
Department of Computer & Information Science

Departmental Papers (CIS)

University of Pennsylvania Year 

Checking Traces for Regulatory

Conformance

Nikhil Dinesh ∗ Aravind K. Joshi †

Insup Lee ‡ Oleg Sokolsky ∗∗

∗University of Pennsylvania, nikhild@seas.upenn.edu
†University of pennsylvania, joshi@seas.upenn.edu
‡University of Pennsylvania, lee@cis.upenn.edu

∗∗University of Pennsylvania, sokolsky@cis.upenn.edu

Postprint version. Presented at RV’08 - Eighth Workshop on Runtime Verification,
Satellite workshop of ETAPS’08, March 2008.

This paper is posted at ScholarlyCommons@Penn.

http://repository.upenn.edu/cis papers/370

Checking Traces for Regulatory Conformance⋆

Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

Department of Computer Science
University of Pennsylvania

Philadelphia, PA 19104-6389, USA
{nikhild,joshi,lee,sokolsky}@seas.upenn.edu

Abstract. We consider the problem of checking whether the operations of an
organization conform to a body of regulation. The immediatemotivation comes
from the analysis of the U.S. Food and Drug Administration regulations that ap-
ply to bloodbanks - organizations that collect, process, store, and use donations of
blood and blood components. Statements in such regulationsconvey constraints
on operations or sequences of operations that are performedby an organization.
It is natural to express these constraints in a temporal logic.
There are two important features of regulatory texts that need to be accommo-
dated by a representation in logic. First, the constraints conveyed by regulation
can be obligatory (required) or permitted (optional). Second, statements in regu-
lation refer to others for conditions or exceptions. An organization conforms to a
body of regulation if and only if it satisfies all the obligations. However, permis-
sions provide exceptions to obligations, indirectly affecting conformance.
In this paper, we extend linear temporal logic to distinguish between obligations
and permissions, and to allow statements to refer to others.While the resulting
logic allows for a direct representation of regulation, evaluating references be-
tween statements has high complexity. We discuss an empirically motivated as-
sumption that lets us replace references with tests of lowercomplexity, leading to
efficient trace-checking algorithms in practice.

1 Introduction

Regulations, laws and policies that affect many aspects of our lives are represented
predominantly as documents in natural language. Mechanically checking compliance
with these regulations and policies is an area of growing importance [1–3].

In this paper, we will consider one such regulation, the Foodand Drug Administra-
tion’s Code of Federal Regulations (FDA CFR) [4] that governs the operations of U.S.
bloodbanks. The CFR is developed by experts in the field of medicine, and regulates
the tests that need to be performed on donations of blood before they are used.

Bloodbanks are organizations that perform collection, testing, storage, and distri-
bution of blood donations and are required to conform to the regulation (CFR). The
operations of a bloodbank are logged in a database that keepstrack of donations that
are collected by the bloodbank, tests that are performed on them and, ultimately, the

⋆ This research was supported in part by NSF CCF-0429948, ARO W911NF-05-1-0158, and
ONR MURI N00014-04-1-0735.

2 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

way each donation is used. Our goal is to check in an efficient manner that the opera-
tions as recorded in the database are compliant with the CFR,and to raise an alarm if a
non-compliant action is detected. To achieve this goal, we first need to settle on an ap-
proach to formalize regulatory documents, and then consider the feasibility of checking
database logs with respect to the formalized regulations.

As we illustrate with examples in Section 2, the basic structure of regulatory state-
ments is to declare that a certain action can take place when certain conditions apply.
At a first glance, it seems that such statements can be encodedas logical clauses, where
a set of preconditions imply a postcondition. However, there are two complications that
need to be addressed. First, regulations convey permissions and obligations, which have
to be reflected in the formal description and handled accordingly during the checking.
Second, a common phenomenon in regulatory texts is for sentences to function as con-
ditions or exceptions to others. This function of sentencesmakes them dependent on
others for their interpretation, and makes the translationto logic difficult. We call this
the problem ofreferences to other laws, and it is the central focus of this paper.

In Section 2, we argue that a logic to represent regulation should provide mech-
anisms for statements to refer to others, and to make inferences from the sentences
referred to. We then turn to formalization of regulatory documents and regulated oper-
ations. In Section 3.1, we define an abstract model for representing the operations of an
organization, followed in Section 3.2 by a predicate-basedlinear temporal logic to ex-
press normative statements in regulation. Formal definitions of conformance are given.
We then extend the logic to allow sentences to refer to others, in Section 3.3.

Section 4 describes the checking process. We adapt the methodology of the rule-
based formalism Eagle [5] to handle references. In order to check statements with ref-
erences, we need to compute a fixed point, propagating information between references
from one statement to another until we get a consistent evaluation. The evaluation of
references has high complexity. We identify a condition, motivated by a case study of
the CFR, under which references can be replaced by tests of lower complexity. We also
discuss a prototype checking tool.

Section 5 concludes with a discussion of future research directions and a survey of
related work.

2 Motivation

In this section, we consider a representative sample of the CFR and argue that a logic
to represent regulation should provide a mechanism for sentences to refer to others.
Example. Below we present shortened versions of sentences from the CFR Section
610.40, which we will use as a running example throughout thepaper.

(1) Except as specified in (2), every donation of blood or blood component must be
tested for evidence of infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of infection
due to Hepatitis B.

Statement (1) conveys an obligation to test donations of blood or blood component
for Hepatitis B, and (2) conveys a permission not to test a donation of source plasma

Checking Traces for Regulatory Conformance 3

(a blood component) for Hepatitis B. To assess an organization’s conformance to (1)
and (2), it suffices to check whether “all non-source plasma donations are tested for
Hepatitis B”. In other words, (1) and (2) imply the followingobligation:

(3) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B.

