
banner above paper title

ARVE: Aspect-oriented Runtime Verification Environment

Hiromasa Shin, Yusuke Endoh, and Yoshio Kataoka
System Engineering Laboratory, Corporate R&D Center, Toshiba Corporation

{hiromasa.shin, yusuke.endoh, yoshio.kataoka}@toshiba.co.jp

Categories and Subject DescriptorsD.2 [Software Engineering]:
Testing and Debugging

General Terms Aspect-oriented programming, Debugger

Keywords Runtime verification, Debugger, Optimization

1. Introduction
Software testing, including runtime verification, is essential for de-
veloping reliable software products. As is often the case with the
development of industrial software products, the scale of a test pro-
gram tends to be larger than that of a product program. As the test
program is inherent in the product program, it is often structured in
an ad hoc manner. We consider that improving modularity, reusabil-
ity and portability of a test program constitutes an important issue.
Since a test program is concerned with its target program in cross-
cutting manner, the paradigm of aspect-oriented programming [1]
is useful for improving the composition of a test program.

Even today many industrial software products, such as embed-
ded software, are written in C/C++, and popular software develop-
ment tools, which are commonly available in various platforms, are
classic tools, such as symbolic debuggers and performance profil-
ers. Meanwhile, most of aspect-oriented language are designed for
Java language, or are not available in embedded platforms. Consid-
ering these circumstances in industrial software development, we
have designed a practical tool named aspect-oriented runtime ver-
ification environment (ARVE). ARVE enhances the capability of
a symbolic debugger by employing aspect-oriented technology. In
ARVE, a test program is written in aspect-oriented script language
and can be dynamically woven into a target program.

We briefly present the features, structure and evaluation results
of ARVE and explain simple applications. We also explain work-
in-progress and speculative future work concerning ARVE.

2. Recent work
For illustration of ARVE’s functionality, we firstly present an ap-
plication of ARVE to an event sequence checker. The following
scriptRegexpCheckergathers events of file handling operations in
target program execution, and checks whether or not the operation
sequence satisfies the pattern specified in regular language. Hav-
ing found the operation deviating from the specified sequence, this
checker breaks the execution of the target program and dumps the
execution stack.

[Copyright notice will appear here once ’preprint’ option is removed.]

import "RegexpChecker.pl";
aspect FileRegexpChecker extends RegexpChecker {
pointcut mark() : call(^fopen$) || call(^fread$)

|| call(^fwrite$) || call(^fclose$);
sub new () {

my $class = shift;
my $self = RegexpChecker->new(

"A-fopen[-1] (B-fread[3]|B-fwrite[3])* B-fclose[0]");
return bless $self, $class;

}
}

This ARVE script is written in the Perl-based language equipped
with aspect-related syntax similar to AspectJ [2]. The concrete as-
pectFileRegexpCheckerinherits the abstract aspectRegexpChecker,
and describes the event and the pattern by overriding pointcut
mark()and constructornew(..)argument. The parent aspectRegex-
pCheckeris a reusable aspect, which contains the algorithm to gen-
erate DFA (Deterministic Finite Automaton) from the regular ex-
pression and to drive the DFA by invocation of advice related with
pointcutmark(). The meaning of the terminal symbol in the reg-
ular expression is ”(after or before)-(name of joinpoint)[argument
index of file handler]”. We applied this aspect to monitor the API
usage of socket handling in the server process, such as Apache
and Squid, and conformed that it worked properly. In this example,
the basic mechanism of aspect-oriented programming improves the
modularity of the checker, and especially inheritance mechanism
improves the reusability of the checker.

Figure 1 is an architecture diagram of the ARVE system consist-
ing of ARVE script, ARVE kernel, symbolic debugger, script inter-
preter and target program. The symbolic debugger works as a pe-
ripheral system for the ARVE kernel, and provides the functionality
of breakpoint management, the target’s symbol table management,
and the target’s memory access for the ARVE kernel. The ARVE
system utilizes the debugger’s function via a clear-cut debugger in-
terface. This interface layer ensures the independence of the ARVE
kernel from a specific debugger. Any debugger satisfying this in-
terface can work in the ARVE system. In this implementation, we
adopted the debugger GDB [3], which is a popular debugger and
supports many embedded platforms.

We evaluated runtime performance of the prototyped ARVE
system. In a laptop PC (Dynabook TECRA 9000, Pentium-III
1.2GHz, Linux 2.4.20 and gdb 6.4), the elapsed time for a sub-
routine call is about 10 nanoseconds, and the elapsed time for the
same call with an empty advice is about 6 microseconds. Installing
an advice at each subroutine call, the program execution will take
600 times longer time. However, this situation will be extreme;
many applications will use fewer advice calls than in this case.
Typical overhead time is 6 microseconds, and this value will be
acceptable for monitoring appropriately selected places in network
communication or user interactive application.

