On the Semantics of Matching Trace Monitoring Patterns

Pavel Avgustinov

Oege de Moor

Julian Tibble

[pavel.avgustinov, oege.de.moor, julian.tibble]@comlab.ox.ac.uk

Programming Tools Group, University of Oxford, United Kingdom

1. INTRODUCTION

Many runtime verification properties can be expressed as a
pattern that is matched against the trace of runtime events.
In our previous work on so-called tracematches, the pattern
language consists of regular expressions over events; further-
more the regular expressions contain free variables [1]. The
latter feature is indispensable when tracking the behaviour
of a clique of objects. The formal semantics of tracematches
was worked out in [1]: that paper both gives a declarative
semantics and proves it is equivalent to an operational se-
mantics, which in turn is the basis of an efficient implemen-
tation.

When comparing tracematches against other formalisms
in runtime verification (for instance the PQL system [3]),
an important difference is the use of an exact-match seman-
tics (where every relevant event must be matched by the
pattern) instead of a skipping semantics (any event may
be skipped during matching). Under skipping semantics,
‘A B’ means ‘A implies eventually B’, while under exact-
match, ‘A B’ means ‘A implies next B’. It appears that the
exact-match semantics are favoured by systems originating
in aspect-oriented programming [2,4, 5], while skipping se-
mantics are more common for systems with roots in runtime
verification. Indeed, one could argue that skipping is more
natural for specifying temporal properties.

This paper investigates the formal relation between these
two styles of specification. In particular, we show that a
skipping semantics is no more expressive than exact-match.

2. SEMANTICS OF TRACE PATTERNS

2.1 Exact-match languages

Since the pattern language of tracematches [1] is the only
one that comes equipped with a formal semantics, we shall
make it the starting point of our investigation.

In a nutshell, each tracematch declares a set of symbols,
which pick out the events of interest (in fact, they are As-
pectJ pointcuts). We can think of these as predicates on
events, following the intuition suggested by temporal logics.
Matching such a predicate (i.e. symbol) to an event either
results in failure, or in success (possibly subject to a certain
instantiation of the tracematch’s formal variables).

The pattern itself is a regular expression over the alphabet
of symbols, and is matched against all suffizes of the filtered,
instantiated trace — that is, first, the sequence of program
events is filtered to a sequence of symbols (i.e. propositions
that are true at each event), and this is then instantiated for
each possible set of variable bindings, resulting in a sequence

of ground symbols. Since tracematches use an exact-match
semantics, matching the regular expression against strings
of ground symbols is well-understood.

2.2 Skipping languages

As a first step, we shall provide a formal definition of
a simple tracematch-like skipping language: We require an
alphabet of declared symbols over which patterns will range,
and we shall try to follow the syntax of regular expressions
as closely as possible.

It is clear that explicit negation is needed in a skipping
language, as otherwise it would be impossible to specify pat-
terns that preclude certain events from occurring in the mid-
dle of a match. However, if negation is unrestricted and can
apply to general patterns, then a matcher (and hence a se-
mantics) for the language must be capable of arbitrary back-
tracking, which significantly complicates matters. PQL [3]
solves this problem by only permitting negation on a single
declared symbol; we go somewhat beyond that by allowing
negations of alternations of symbols (or, equivalently, sym-
bol sets).

Note that in order to ensure this, we have to use negated
terms with care. In particular, they cannot be used freely
in sequential composition: since “a “b would match exactly
the same traces as “(a b), it is equivalent to a negated com-
pound pattern. We refer to terms that do not start or end
in negation as closed (cf. Figure 1), and only such terms
may be freely sequentially composed.

pattern := closedTerm
| closedTerm ’|’ pattern
closedTerm := simplePattern
| simplePattern closedTerm
| simplePattern 7’ symbolSet
closedTerm
simplePattern := symbol

| ’(’ pattern)’

symbolSet := symbol

| (7 symbol ’|’ symbolSet)’

Figure 1: The grammar of our simple skipping lan-
guage

It is interesting to observe that the Kleene star is not
present in our skipping language definition. This is not an
oversight: Under a skipping semantics, a bx ¢ would match

[cTerm | pat |=
[c¢Term | | [pat]

[sPat cTerm =
[sPat] X« [cTerm]

[sPat "a cTerm |=
[sPat | (X \ a)x [cTerm]

[symbol]==symbol

Figure 2: Rewrite rules translating into the trace-
match language

precisely when a ¢ matches, since any events are permitted
between a and c. Thus, Kleene closure does not add expres-
siveness, since the matcher could always choose to match
it against the empty program trace, and then skip over an
arbitrary sequence.