There are a variety of logics in which one can capture the interpretation of (3), as
needed for conformance. For example, in first-order logic, one can write∀x : (d(x) ∧
¬sp(x)) ⇒ test(x), whered(x) is true iffx is a donation,sp(x) is true iff x is a source
plasma donation, andtest(x) is true iffx is tested for Hepatitis B. Thus, to represent (1)
and (2) formally, we inferred that they implied (3) and (3) could be represented more
directly in a logic.

Now suppose we have a sentence that refers to (1):

(4) To test for Hepatitis B, you must use a screening test kit.

The reference is more indirect here, but the interpretationis: “if (1) requires a test,
then the test must be performed using a screening test kit”. Abloodbank is not prevented
from using a different kind of test for source plasma donations. (4) can be represented
by first producing (3), and then inferring that (3) and (4) imply the following:

(5) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B using a screening test kit.

It is easy to represent the interpretation of (5) directly ina logic. However, (5) has
a complex relationship to the sentences from which it was derived, i.e., (1), (2) and (4).
The derivation takes the form of a tree:

(5)

(3)

(1) (2)

(4)

We argue that constructing a single derived obligation frommultiple statements
should be avoided. On the one hand, the derived obligation can become very complex.
The full version of statement (1) in the CFR contains six exceptions, and these excep-
tions in turn have statements that qualify them further. A statement can be used as an
exception to multiple other statements, and it is easy to seethat the derived obligation
can be exponentially larger than the original set of statements. We advocate an approach
that allows us to introduce references into the syntax of thelogic, and resolve references
during evaluation.

3 Formalization of Regulatory Documents

In this section, we extend linear temporal logic (LTL) to distinguish between obligations
and permissions, and allow references between statements.We begin, in Section 3.1,
by representing a bloodbank as a run or trace. Section 3.2 extends LTL to distinguish
between obligations and permissions, leading to definitions of conformance. We then
extend the logic to allow sentences to refer to others (Section 3.3).

4 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

3.1 Model for Regulated Operations

Given the need to demonstrate conformance to the regulationin case of an audit, regu-
lated organizations such as bloodbanks keep track of their operations in a database, for
example donor information and the tests they perform. Such asystem can be thought
of abstractly as a relational structure evolving over time.At each point in time (state),
there are a set of objects (such as donations and donors) and relations between the ob-
jects (such as an association between a donor and her donations). The state changes by
the creation, removal or modification of objects. We represent this as a run.

Definition 1 (A Run of a System).Given a setO (of objects) and countable sets
Φ1, ..., Φn (whereΦj is a set of predicate names of arityj), a run of a systemR(O,Φ1, ..., Φn),
abbreviated asR, is a tuple(r, π1, ..., πn) where:

– r : N → S is a sequence of states.N is the set of natural numbers, andS is a set
of states.

– πj : Φj × S → 2Oj

is a truth assignment to predicates of arityj. Givenp ∈ Φj ,
we will say thatp(o1, ..., oj) is true at states iff (o1, ..., oj) ∈ πj(p, s).

Given a runR and a timei ∈ N , the pair(R, i) is called a point (statements in
linear temporal logic are evaluated at points). Given the predicate names(Φ1, ..., Φn),
the corresponding space of runs is denoted byR(Φ1, ..., Φn), abbreviated asR.

Time ObjectsPredicates
1 o1 d(o1), sp(o1), ¬test(o1)
2 o1 d(o1), sp(o1), ¬test(o1)

o2 d(o2), ¬sp(o2), ¬test(o2)
3 o1 d(o1), sp(o1), test(o1)

o2 d(o2), ¬sp(o2), ¬test(o2)

Table 1.A run of a bloodbank

Table 1 shows a possible run of a bloodbank. First, an objecto1 is entered into the
system.o1 is a donation of source plasma (d(o1) andsp(o1) are true). When a donation
is added, its test predicate is initially false. Then, an object o2 is added, which is a
donation but not of source plasma. In the third step, the object o1 is tested.

3.2 Logic for Regulatory Conformace

Predicate-based Linear Temporal Logic (PredLTL) The logic that we define in this
section is a restricted fragment of first-order modal logic.The restriction is that we al-
low formulas with free variables, but no quantification overobjects. Formulas will be
interpreted using the universal generalization rule, i.e., over all assignments to free vari-
ables. The restrictions are similar in spirit to logic programs, which have been observed
to be sufficiently expressive for the generic statements in regulation [6, 7].

Checking Traces for Regulatory Conformance 5

Definition 2 (Syntax).Given setsΦ1, ..., Φn (of predicate names) and a set of variables
X , the languageL(Φ1, ..., Φn, X), abbreviated asL, is the smallest set such that:

– p(y1, ..., yj) ∈ L wherep ∈ Φj and(y1, ..., yj) ∈ Xj.
– If ϕ ∈ L, then¬ϕ ∈ L and2ϕ ∈ L. If ϕ, ψ ∈ L, thenϕ ∧ ψ ∈ L.

Disjunctionϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) and implicationϕ ⇒ ψ = ¬ϕ ∨ ψ are derived
connectives. The temporal operator is understood in the usual way: 2ϕ (ϕ holds and
will always hold (globally)).3ϕ (ϕ will eventually hold) is defined as¬2¬ϕ.

We now extend the syntax to express normative statements in abody of regulation,
by distinguishing between obligations and permissions.

Definition 3 (Syntax of Regulation).Given a finite set of identifiersID, a body of
regulationReg is a set of statements such that for eachid ∈ ID, there existϕ, ψ ∈ L
such that either:id.o: ϕ ; ψ ∈ Reg, or id.p: ϕ ; ψ ∈ Reg

id.o: ϕ ; ψ (id.p: ϕ ; ψ) is read as: “it is obligated (permitted) that the precondi-
tionϕ leads to the postconditionψ”.