We briefly summarize the difference from related work. ARVE
uses a symbolic debugger to weave aspect into the target, and this

short description of paper 1 2007/1/25

ARVE System Architecture

Symbolic Debugger
(GDB)

Debugger Interface

ARVE Kernel

IPC (gdb/mi)

Script Interpreter
(Perl)

Script
I/F

Target Program
(Native Code)

Child Process

start/exit
attach/detach

ARVE Script
(abstract aspect)

ARVE Script
(concrete aspect)

Input

Inherit

Figure 1. ARVE System Architecture

feature differs from usual dynamic weaving techniques based on
JVM (Java Virtual Machine) reported in articles [4, 5]. ARVE uses
script language to describe aspect, and this feature differs from
the usual dynamic instrumentation techniques reported in articles
[6, 7].

Compared to the usual dynamic instrumentation techniques, the
ARVE approach has a disadvantage in terms of runtime efficiency;
however, the ARVE approach has an advantage in terms of plat-
form portability. The aspect of ARVE is written in script language.
ARVE has a definite interface with the symbolic debugger, and can
use a different symbolic debugger for each platform. Thus the script
of ARVE remains independent of the platform. This feature will
improve portability of a test program.

3. Work in progress
We are working on two plans. The first plan is to extend the ARVE
kernel to support multi-process environments. In our experiment
on an Apache server, we had difficulty in tracing many processes
forked by the server. If ARVE supports an aspect among multi-
processes and automatically attaches to multiple processes, the run-
time verification aspect concerning IPC (Inter Process Communi-
cation) can be naturally described in a single aspect.

The second plan is to design ARVE script to check an event se-
quence specification written in LTL (Linear Temporal Logic). We
have already prototyped the event sequence checker based on regu-
lar expression. Analogous to the case of the regular expression, the
reusable abstract aspect implements the automaton, which is con-
structed by existing tableau construction techniques and is driven
by execution event.

4. Highly speculative work
We have two plans concerning speculative future work. The first
plan is to apply ARVE to an execution environment for model-
based testing [8]. In order to utilize the capability of ARVE, we
feel a strong need to connect ARVE usage and upstream design.
In model-based testing, we can extract a test suite from the formal
specification of a target. Converting the test suite to ARVE script,
ARVE can execute the conformance test. Since ARVE has a de-
bugger’s capability, it can not only monitor the relation between
input and output in testing, but also monitor the internal state of
IUT (Implementation Under Test).

The second plan is to make ARVE and static analysis comple-
ment each other. The static analysis, such as ESP [9], has an ad-

vantage in terms of full path coverage without execution, but has a
disadvantage in lack of information due to abstract interpretation.
Since the advantage and disadvantage of dynamic analysis are op-
posite of those, the complementary combination of each analysis is
expected to constitute a powerful approach. The specification lan-
guage, such as ESP’s OPAL, describing the finite state machine, can
be viewed as an aspect-oriented automaton description language.
Unifying the specification language between dynamic analysis and
static analysis, will be a good starting point to make the two analy-
sis methods complement each other.

5. Summary
We have presented a practical tool, ARVE, which enables devel-
opment of a test program in script language and in aspect-oriented
paradigm, and achieves independence from an underling symbolic
debugger. As work in progress, an extension for multi-process sup-
port and a development for LTL-based verifying aspect are pre-
sented. As a highly speculative work, combination with model-
based testing or static analysis is presented. All these approaches
are aimed at improving reusability, portability and modularity of a
test program in industrial software development.

References
[1] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. InEuropean Conference on Object-Oriented
Programming, volume 1241, pages 220–242. Springer-Verlag, 1997.

[2] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ.Lecture
Notes in Computer Science, 2072:327–355, 2001.

[3] Richard M. Stallman.Debugging With GDB: The Gnu Source-Level
Debugger (9th Edition). Free Software Foundation, 2002.

[4] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic
weaving for aspect-oriented programming. InAOSD ’02: Proceedings
of the 1st international conference on Aspect-oriented software
development, pages 141–147, New York, NY, USA, 2002. ACM Press.

[5] Davy Suv́ee, Wim Vanderperren, and Viviane Jonckers. Jasco: an
aspect-oriented approach tailored for component based software
development. InAOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages 21–29,
New York, NY, USA, 2003. ACM Press.

[6] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. InPLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and
implementation, pages 190–200, New York, NY, USA, 2005. ACM
Press.

[7] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code
patching.The International Journal of High Performance Computing
Applications, 14(4):317–329, Winter 2000.

[8] Michael Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wolfram
Schulte, Nikolai Tillmann, and Margus Veanes. Towards a tool
environment for model-based testing with asml. InFATES, pages
252–266, 2003.

[9] James R. Larus, Thomas Ball, Manuvir Das, Robert DeLine, Manuel
Fahndrich, Jon Pincus, Sriram K. Rajamani, and Ramanathan Venkat-
apathy. Righting software.IEEE Software, 21(3):92–100, 2004.

short description of paper 2 2007/1/25

