
Translation Validation of System Abstractions

Jan Olaf Blech, Ina Schaefer, Arnd Poetzsch-Heffter

Software Technology Group
University of Kaiserslautern

Germany

Abstraction is a technique intensively used in the verification of large, com-
plex or infinite-state systems. Due to inherent limitations model checkers are
unable to deal with such systems directly, instead abstraction can reduce or dis-
cretize the state space. During the past decade a significant amount of research
has focussed on finding abstraction methods reducing the state space sufficiently
while preserving necessary precision. With abstraction algorithms getting more
and more complex it is often difficult to see whether valid abstractions are gen-
erated. However, for using abstraction in model checking it has to be ensured
that properties verified for the abstract system also hold in the concrete. In prin-
ciple, there are two ways to guarantee correctness of abstractions: Abstraction
algorithms (and their implementations!) can be verified once and for all or a
tool can be build that verifies the abstraction results for each distinct run of the
algorithm’s implementation.

In this work, we will show how to use the second variant. For verifying a
system abstraction, we set up a tool that is given a concrete system and a prop-
erty to be checked. As output it produces an abstract system, a corresponding
abstract property and furthermore a proof script that the abstraction is prop-
erty preserving. The abstraction is correct if the proof script succesfully passes
a theorem prover. Thus, the abstraction algorithm’s implementation is runtime
verified.

Our work towards runtime verification of system description abstractions is
inspired by a translation validation [8] based approach for compilers [5]. In the
area of compiler verification it has turned out that runtime verification of com-
pilers is often the method of choice for achieving guaranteed correct compilation
results.

While previously correctness of abstractions was established by showing sound-
ness for all possible systems [2, 3], in our approach the abstraction is proved
correct for a specific system and properties to be verified. Runtime verification
of abstractions allows to view the tool generating abstractions as black box, al-
though this black box may still provide basic hints on the performed abstraction.
If the abstraction algorithm is replaced it is not always necessary to change the
generation mechanism of the correctness proofs. Correctness proofs for distinct
abstractions are usually less complex and easier to establish than proofs for a
general abstraction algorithm. Also note, that in this approach the correctness
of abstractions is proved formally using a theorem prover instead of a paper-
and-pencil-proof.

We formalise concrete and abstract system semantics in the theorem prover
Isabelle/HOL[7]. Additionally, we formulate a correctness criterion based on sim-



ulation between original and abstract system. The correctness criteria are based
on property preservation of temporal logic fragments under simulation, for in-
stance the universal fragment of CTL* is preserved under simulation [1] which
can further be extended to fragments of the mu-calculus [6, 4]. The actual proof
of simulation consists of two main tasks. First, a concrete simulation relation
satisfying the correctness criterion has to be found. Each class of abstractions
has its own requirements on the selection of this relation. Second, proof scripts
to be run in Isabelle/HOL have to be generated. These are highly dependant
on the original system and performed abstractions. Hence, for both steps hints
provided by the abstraction algorithm are desirable. It is furthermore crucial for
the verification process that the produced proof scripts do not only allow the
derivation of a correct proof but can also be checked in adequate time.

The proposed technique is applied for the verification of embedded adaptive
systems in the automotive sector [9]. Beside potentially unbounded data domains
the size of the considered systems is huge. For model checking, these systems
can in a first step be abstracted by mapping unbounded data domains to finite
abstract domains to reduce and discretise the state space. We have successfully
applied runtime verification of this kind of data abstraction.

For future work, we aim at extending our approach to a broader class of
abstraction techniques and plan to combine abstraction with modular reasoning
applying runtime verification for correctness of resulting system transformations.

References

1. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACM TOPLAS, 16(5):1512–1542, September 1994.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. Proceedings of
POPL, pages 238–252. ACM Press, January 1977.

3. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. pages
269–282. ACM Press, January 1979.

4. Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

5. Marek Jezry Gawkowski, Jan Olaf Blech, and Arnd Poetzsch-Heffter. Certifying
Compilers based on Formal Translation Contracts. Technical Report 355-06, Tech-
nische Universität Kaiserslautern, November 2006.

6. Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek Ben-
salem. Property preserving abstractions for the verification of concurrent systems.
Formal Methods in System Design, 6(1):11–44, 1995.

7. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

8. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. Lecture Notes in
Computer Science, 1384, 1998.

9. I. Schaefer and A. Poetzsch-Heffter. Using Abstraction in Modular Verification of
Synchronous Adaptive Systems. In Proc. of ”Workshop on Trustworthy Software”,
Saarbrücken, Germany, May 18-19, 2006.


