Static and Dynamic Detection of Behavioral Conflicts
between Aspects

Pascal Durr, Lodewijk Bergmans, Mehmet Aksit
University of Twente

{durr,bergmans,aksit}@ewi.utwente.nl

ABSTRACT

Aspects have been successfully promoted as a means to improve
the modularization of software in the presence of crosscutting con-
cerns. The so-called aspect interference problem is considered to
be one of the remaining challenges of aspect-oriented software de-
velopment: aspects may interfere with the behavior of the base
code or other aspects. Especially interference between aspects is
difficult to prevent, as this may be caused solely by the composi-
tion of aspects that behave correctly in isolation. A typical situation
where this may occur is when multiple advices are applied at the
same, or shared, join point.

In [1] we explained the problem of behavioral conflicts between
aspects at shared join points. We presented an approach for the de-
tection of behavioral conflicts that is based on a novel abstraction
model for representing the behavior of advice. This model allows
the expression of both primitive and complex behavior in a sim-
ple manner that is suitable for automated conflict detection. The
presented approach employs a set of conflict detection rules, which
can be used to detect both generic conflicts, as well as, domain-
or application specific conflicts. The application of the approach
to Compose*, which is an implementation of Composition Filters,
demonstrates how the use of a declarative advice language can be
exploited for aiding automated conflict detection.

This paper presents the need for and a possible approach to a
runtime extension to the described static approach. The approach
uses the declarative language of Composition Fillers. This allows
us to reason efficiently about the behavior of aspects. It also enables
us to detect these conflicts with minimal overhead at runtime.

An example conflict: Security vs. Logging.

We first briefly present an example of a behavioral conflict. As-
sume that there is a base system which uses a Protocol to interact
with other systems. Class Protocol has two methods: one for trans-
mitting, sendData(String) and for receiving, receiveData(String).
Now image that we would like to secure this protocol. To achieve
this, we encrypt all outgoing messages and decrypt all incoming
messages. We implement this as an encryption advice on the exe-
cution of method sendData. Likewise, we superimpose a decryp-
tion advice on method receiveData. Now imagine a second aspect
which traces all the methods and possible arguments. The imple-
mentation of the tracing aspect uses a condition to dynamically de-
termine if the current method should be traced, as tracing all the
methods is not very efficient. The tracing aspect can, for instance,
be used to create a stack trace of the execution within a certain
package.

These two advices are superimposed on the same join point, in
this case Protocol.sendDatd’| As the advices have to be sequen-
tially executed, there are two possible execution orders here. Now
assume that we want to ensure that no one accesses the data be-
fore it is encrypted. This constraint is violated, if the two advices
are ordered in such a way that advice fracing is executed before
advice encryption. We may end up with a log file which contains
“sensitive” information. The resulting situation is what we call a
behavioral conflict. We can make two observations, the first is that
there is an ordering dependency between the aspects. If advice
trace is executed before advice encryption, we might expose sen-
sitive data. The second observation is that, although this order can
be statically determined, we are unsure whether the conflicting sit-
uation will even occur at runtime, as advice trace is conditionally
executed.

Approach.

An approach for detecting such behavioral conflicts at shared
join points has been detailed in [[1]. A shared join point has multi-
ple advices superimposed on it. These are, in most AOP systems,
executed sequentially. This implies an ordering between the ad-
vices, which can be (partially) specified by the aspect programmer.
This ordering may or may not cause the behavioral conflict. The
conflict in the example, is the case where the ordering causes the
conflict. However there are conflicts, like synchronization and real-
time behavior, which are independent of the chosen order.

One key observation we have made, is the fact that modelling the
entire system, is not only extremely complex but it also does not
model the conflict at the appropriate level of abstraction. With this
we mean, that during the transformation, of behavior to read and
write operations on a set of variables, we might loose important in-
formation. In our example we encrypt the arguments of a message
to provide some level of security. Modelling this as a write on the
arguments can work in some cases, however this makes expressing
application specific conflict patterns hard. i.e. we do not want to
consider all changes of all arguments of all messages conflicting.
Also semantically, the encrypt operation does not change the value
of the arguments, it only presents the data in a different form.

Our approach revolves around abstracting the behavior of an ad-
vice into a resource operation model. Here the resources present
common or shared interactions (e.g. a semaphore). These resources
are thus potential conflicting “areas”. Advices interact with re-
sources using operations. As the advices are sequentially composed
at a shared join point, we can also sequentially compose the opera-
tions for each (shared) resource. After this composition, we verify
whether a set of rules accepts the resulting sequence of operations

"Here, we only focus on join point Protocol.sendData, but a simu-
lar situation presents itself for join point Protocol.receiveData.

)

for that specific resource. These rules can either be conflict rules,
i.e. a pattern which is not allowed to occur, or an assertion rule, i.e.
a pattern which must always occur. These rules can be expressed
as a regular expression or a temporal logic formula.