Definition 4 (Semantics).Given a runR = (r, π1, ..., πn), ϕ ∈ L, and a variable
assignmentv : X → O, the relation(R, i, v) |= ϕ is defined inductively as follows:

– (R, i, v) |= p(y1, ..., yj) iff (v(o1), ..., v(oj)) ∈ πj(p, r(i)).
– The semantics of conjunction and negation is defined in the usual way.
– (R, i, v) |= 2ϕ iff for all k ≥ i : (R, k, v) |= ϕ.

We extend the semantic relation to regulatory staments. We take |= to stand for
“conforms to”:

– (R, i, v) |=id.o: ϕ ; ψ iff (R, i, v) |= ϕ⇒ ψ (⇒ is implication)
– (R, i, v) |=id.p: ϕ ; ψ. Runs vacuously conform to permissions. Permissions will

become relevant when references from obligations are present (Section 3.3).

Consider again our example from Section 2. We use three predicates defined as
follows. d(x) is true iff x is a donation.sp(x) is true iff x consists of source plama.
test(x) is true iff x is tested for Hepatitis B.

Statement (3) is represented as: 3.o: d(x)∧¬sp(x) ; 3test(x). Statement (2) can
be represented as: 2.p: d(y) ∧ sp(y) ; ¬3test(y). However, statement (1) cannot be
represented directly.

The deontic concepts of obligation and permission are treated as properties of sen-
tences. Only obligations matter for conformance. If a non-source plasma donation is not
tested, there is a problem. On the other hand, a bloodbank maychoose to test a donation
of source plasma or not. In assessing conformance, the function of a permission is to
serve as an exception to an obligation, and in this indirect manner it becomes relevant.
We will give a semantics to this function of permissions in Section 3.3. Such a treatment
of permissions has its basis in the legal theory of Ross [8].

6 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

In the formulation here, obligations and permissions are top-level operators and
cannot be negated. This restriction can be removed in several ways, e.g., using a many-
valued interpretation. However, we avoid this to simplify presentation. A more crucial
restriction is that iterated deontic constructs cannot be expressed directly, i.e., sentences
of the form “required to allow x” or “allowed to require x.”. One has to decide what
top-level obligations or permissions are implied by these constructs. To our knowledge,
handling iterated constructs is an open problem in deontic logic [9].

Conformance of a runR is defined using the notion of validity.ϕ is valid at the
point (R, i), (R, i) |= ϕ, iff for all variable assignmentsv: (R, i, v) |= ϕ. ϕ is valid in
R,R |= ϕ iff for all i : (R, i) |= ϕ.

Definition 5 (Run Conformance).Given a body of regulationReg and a runR rep-
resenting the operations of an organization, we say thatR conforms to the regulation
iff for all obligationsid.o: ϕ ; ψ ∈ Reg we haveR |=id.o: ϕ ; ψ.

The definition of conformance is given in terms of obligations. We now extend the
logic to allow sentences to refer to others making permissions relevant to conformance.

3.3 References to Other Laws

In this section, we describe the logical machinery we use to express and handle refer-
ences to laws. We give an example-driven account here, followed by a formal account
in the context of a runtime checking algorithm in Section 4.1.

We extend the syntax withan inference predicatebyId(ϕ), where Id is a set of iden-
tifiers.byId(ϕ) is read as “by the laws in Idϕ holds”. There are two restrictions: (a)ϕ is
a statement in PredLTL (Definition 2) and (b) the predicatebyId(ϕ) can appear only in
preconditions of laws. These restrictions are similar to those that apply to justifications
in default logic [11]. In the examples that we discuss, the set Id has a single element,
i.e., a statement refers to a single other law. In general, laws refer to sets of statements,
e.g., “except as specified in this section”.

Consider again our example statements (1) and (2), which cannow be represented
as follows:

– 1.o: d(x) ∧ ¬by{2}(ϕ(x)) ; 3test(x), and
– 2.p: d(y) ∧ sp(y) ; ¬3test(y)

In the formula above, the subformulaby{2}(ϕ(x)) is understood as “by the law (2) the
formulaϕ(x) holds”. It remains to define the formulaϕ(x). Intuitively, this should be
the negation of the postcondition of (1). In other words, if¬3test(x) follows from (2),
then the postcondition of (1) need not hold.1

1.o: d(x) ∧ ¬by{2}(¬3test(x)) ; 3test(x)
We interpretby{2}(¬3test(x)), by letting formulas have output. In other words,

when the precondition of an obligation or permission is trueat a point, the point is
annotatedwith the postcondition. Given a point(R, i) and a variable assignmentv, first
we consider the formula 2.p: d(y) ∧ sp(y) ; ¬3test(y). We evaluate this as follows:

1 WhenbyId(ϕ) appears in the precondition of a law,ϕ need not be the negation of the post-
condition. An example is statement (4) in Section 2, which can be represented as:
4.o: by{1}(3test(z)) ; 3scr(z), wherescr(z) is true iff z is tested using a screening test.

Checking Traces for Regulatory Conformance 7

– If (R, i, v) |= d(y) ∧ sp(y), (R, i) is annotatedwith 2: ¬3test(v(y)) . Observe
that the annotation happens regardless of whether(R, i, v) |= ¬3test(y) and the
variable is replaced with the object assigned to it.

– Otherwise, there is no annotation.

