
From Runtime Verification to Evolvable Software

Howard Barringer, David Rydeheard ∗

email: {howard.barringer, david.rydeheard}@manchester.ac.uk

Dov Gabbay †

email: dov.gabbay@kcl.ac.uk

January 26, 2007

Summary

In [4] we developed a revision-based logical mod-
elling approach for evolvable systems, built as hi-
erarchical assemblies of components. A component
may encapsulate horizontal compositions of inter-
acting sub-components as well as specially paired
vertical compositions of supervisor and supervisee
subcomponents. Our work here extends this
logical framework to incorporate programs within
each component. We first consider a setting where
the programs associated with both supervisor and
supervisee components are written in the same
guarded command style imperative language. How-
ever, as supervisor programs typically follow a mon-
itor, diagnose and revise pattern, we then illustrate
how temporal logic rule based supervisor programs,
mixing declarative and imperative styles, can be
semantically incorporated. Indeed, our modelling
framework can fibre as many different programming
languages as are necessary for the natural expres-
sion of the desired evolvable system behaviour. We
use a model of a reactively planned remote roving
vehicle as a motivating example.

Background and Motivation

We are interested in developing theories and tools
to support the construction and running of safe,
robust and controllable systems that have the ca-
pability to evolve or adapt their structure and be-
haviour dynamically according to both internal and
external stimuli. We distinguish such evolution-
ary changes from the normal computational flow
steps of a program; in particular, such changes may
involve the revision of fixed structural elements,
replacement of components and/or programs, or
larger scale reconfigurations of systems. Evolution
steps may be determined by internal monitoring of
a system’s behaviour identifying a need for change
in structure or computation, or may be triggered

∗School of Computer Science, University of Manchester,

Oxford Road, Manchester, M13 9PL, UK
†Department of Computer Science, Kings College Lon-

don, The Strand, London, WC2R 2LS, UK

by some external influence, e.g. a human user or
some other computational agent. We refer to such
systems in general terms as evolvable systems.

Many computational systems are naturally struc-
tured and modelled as evolvable systems. Exam-
ples include: business process modelling, which
adapt their processes according to internal and
external imperatives [1]; supervisory control sys-
tems for, say, reactive planning [9, 13]; systems for
adaptive querying over changing databases [7]; au-
tonomous software repair [12], data structure re-
pair [6]; hybrid systems [11] that change their com-
putational behavior in response to environmental
factors that they may themselves influence. Fea-
tures of evolvable systems, such as the monitor-
ing of aspects across components, are also found
in Aspect-oriented Programming [10] and Monitor-
oriented Programming [5]. Clearly, the work in the
field of runtime verification, addressing the moni-
toring of system behaviour against desired proper-
ties, or specification, is highly relevant to the design
and structuring of such evolvable systems.

Our logical account of evolvable computational
systems given in [4] aimed at a more refined un-
derstanding of these complex system behaviours.
We introduced evolution at a level of abstraction
that allows us to describe systems that are con-
structed as a hierarchical assembly of software and
hardware components. Software (and hardware)
components are modelled as logical theories built
from predicates and axioms. The state of a compo-
nent is a set of formulae of the theory; the formulae
record observations that are valid at that stage of
the computation. As components compute, their
states change. For normal computational steps,
these changes are described as revisions to the set
of formulae, in a style familiar in revision-based
logic [8]. This is just one particular approach to
describing computational behaviour, however, it is
an approach with built-in persistence — an impor-
tant feature for describing evolutionary behaviour.

Components may also be constructed as a pairing
of a supervisor and supervisee component in which
the supervisor component embodies a process of
monitoring and possibly evolving its supervisee

1



component. Although the supervisor is a compo-
nent, it stands in a special relationship to its su-
pervisee. In our logical account, this relationship
is that of the supervisor theory being meta to the
object-level supervisee theory. In other words, the
supervisor theory has access to the (entirety of the)
logical structure of the theory of the supervisee,
thus including its predicates, formulae, state, ax-
ioms, revision actions, and its subcomponent the-
ories. This equips the supervisor with sufficient
capability to describe evolutionary object-level su-
pervisee changes. Thus, not only can meta-level
(supervisor) states record observations of its own
state of computation, but they can also record ob-
servations about the object-level (supervisee) sys-
tem. Revision actions at the meta-level update the
state of the supervisor and, as a consequence of
being meta to the supervisee, may also induce a
transformation of the object-level, or supervisee,
system. It is in this way that we capture evolu-
tionary change. By introducing tree-structured
logical descriptions and associated revision opera-
tions, we showed how the framework could be ex-
tended to evolvable systems built from hierarchies
of evolvable components.

Programs for evolution

In this presentation, we outline how our modelling
approach can be extended with the introduction of
programs over the actions of the component theo-
ries. Without digressing into the debate on whether
components should be viewed as active, or pas-
sive service providers, we enhance our component
model and theory so that each component (and
hence all of its subcomponents) comes equipped
with its own “main” program, which is executed
upon component instance creation. This choice of
active componentry is not restrictive as it can easily
be used to model passive service-provider compo-
nent models. Furthermore, component instances of
different component schema may use different pro-
gramming languages. Of course, this is common in
practice; for example, shell scripts supervising the
execution of particular programs (in different lan-
guages), or temporal logic (or history/trace) based
languages used for monitoring imperative C or Java
programs. Seldom, however, do such combinations
come equipped with a logical account of the com-
bined systems.