To specify the semantics of this language, we proceed by
providing a set of simple syntax-directed rewriting rules that
translate a skipping pattern into a standard tracematch pat-
tern (the semantics of which is well-understood). The trans-
lation proceeds by structural induction on the skipping pat-
tern; full details are given in Figure 2 (where cTerm is of
type closedTerm, pat is a pattern, sPat is a simplePattern,
« is an alternation of symbols, interpreted as a set, and X
is the set of all declared symbols).

As expected, the basic structure of the pattern carries
over. Alternation is mapped to alternation, and each indi-
vidual symbol is mapped to the same symbol. The inter-
esting cases concern sequential composition: either with or
without an intervening negated set of symbols.

In the negation-free case, we want to capture the fact that
“an arbitrary number of events of any kind are allowed in
between consecutive matched statements” [3]. The natural
way to ensure this is to add X* between the two patterns:
Since Y is the entire alphabet of symbols, this has the desired
effect.

When there is a negated set of symbols, the translation is
similar, but we allow any number of events matching sym-
bols in X\« to occur. If we interpret the Kleene closure of
the empty set to only match the empty trace, then this has
exactly the effect of prohibiting the symbols in o under a
skipping semantics.

This simple set of rewrite rules suffices to pin down the
semantics of our small skipping language; we therefore con-
clude that changing the interpretation of patterns from exact-
match to skipping does not by itself increase expressiveness.

3. EXPRESSIVENESS OF SKIPPING LAN-
GUAGES

Our translation showed that a regular expressions-based
skipping language is not more expressive than the corre-
sponding exact-match language. At the same time, we were
forced to do without Kleene closure, since any Kleene-starred
expression can be dropped from a skipping pattern without
altering matching behaviour.

Note that the claim above is only true if we insist that
Kleene-starred terms are not closed terms in the sense of the
condition on sequential composition imposed above. What
would happen if we were to consider them closed?

Unfortunately, the answer is that we end up with a non-
compositional semantics, meaning that it is not valid to
substitute equivalent subexpressions for each other. Con-
sider the following two patterns: a bx ¢ and a c. They
clearly match the same set of traces, so (a bx) and (a)
are equivalent subexpressions. Now consider the context
C(X) := (X "b ¢), defined for all closed instantiations of
X. Since both our subexpressions would be closed, we can
plug each of them into the context to obtain the patterns
a bx b” c and a "b c, respectively. But the former matches
the trace A B C, while the latter doesn’t.

Thus, it would seem that the skipping language is strictly
less expressive than the tracematch language. This notion
is formalised in the paper by giving a backwards translation
from a subset of the tracematch language to the skipping
language (it turns out that to get an equivalent language,
we need to restrict Kleene closure to symbol sets, mirroring
the restriction on explicit negation).

4. CONCLUSIONS AND FUTURE WORK

This work examines the semantics of skipping-based trace
monitoring languages, and gives a formal semantics for a
simple regular expressions-based skipping language, as well
as an argument of equivalence to a subset of the trace lan-
guage of tracematches [1].

Since it was shown that a skipping interpretation pre-
cludes the use of Kleene closure, it is interesting to investi-
gate in how far the results presented here carry over when
we consider more expressive languages (context-free gram-
mars, or their closure under intersection — this is the class
of languages accepted by [3]).

The small trace language described above has been im-
plemented as an extension to the tracematches system and
will be made available in the very near future.

5. REFERENCES

[1] Chris Allan, Pavel Avgustinov, Aske Simon
Christensen, Laurie Hendren, Sascha Kuzins, Ondfej
Lhoték, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding Trace
Matching with Free Variables to AspectJ. In
Object-Oriented Programming, Systems, Languages and
Applications, pages 345-364. ACM Press, 2005.

[2] Rémi Douence, Thomas Fritz, Nicolas Loriant,
Jean-Marc Menaud, Marc Ségura, and Mario Siidholt.
An expressive aspect language for system applications
with arachne. In Aspect-Oriented Software
Development, pages 27-38. ACM Press, 2005.

[3] Michael Martin, Benjamin Livshits, and Monica S.
Lam. Finding application errors using PQL: a program
query language. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications,
pages 365-383. ACM Press, 2005.

[4] Klaus Ostermann, Mira Mezini, and Christoph
Bockisch. Expressive pointcuts for increased
modularity. In FCOOP, 2005.

[5] Robert Walker and Kevin Viggers. Implementing
protocols via declarative event patterns. In ACM
Sigsoft International Symposium on Foundations of
Software Engineering (FSE-12), pages 159-169. ACM
Press, 2004.