Given a variable assignmentv and a PredLTL formulaϕ, v(ϕ) is the formula ob-
tained by replacing all variablesx by an identifier for the objectv(x). Note thatv(ϕ)
is equivalent to a propositional LTL formula, as the variables have been replaced by
constant symbols. We now define annotations:

Definition 6 (Annotation). Given a runR, a set of identifiersID, a variable assign-
mentv, and a body of regulationReg, an annotation is a statement id:v(ψ) such that
id ∈ ID and id.x: ϕ ; ψ ∈ Reg (which is either an obligation or a permission). The
set of annotations is denoted byA(R, ID,Reg), abbreviatedA.

Definition 7 (Annotation Function). Given a runR, an annotation functionα : N →
2A assigns a set of annotations to each point. Given a set of identifiers ID andId ⊆
ID, we useα.Id(i) to denote the set of annotations id:ψ ∈ α(i) such thatid ∈ Id.

Time ObjectsPredicates Annotations
1 o1 d(o1), sp(o1), ¬test(o1) 2:¬3test(o1)

2 o1 d(o1), sp(o1), ¬test(o1) 2:¬3test(o1)
o2 d(o2), ¬sp(o2), ¬test(o2) 1: 3test(o2)

3 o1 d(o1), sp(o1), test(o1) 2:¬3test(o1)
o2 d(o2), ¬sp(o2), ¬test(o2) 1: 3test(o2)

Table 2.A run and its annotations

Table 2 shows a run of a bloodbank augmented with annotations. As we discussed
in Section 3.1,o1 is a donation of source plasma which is tested at time 3 ando2 is a
non-source plasma donation which has not been tested. Unless the run is extended to
testo2 as well, it does not conform with the regulation according toDefinition 5.

Since the precondition of statement (2) is true for the assignment ofy to o1, we
have the annotation 2:¬3test(o1) at all points. However, sinceo2 is not a donation of
source plasma, there is no correponding annotation.

Now consider the formulaby{2}(¬3test(x)). This is evaluated as follows:

– Evaluate 2.p: d(y) ∧ sp(y) ; ¬3test(y) at (R, i) w.r.t. all variable assignments.
– Let ψ2 be the conjunction of the annotations produced by the formula for (2), i.e.,
ψ2 =

∧

ϕ for all ϕ ∈ α.{2}(i).
– (R, i, v) |= by{2}(¬3test(x)) iff |= ψ2 ⇒ ¬3test(v(x)).

Notice that the last step requires a validity check, but it isa validity check in (propo-
sitional) LTL. Validity in LTL is coNP-complete when the only modality isglobally, and

8 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

PSPACE-complete with theuntil modality [12]. In Section 4, we discuss cases where
the size of the validity tests grows large, and we explore a restriction that lets us avoid
validity tests during checking.

Returning to the run in Table 2, the states are annotated with2:¬3test(o1) and|=
¬3test(o1) ⇒ ¬3test(o1), sinceϕ ⇒ ϕ is a propositional tautology. So(R, i, v) |=
by{2}(¬3test(x)) whenv(x) = o1.

We can evaluate 1.o: d(x) ∧ ¬by{2}(¬3test(x)) ; 3test(x) similarly by an-
notating states with3test(x) if the precondition holds. In Table 2, this results in an
annotation of 1:3test(o2) on the appropriate states. Ifo2 is never tested, the run will
be declared non-conforming (by Definition 5), but the annotation will remain. This lets
a law which depends on (1) draw the correct inference.

The semantic evaluation outlined above works only when the references are acyclic,
since an order of evaluation needs to be defined. To handle cycles, we move to a three-
valued logic where the third (middle) value stands for undetermined. Initially, all state-
ments are undetermined, and there are no annotations. At each step we assign truth
values and annotations, using truth values and annotationsfrom the previous step, until
we reach a fixed point. In a companion paper [10], which focusses on the design of the
logic, we prove that there is a least fixed point, which can be computed in an iterative
fashion. In this paper, we use the existence of the least fixedpoint to derive a runtime
checking algorithm.

4 Runtime Checking of Specifications with References

4.1 An Algorithm for Evaluating Specifications with References

We augment the evaluation procedure of the rule-based formalism Eagle [5] to handle
references. In Eagle, formulas in LTL are evaluated by transforming them into other
formulas, and discharging the remainder (if any) at trace end. The update calculus used
in [5] provides a general treatment of past modalities and data dependencies. To sim-
plify presentation, we will work directly with the formulasin the logic.

The key idea is to treat the predicatebyId(ϕ) as kind of eventuality. As we discussed
in Section 3.3, to evaluatebyId(ϕ) at timei, we need to check the annotations obtained
from the laws inId at time i. If the preconditions of the laws inId are temporal, we
need to wait until they are evaluated before the annotationsare obtained. So, we need
to keep annotations for a timei until all subformulasbyId(ϕ) for time i have been
evaluated. GivenbyId(ϕ) and a timei, we attempt to evaluate it using the current set
of annotations. If we cannot determine the truth value,byId(ϕ) is transformed into
byId(ϕ, i) (read as “byId(ϕ) is true at timei”), and evaluated at subsequent times.

Following [13], we use a three-valued logic with values fromB3 = {⊤,⊥, ?}, with
the meaning true, false, and undetermined, respectively. For notational simplicity, we
use truth values as terms in preconditions:

Definition 8 (Syntax of Preconditions).Given setsΦ1, ..., Φn (of predicate names), a
set of variablesX , and a finite set of identifiersID, the languageL′(Φ1, ..., Φn, X, ID),
abbreviated asL′, is the smallest set such that:

– If t ∈ B3, thent ∈ L′. p(y1, ..., yj) ∈ L′, wherep ∈ Φj and(y1, ..., yj) ∈ Xj.