In [1], an instantiation of the presented model for the Composi-
tion Filters approach is shown. We adopted this approach, as the
filter language is to a large extent declarative, and the composi-
tional semantics are well-defined. This improves reasoning about
the combination of multiple advice at the same join point. In ad-
dition, the filters provide encapsulation of the behavior through the
use of filter types, which can be reused. However, there are el-
ements which are filter instance specific and must be analyzed for
each instance of a filter, such as the condition and matching parts of
the filter. The conflict detection model can be enriched with domain
or application specific information to capture more application or
domain specific conflicts.

There are many steps involved in processing and analyzing a se-
quence of filters on a specific join point. One such step is to analyze
the effects of each of the composed filters. A filter can either ex-
ecute an accept action or a reject reject, given a set of conditions
and a message. Next we have to determine which filter actions can
be reached and whether, for example, the farget has been read in
the matching part. These actions perform the specific tasks of the
filter type, e.g. the Encrypt action of filter type Encryption will en-
crypt the arguments. Likewise, the Trace action of the filter type
ParameterTracing will trace the message. Most filter types exe-
cute the Continue action if the filter rejects. Imagine the following
composed filter sequence on method Protocol.sendData in our ex-
ample. The result is the following composed filter sequence:

CEEEE 8
encrypt

ParameterTracing = { ShouldTrace => [*.%] };
: Encryption = { [x.sendData] }

Listing 1: Composed filter sequence example.

This filter sequence can be translated to the filter execution graph
in figure [I] The italic labels on the transitions are evalutions of
the conditions (e.g. ShouldTrace), and the message matching, e.g.
message.sel(ector) == sendData. The bold labels on the transi-
tions show the filter actions. The underlined labels are resource-
operations tuples corresponding to the evaluation of the conditions,
matching parts and the filter actions.

ShouldTrace ! ShouldTrace

houldTrace.rea

Trace Continue

sel == sendData /sel.rea sel I= sendData sel == sendData sel I= sendData

Encrypt |args.encrypt Continue Encrypt | args.encrypt Continue

O

O

Figure 1: Filter execution graph example

From this graph we can see that in the left most path, the argu-
ments are read before they are encrypted. This path thus violates
the encryption requirement described in the example.

In Compose* we analyze the conflicts statically. However, it is
not always possible to determine statically whether certain conflicts
occur. There are three situations where dynamic verification is rel-
evant:

1. If a program uses dynamic or conditional superimposition,
and we detect a conflict in the program, we can only issue

a warning at compile time. Only at runtime can we be sure
that the conflict occurs.

2. Similarly, if the program uses conditional or dynamic advice
execution. Here we also have to monitor the system at run-
time to detect the conflict.

3. Concurrency can cause a wide variation of interleavings, in-
cluding potentially conflicting sequences. This requires full
monitoring of the advice at shared join points.

For the dynamic and conditional superimposition or advice ex-
ecution, we can only issue a warning at compile time but we have
to monitor the execution to detect the conflict at runtime. However,
we can use the analysis results from the compile time to determine
which paths of the composed program at a shared join point may
potentially lead to a conflict.

As illustrated in figure[T} we have an internal representation of
the sequence of filters at a shared join point. This representation
is an execution graph, in which all the possible messages are sim-
ulated. Each end state of this graph corresponds to an unique path
through the filter sequence. The graph branches if a condition is
used within the filters. It also accounts for the various ways a mes-
sage can flow through the filter sequence.

For each such path we know which conflict rule matches and
which assertion rule rule does not match. We also know the tran-
sitions required to reach the erroneous end state. This information
can be used to inject bookkeeping information at the transitions
with are part of the path leading to the erroneous end state. This
bookkeeping information performs the operations on the specific
resources. If a, possible erroneous, final state is reached, we verify
whether the conflict rules match or whether assertion rules do not
match. If so, we can throw an exception, which can be handled by
the user.

Conclusion.

The presented approach does not only provide feedback in an
early stage of software development, i.e. while writing and com-
piling the aspect, it also provides an optimized way of checking
whether certain conditional or dynamic conflicts actually occur at
runtime. We only monitor those cases where it is known that a con-
flict could occur, but can not be completely statically determined.
The declarative language of Composition Filters enables us to only
verify those combinations which may lead to a conflict. It also en-
ables us to reason about aspects without detailed knowledge of the
base code, i.e. we only need to know the join points of the system,
thus providing some form of isolated reasoning. Currently, only
static verification has been implemented, in Compose*. However,
we do plan to implement the proposed runtime extension in the near
future.

This work has been partially carried out as part of the Ideals
project under the responsibility of the Embedded Systems Institute.
This project is partially supported by the Netherlands Ministry of
Economic Affairs under the Senter program. This work is sup-
ported by European Commission grant IST-2-004349: European
Network of Excellence on Aspect-Oriented Software Development
(AOSD-Europe).

References

[1] P. Durr, L. Bergmans, and M. Aksit. Reasoning about
semantic conflicts between aspects. In R.Chitchyan, J. Fabry,
L. Bergmans, A. Nedos, and A. Rensink, editors, Proceedings
of ADI’06 Aspect, Dependencies, and Interactions Workshop,
pages 10-18. Lancaster University, Lancaster University, Jul
2006.