A structural operational semantics, as well as a
trace-based denotational semantics, has been pro-
vided for the various ways that component pro-
grams may be combined, including, in particular,
the supervisor-supervisee combination of evolvable
components. This provides not only a foundation

for static proof analysis of an evolvable component
hierarchy but also a natural setting for dynamic,
reasoned and programmed, control of a system’s
evolution as a generalization of standard runtime
verification techniques. In addition, we illustrate
a temporal rule-based language, blending concepts
from Eagle [3] and MetateM [2], for supervisory
programming.

A roving example

We will motivate our approach to the inclusion of
programs in component models using an abstrac-
tion of a reactive planning-based remote roving ve-
hicle. Let us here give just an informal idea. At the
base level, we model a rover as a simple linear-plan
execution engine. The rover’s plans, i.e. programs,
are sequences of actions such as taking a picture,
setting a destination heading, and driving towards
the destination. A reactive planner is then mod-
elled as a supervisor for this base engine. The su-
pervisor sets an initial plan, then monitors the exe-
cution engine’s behaviour. If a planned action fails,
e.g. a drive action fails because of some unexpected
obstruction, the supervisor must diagnose the prob-
lem, replan and reinstall a more appropriate plan
for the rover. In this basic application, the super-
visory control is modelled using a straightforward
guarded command programming language; moni-
toring is reduced to looking for action failures. Ob-
viously, more complex monitoring, both temporal
and spatial, would be required for a more sophisti-
cated, potentially predictive, supervisor. Further-
more, a hierarchy of supervisors may also be neces-
sary. For example, suppose the replan action of a
first-level supervisor fails because there is no unob-
structed route to the given destination. A higher-
level supervisor (re-planner) may well revise the
goal to drive to another location or may be able
to employ some other technology to remove part of
the obstruction.

Whilst supervisory control of planning-based sys-
tems is hardly new, this example neatly illustrates
how the architecture of such systems and their pro-
grams are modelled in a logical framework that pro-
vides foundation for static and dynamic reasoning.

References

[1] D. Balasubramaniam, R. Morrison, G.N.C. Kirby,
K. Mickan, B.C. Warboys, I. Robertson, B. Snow-
don, R.M. Greenwood and W. Seet. A software
architecture approach for structuring autonomic
systems. In ICSE 2005 Workshop on the Design
and Evolution of Autonomic Application Software
(DEAS 2005), St Louis, MO, USA. ACM Digital
Library. 2005.

2



[2] H. Barringer, M. Fisher, D. Gabbay, G. Gough and
R. Owens. MetateM: An introduction. Formal
Aspects of Computing, 7(5): 533–549, 1995.

[3] H. Barringer, A. Goldberg, K. Havelund and
K. Sen. Rule-Based Runtime Verification. Pro-
ceedings of the VMCAI’04, 5th International Con-
ference on Verification, Model Checking and Ab-
stract interpretation, Venice. Volume 2937, Lecture
Notes in Computer Science, Springer-Verlag. 2004.

[4] H. Barringer, D. Gabbay and D. Rydeheard.
Logical Modelling of Evolvable Systems.
Submitted for publication, 2006. See also
http://www.cs.manchester.ac.uk/evolve

[5] F. Chen and G. Rosu. Towards monitoring-
oriented programming: A paradigm combining
specification and implementation. Electronic Notes
in Theoretical Computer Science, 89(2), 2003.
http://www.elsevier.nl/locate/entcs/volume89.html

[6] B. Demsky and M. Rinard. Data Structure Repair
Using Goal-Directed Reasoning. Proc. 2005 Inter-
national Conference on Software Engineering. St.
Louis, Missouri. 2005.

[7] K. Eurviriyanukul, A.A.A. Fernandes and
N.W. Paton. A Foundation for the Replacement
of Pipelined Physical Join Operators in Adaptive
Query Processing. Current Trends in Data-
base Technology (EDBT Workshops), Springer,
589-600. 2006.

[8] R.E. Fikes and N.J. Nilsson. STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence, 2(3–
4):189–208. 1971.

[9] M.P. Georgeoff and A.L. Lansky. Reactive Rea-
soning and Planning. Proceedings of the Sixth Na-
tional Conference on Artificial Intelligence, Seat-
tle, WA. 677–682, July 1987.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. Proc. of the Euro-
pean Conference on Object-Oriented Programming,
1241, pp 220–242. 1997.

[11] X.D. Koutsoukos, P.J. Antsaklis, M.D. Lemmon
and J.A. Stiver. Supervisory Control of Hybrid
Systems. Proc. of the IEEE, Special Issue on Hy-
brid Systems, 88(7),1026-1049. 2000.

[12] R. Levinson. Unified Planning and Execution for
Autonomous Software Repair. Workshop of Plan
Execution: A Reality Check, ICAPS’05, 2005.

[13] N. Muscettola and G. Dorais and C. Fry and
R. Levinson and C. Plaunt. Idea: Planning at
the core of autonomous reactive agents. Proceed-
ings of the 3rd International NASA Workshop on
Planning and Scheduling for Space, October 2002.

3