Checking Traces for Regulatory Conformance 9

– If ϕ ∈ L′, then¬ϕ ∈ L′ and2ϕ ∈ L′. If ϕ, ψ ∈ L′, thenϕ ∧ ψ ∈ L′

– If Id ⊆ ID andϕ ∈ L(Φ1, ..., Φn, X) (Definition 2), thenbyId(ϕ) ∈ L′. In
addition, for all natural numbersi ∈ N , byId(ϕ, i) ∈ L′

The syntax of regulatory statements (Definition 3) is modified so that the precon-
ditions of laws are statements fromL′. The setL′ together with a set of regulatory
statementsReg is denoted byL+ = L′ ∪ Reg. Given a set of objectsO, V (X,O)
denotes the set of all variable assigments, i.e., functionsv : X → O.

We can now adapt the Eagle procedure of transforming formulas. The transforma-
tion function uses two annotation functionsα andα′ such that for alli, α(i) ⊆ α′(i).
α(i) is the set of annotations obtained from laws with true preconditions, whileα′(i)
is set of annotations from laws with true or undetermined preconditions. The truth of
byId(ϕ) is determined usingα, and falsity is determined usingα′.

Definition 9 (Transformation function). Given a set of objectsO and annotation
functionsα andα′ such thatα(i) ⊆ α′(i) for all i ∈ N , the transformation function
τ(α,α′) : L+ × S ×N × V (X,O) → L+ is defined as follows:

– τ(α,α′)(t, s, i, v) = t if t ∈ B3.
– τ(α,α′)(p(y1, ..., yj), s, i, v) = ⊤ if (v(y1), ..., v(yj)) ∈ πj(p, s).
τ(α,α′)(p(y1, ..., yj), s, i, v) = ⊥ otherwise.

– τ(α,α′)(ϕ ∧ ψ, s, i, v) = τ(α,α′)(ϕ, s, i, v) ∧ τ(α,α′)(ψ, s, i, v).
τ(α,α′)(¬ϕ, s, i, v) = ¬τ(α,α′)(ϕ, s, i, v)

– τ(α,α′)(2ϕ, s, i, v) = τ(α,α′)(ϕ, s, i, v) ∧ 2ϕ
– τ(α,α′)(byId(ϕ), s, i, v) = τ(α,α′)(byId(ϕ, i), s, i, v)

τ(α,α′)(byId(ϕ, j), s, i, v) =







⊤ if j ≤ i and
∧

α.Id(j) ∧ v(¬ϕ) is not satisfiable
⊥ if j ≤ i and

∧

α′.Id(j) ∧ v(¬ϕ) is satisfiable
byId(ϕ, j) otherwise

– τ(α,α′)(id.o: ϕ ; ψ, s, i, v) =id.o: τ(α,α′)(ϕ, s, i, v) ; τ(α,α′)(ψ, s, i, v)
τ(α,α′)(id.p: ϕ ; ψ, s, i, v) =id.p: τ(α,α′)(ϕ, s, i, v) ; ψ

Note that the postcondition of permissions are not transformed, as their truth value
is irrelevant. The only use of postconditions of permissions is to provide annotations.
To update the annotation function, we need to know if a precondition has become true
or false. We now define a function to map formulas to truth values:

Definition 10. Given a set of objectsO and annotation functionsα andα′ such that
α(i) ⊆ α′(i) for all i ∈ N , the functionvalue(α,α′) : L+ × S ×N × V (X,O) → B3

is defined as follows:

– Truth values, predicates, conjunction and negation are handled in the usual way.
– value(α,α′)(2ϕ, s, i, v) = ⊤ if s is the final state.

value(α,α′)(2ϕ, s, i, v) =? otherwise.
– value(α,α′)(byId(ϕ), s, i, v) = value(α,α′)(byId(ϕ, i), s, i, v)

value(α,α′)(byId(ϕ, j), s, i, v) =







⊤ if j ≤ i and
∧

α.Id(j) ∧ v(¬ϕ) is not satisfiable
⊥ if j ≤ i and

∧

α′.Id(j) ∧ v(¬ϕ) is satisfiable
? otherwise

10 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

– value(α,α′)(id.o: ϕ ; ψ, s, i, v) = value(α,α′)(ϕ⇒ ψ, s, i, v).
value(α,α′)(id.p: ϕ ; ψ, s, i, v) = ⊤

At the end of the trace, subformulas2ϕ are replaced by⊤, but subformulasbyId(ϕ, j)
may still be undetermined. This is due to the fact that with circular references, we can
create paradoxical statements – id.o: ¬by{id}(ϕ) ; ϕ. This statement requiresϕ to
hold when it doesn’t requireϕ, and is always undetermined.

Update(Reg,Φ, α, α′, s, i):
Input : The regulationReg, the set of formulas to be updatedΦ, the annotation functions

α andα′, the states and timei
Letα(i) = α′(i) = ∅;
for all id.x: ϕ ; ψ ∈ Reg and assignmentsv do

Let φ = τ(α,α′)(id.x: ϕ ; ψ, s, i, v);
Φ = Φ ∪ {(φ,id: v(ψ), i, v)}, andα′(i) = α′(i) ∪ {id: v(ψ)}

end
repeat

for all (id.x: ϕ ; ψ, a, j, v) ∈ Φ do
If value(ϕ, s, i, v) = ⊤, thenα(j) = α(j) ∪ {a};
If value(ϕ, s, i, v) = ⊥, thenα′(j) = α′(j) − {a}

end
LetΦ′ = ∅;
for all (id.x: ϕ ; ψ, a, j, v) ∈ Φ do

Let φ = τ(α,α′)(id.x: ϕ ; ψ, s, i, v) andϕ′ = τ(α,α′)(ϕ, s, i, v);
If value(φ, s, i, v) =? or value(ϕ′, s, i, v) =?, thenΦ′ = Φ′ ∪ {(φ, j)};
If value(φ, s, i, v) = ⊥, then raise alarm.

end
Φ = Φ′

until α andα′ do not change;

Algorithm 1 : An algorithm for evaluating statements with references

We note that the functionvalue(α,α′) does not determine a formula to be true or
false as early as possible. To decide if a formula is true as early as possible, we need to
check whether all possible suffixes to the trace satisfy the formula, as in [13]. In other
words, we need to decide if the transformed formula is valid.In [10], we show that with
references one can encode formulas in first-order logic as regulations, and as a result,
the validity problem is undecidable forL+. The satisfiability tests used to evaluate the
inference predicates are in propositional LTL, and are decidable.

