. In order to allow more flexibility in thechoice
of this order, we instead try to infer it from causality relationships.
We construct two graphs of causality dependencies between accesses
in order to infer this order:CGF andCGF∪P . The rules for con-
structing the two graphs are the same. The former is constructed only
using accesses toF variables while the latter uses accesses to all
shared variables.

In this directed graph, called the causality graph, eachatomic
block in the execution and each individual read and write action
correspond to a unique node. The graph has the following setsof
edges:

• For each read actionr and the write that it sees,W (r), an edge
from the node representingW (r) to the node representingr. If

any of these actions happen inside some atomic block, the edge
starts/ends at the node representing that atomic block.

• For each read actionr and the write actionw to the same variable
that happens immediately afterr, there is an edge from the node
representingr to the node representingw. If any of these actions
happen inside some atomic block, the edge starts/ends at thenode
representing that atomic block.

• Within each atomic block, if the block contains a write to and
a subsequent read of the same variable, there is an edge to each
read action from the last write to the same variable in the same
atomic block.

• For each pair of nodesα andβ representing actions or atomic
blocks ordered by program order, there is an edge fromα to β.

We updateCGF andCGF∪P as we processes each access in
order, by iteratively adding nodes and edges. We search for cycles
in each graph after adding an edge that starts/ends at a node rep-
resenting anatomic block [4]. At each such point, there are three
possibilities:

• NeitherCGF nor CGF∪P have a cycle containing an atomic
block. In this case, we obtain a commit order of atomic blocks
by applying the algorithm in [4] toCGF∪P . In this case the
entire execution is conflict-serializable and it is not necessary to
perform a rollback atomicity check.

• CGF∪P has a cycle containing an atomic block butCGF does
not. In this case, we obtain a witness order usingCGF only.

• CGF andCGF∪P both have cycles. In this case, we take as the
commit order the order of the last focus variable writes by atomic
blocks.

If there is a read actionr to which there is more than one causality
edge from write actions inCGF , an error is declared. This latter
warning captures a form of interference in the atomic block that will
be discussed in the full paper.

In case our algorithm declares a warning, we were not able to ob-
tain a serialized execution satisfying the rollback atomicity check. In
this case, the implementation could truly have undesired behavior, or
it could be the case that we were not able to find the right ordering of
the atomic blocks. If the latter is the case, however, the witness order-
ing conflicts certain causality dependencies between focusvariables.
The programmer can aid our atomicity check by explicitly providing
commit point annotations.

References
[1] F. Chen and G. Roşu. Predicting Concurrency Errors at Runtime

using Sliced Causality. Technical Report: UIUCDCS-R-2005-2660.
Department of Computer Science, University of Illinois at Urbana-
Champaign. 2005.

[2] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atomicity
Checker for Multithreaded Programs. In Proc. 31st ACM Symposium
on Principles of Programming Languages. pp. 256–267, 2004.

[3] C. Flanagan Verifying Commit-Atomicity Using Model Checking
Model Checking Software. 11th International SPIN Workshop,
Barcelona, Spain, April 1-3, 2004, Proceedings. Lecture Notes in
Computer Science 2989, pp. 252–266.

[4] D. J. Pearce, P. H. Kelly, and C. Hankin. Online Cycle Detection and
Difference Propagation: Applications to Pointer Analysis. Software
Quality Control 12, 4 (Dec. 2004), 311-337.

[5] L. Wang and S. D. Stoller. Accurate and efficient runtime detection of
atomicity errors in concurrent programs InPPoPP ’06: Proc. of the
11th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 137–146.

[6] T. Elmas, S. Tasiran, and S. Qadeer. Vyrd: verifying concurrent
programs by runtime refinement-violation detection. InPLDI ’05: Proc.
of the 2005 ACM SIGPLAN Conference on Programming language
Design and Implementation, pp. 27–37.

2 2007/3/4