Fixed points are defined at the level of a run. Suppose we are given a body of
regulationReg, a runR and annotation functions(α1, α

′
1). The result of evaluation

gives us new annotations(α2, α
′
2) corresponding to laws that have true preconditions

(α2), and true or undetermined preconditions (α′
2). We will say that(α1, α

′
1) is a fixed

point iff (α1, α
′
1) = (α2, α

′
2).

The functionvalue(α,α′) is extended to runs. The definition remains identical ex-
cept that forbyId(ϕ, j) we do not require thatj ≤ i to determine truth or falsity, and
for the temporal operator:

Checking Traces for Regulatory Conformance 11

value(α,α′)(2ϕ,R, i, v) =







⊤ if for all j ≥ i, value(α,α′)(ϕ,R, i, v) = ⊤
⊥ if there existsj ≥ i, value(α,α′)(ϕ,R, i, v) = ⊥
? otherwise

Definition 11 (Consistent Annotations).Given a body of regulationReg and a runR
with a set of objectsO, the pair of annotation functions(α, α′) is consistent iff for all
(id.x: ϕ ; ψ, i, v) ∈ Reg ×N × V (X,O):

If id: v(ψ) ∈ α(i) ∩ α′(i), thenvalue(α,α′)(ϕ,R, i, v) = ⊤
If id: v(ψ) 6∈ α(i) ∪ α′(i), thenvalue(α,α′)(ϕ,R, i, v) = ⊥
In addition, for all i, we require thatα(i) ⊆ α′(i).

Definition 12 (Fixed Point).Given a body of regulationReg and a runR with a set of
objectsO, the pair of consistent annotation functions(α, α′) is a fixed point iff for all
(id.x: ϕ ; ψ, i, v) ∈ Reg ×N × V (X,O):

If value(α,α′)(ϕ,R, i, v) = ⊤, then id:v(ψ) ∈ α(i) ∩ α′(i)
If value(α,α′)(ϕ,R, i, v) =?, then id:v(ψ) ∈ α′(i) − α(i)
Otherwise, id:v(ψ) 6∈ α(i) ∪ α′(i)

We say that(α1, α
′
1) ≤ (α2, α

′
2) if for all i, we haveα1(i) ⊆ α2(i). We now review

some results that are proved in [10]. The partially ordered set of consistent annotations
has a least fixed point and one or more maximal fixed points. Distinct fixed points arise
if there are circular references. The converse is not necessarily true, i.e., there may be
circular references and a unique fixed point. There is a smallest element in the set of
consistent annotations(α0, α

′
0) such that for alli, α0(i) = ∅ andα′

0(i) contains all
annotations. The least fixed point can be obtained iteratively using(α0, α

′
0).

Algorithm 1 describes the procedure for computing the leastfixed point in a runtime
setting. In addition toα andα′, we maintain a set of tuplesΦ, where each element is a
transformed regulatory statement, the associated annotation, time and variable assign-
ment. Given(id.x: ϕ ; ψ, a, j, v) ∈ Φ, if ϕ is determined to be true, the annotationa
is added toα(j). On the other hand, ifϕ is determined to be falsea is removed from
α′(j). For allj ∈ N , α(j) increases monotonically, andα′(j) decreases monotonically
with each execution of the repeat loop, until a fixed point is reached.

4.2 Complexity Analysis by Example

The complexity of Algorithm 1 in each state of a run depends ontwo factors – the
number of steps necessary to reach a fixed point, and the size of satisfiability problem
instances that need to be handled in the evaluation of the predicatebyId(ϕ). We discuss
examples that illustrate these two aspects, by encoding thegraph reachability problem
in different ways. In the first example, the number of steps taken to reach the fixed point
grows with the number of objects. In the second example, the size of the satisfiability
instances grows with the number of objects.

Both examples operate on the same model, where a state in the run contains a de-
scription of a graph. Objectso1 ando2 represent nodes, and the predicateδ(o1, o2) is

12 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

true iff there is an edge betweeno1 ando2. In addition,δ+(o1, o2) is true iff there is a
path fromo1 to o2. Suppose we wish to check whetherδ+ has been computed correctly.
Example 1.Consider a self-referential sentence:

id.o: δ(x, z) ∨ (δ(x, y) ∧ by{id}(δ
+(y, z))) ; δ+(x, z)

The precondition of this sentence corresponds to the definition of a path. In other words,
there is a path betweenx andz (δ+(x, z)), if there is an edge betweenx andy (δ(x, y)),
and a path betweeny andz (by{id}(δ

+(y, z))). Consider the sequence of annotations
obtained in the least fixed point computation –α0, ..., αf . It is easy to see that id:
δ+(o, o′) ∈ αj(i) iff there is a path of length at mostj from o to o′. Given a graph
with |O| nodes, there is a path fromo to o′ iff there is a path of length at most|O| from
o to o′. As a result, the fixed point will be reached in at most|O| steps. The worst-case
number of steps needed to reach the fixed point isO(m× |O|k), wherem is the size of
the regulation, andk is the maximum number of variables appearing in a sentence.
Example 2.Consider now the following statements:

A.o: by{B,C}(δ
+(x, y)) ; δ+(x, y)

B.o: δ(x, y) ; δ+(x, y)
C.o: ⊤ ; (δ+(x, y) ∧ δ+(y, z)) ⇒ δ+(x, z)

Note that A refers to C. The presence of implication in the postcondition of C is an
important feature of this example. Let, for simplicity, thegraph in the state be a chain.
Since the precondition of C is always true, the first step of the fixed point computation
yields an annotation that contains C:(δ+(o, o′) ∧ δ+(o′, o′′)) ⇒ δ+(o, o′′) ∈ α1(i) for
all o, o′, o′′ in the graph. The next step of the evaluation will yield the fixed point, but
the size of the validity test performed in this step isO(|O|3), as Algorithm 1 uses all the
available annotations. The worst-case size of the validityinstances is inO(m× |O|k),
and the time complexity of a step in computing the fixed point isO(2m×|O|k).
Discussion.In both examples above, Algorithm 1 checks validity instances of size poly-
nomial in |O|. However, there is a crucial difference in the maximum size of tests that
are needed. In Example 1,by{id}(δ

+(o, o′)) is true iff id: δ+(o, o′) ∈ α(i). In other
words, at most one annotation is need to evaluateby{id}(δ

+(o, o′)). In Example 2, we
do need validity tests of size|O| to evaluateby{B,C}(δ

+(o, o′)). A case study of the
CFR revealed that the references behaved like Example 1 in that a single annotation or
copy of the referenced statement suffices to evaluate formulasbyId(ϕ). We call thisthe
single copy property.

Definition 13 (Single Copy Property).Given a body of regulationReg, byId(ϕ, j)
has the single copy property iff for all runsR, and consistent annotations(α, α′):

t =







⊤ if ψ ∧ v(¬ϕ) is not satisfiable for someψ ∈ α.Id(j)
⊥ if ψ ∧ v(¬ϕ) is satisfiable for allψ ∈ α′.Id(j)
? otherwise

where,t = value(α,α′)(byId(ϕ, j), s, i, v)

While the single copy property allows us to reduce the size ofthe satisfiability
tests, we need to performO(m× |O|k) tests for each inference predicate. The question
arises as to whether satisfiability tests can be avoided during checking. We answer this
question positively in the following section.

Checking Traces for Regulatory Conformance 13

4.3 Pre-computing Satisfiability

Algorithm 1 evaluatesbyId(ϕ) using satsfiabilty tests. The size of the satisfiability tests
depends onα.Id(i), which in turn depends on the number of objects. IfbyId(ϕ) has
the single copy property, we can consider smaller satisfiability tests. In this section, we
show that the single copy property gives us a way to assess satisfiability symbolically,
and use tests of lower complexity during checking.

The strategy we use is as follows. Given a body of regulation,we perform a compila-
tion step which involves: a) testing satisfiability, and b) replacing the predicatesbyId(ϕ)
by equivalent formulas in another logic. We begin by discussing two examples, and then
formalize the compilation step.
Example 1:Consider our regulatory sentences:

– 1.o: d(x) ∧ ¬by{2}(¬3test(x)) ; 3test(x), and
– 2.p: d(y) ∧ sp(y) ; ¬3test(y)

Consider a state at whicho1, o2, ...,on are source plasma donations. This would result
in ¬3test(o1),¬3test(o2), ...,¬3test(on) being available as annotations. To evaluate
byId(¬3test(oi)), Algorithm 1 uses all the annotations in the satifiability test. How-
ever, in this case, it suffices to check if¬3test(oi) is present as an annotation. The
other annotations are irrelevant. To check if¬3test(oi) is present as an annotation, it
suffices to evaluate the precondition of the referenced law,i.e., whetherd(oi) ∧ sp(oi)
is true (whetheroi is a donation of source plasma). Instead of evaluatingbyId(φ) using
satisfiability tests, we will check if the precondition of a referenced law is true.

Informally, the compilation step involves anwering the question when does state-
ment 2 provide an exception for statement 1. Equivalently, when does¬3test(y) imply
¬3test(x). The answer is only wheny = x. We can then evaluate the precondition of
2 with y replaced byx, i.e., d(x) ∧ sp(x). This lets us replace statement 1 with 1.o:
d(x) ∧ ¬(d(x) ∧ sp(x)) ; 3test(x), which is equivalent to 1.o: d(x) ∧ ¬sp(x) ;

3test(x). Observe that this is the derived obligation implied by statements 1 and 2, i.e.,
every non-source plasma donation must be tested.
Example 2: The example above is simple in two ways: a) the number of variables in
both statements are the same, and b) the references are acyclic. We discuss the general
case in the context of the reachability example we saw in the previous section:

id.o: δ(x, z) ∨ (δ(x, y) ∧ by{id}(δ
+(y, z))) ; δ+(x, z)

We observe that the precondition is structurally similar toa procedure that checks if
a path exists between two nodesx andz. That is, ifδ(x, z) thenδ+(x, z) is true. Oth-
erwise, if there existsy such thatδ(x, y) and there is a path fromy to z, thenδ+(x, z)
is true, otherwise false.

We will produce a formula which mimics the procedure. There are two pieces of
machinery used by the procedure that are not directly available in the logic: a) an ex-
istential quantifier over objects (there existsy), and b) a mechanism for recursion. To
address this, let us consider a logic which extends PredLTL with existential quantifiers,
and a function symbolPid for id ∈ ID (P stands for precondition).Pid takes as ar-
gument a substitutionθ : X → X , which is a function from variables to variables. A
substitution is represented a set of replacementsx/y (read as “x is replaced by y”), such
that each variable has at most one replacement. We replace the formula above with:

14 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

id.o: δ(x, z) ∨ (δ(x, y) ∧ ∃y1 : Pid({x/y, y/y1, z/z})) ; δ+(x, z)
It remains to give this formula a semantics. Given a variableassignmentv and

a subtitutionθ, θ(v) denotes the variable assignmentv′ such thatv′(x) = v(θ(y)).
Given a runR, time i and regulationReg, the idea is to say that(R, i, v) |= Pid(θ)
iff (R, i, θ(v)) |= ϕ where id.x: ϕ ; ψ ∈ Reg. We now formalize the compilation
procedure.
Compiling References into Precondition Tests:We begin by defining the syntax of
compiled preconditions:

Definition 14 (Syntax of Compiled Preconditions).Given setsΦ1, ..., Φn (of pred-
icate names), a set of variablesX , and a finite set of identifiersID, the language
L′

C(Φ1, ..., Φn, X, ID), abbreviated asL′
C , is the smallest set such that:

– If t ∈ B3, t ∈ L′
C . And,p(y1, ..., yj) ∈ L′

C wherep ∈ Φj and(y1, ..., yj) ∈ Xj.
– If ϕ ∈ L′

C , then¬ϕ ∈ L′
C and2ϕ ∈ L′

C . If ϕ, ψ ∈ L′
C , thenϕ ∧ ψ ∈ L′

C

– If ϕ ∈ L′
C , for all y ∈ X , we have∃y : ϕ ∈ L′

C .
– For all id ∈ Id and substitutionsθ : X → X , we havePid(θ) ∈ L′

C . In addition,
for all natural numbersi ∈ N , Pid(θ, i) ∈ L′

C

The syntax of regulatory statements (Definition 3) is modified so that the precon-
ditions of laws are statements fromL′

C . The setL′
C together with a set of regulatory

statementsRegC is denoted byL+
C = L′

C ∪ RegC . We remind the reader thatL+ and
L′ are the languages with the predicatebyId(ϕ).

The semantics ofL+
C is defined in a manner similar toL+. Rather than using an-

notations(α, α′), we now evaluate statements w.r.t. two sets of assignment functions
(γ, γ′). γ(i, id) (resply.,γ′(i, id)) is a set of variable assignments for which the pre-
condition of the law with identifierid is true (resply., true or undetermined). As with
annotations, we require that for alli ∈ N andid ∈ ID, γ(i, id) ⊆ γ′(i, id). Given
an assignmentv and a substitutionθ, θ(v) denotes the assignmentv′ such that for all
y ∈ X , we havev′(y) = v(θ(y)). We can now adapt thevalue function:

value(γ,γ′)(Pid(θ, j), R, i, v) =







⊤ if θ(v) ∈ γ(j, id)
⊥ if θ(v) 6∈ γ′(j, id)
? otherwise

The definitions of consistency and fixed points (Definitions 11 and 12) are easily
adapted, and we leave the details to the reader.

We now describe the compilation procedure. Givenϕ ∈ L+, we useX(ϕ) to denote
the set of variables appearing inϕ, andθ(ϕ) to denote the formula obtained by perform-
ing the substitutionθ on ϕ. ConsiderbyId(ϕ, j), which has the single copy property,
and variables disjoint from all regulatory statements:

– Let S(ϕ, id) = { θ| id.x: ϕ ; ψ ∈ Reg, andθ(ψ ⇒ ϕ) is valid}.
– For allθ ∈ S(ϕ, id), letϕC(θ, id) = ∃z1, ..., zm : Pid(θ, j), where the existentially

quantified variables are in one-to-one correspondence withthose inX(φ)−X(ψ).
More formally,zj 6∈ X(φ) − X(ψ) andθ is a one-to-one function from{zj|1 ≤
j ≤ m} toX(φ) −X(ψ).

Checking Traces for Regulatory Conformance 15

– ϕC(byId(ϕ, j), id) =
∨

{ϕC(θ, id)|θ ∈ S(ϕ, id)}, and
– ϕC(byId(ϕ, j)) =

∨

{ϕC(byId(ϕ, j), id)|id ∈ Id}

We note that the first step makes crucial use of the single copyproperty (SCP).
In computingS(ϕ, id), it suffices to find substitutions such thatθ(ψ ⇒ ϕ) is valid.
If the SCP does not hold, then we need to check if multiple copies of postconditions
provide the necessary implication (as in Example 2, Section4.2). For example, we need
to check ifθ(ψ1 ∧ ... ∧ ψn ⇒ ϕ), whereψ1, ..., ψn are copies of the postcondition of a
law with the variables renamed. It can be shown that detecting whether the SCP holds
is undecidable. In future work, we plan to investigate restrictions on postconditions that
make SCP-detection decidable.

To prove the correctness of the compilation procedure, we use a notion of corre-
spondence between annotations and assignments. Let us assume as given a body of
regulationReg (in L+), a runR and consistent annotations(α, α′). Rather than pro-
ducing a regulation inL+

C , we prove correctness by evaluating formulas inL′
C against

Reg. We construct(γα, γ
′
α′) such that for alli ∈ N andid ∈ ID, v ∈ γα(i, id) iff id:

v(ψ) ∈ α(i), andv ∈ γ′α′(i, id) iff id: v(ψ) ∈ α′(i). We can now show the following:

Lemma 1. Given a body of regulationReg, a runR, consistent annotations(α, α′),
andbyId(ϕ, j) which has the single copy property, for alli ∈ N and assignmentsv:

value(α,α′)(byId(ϕ, j), R, i, v) = value(γα,γ′

α′
)(ϕC(byId(θ, j)), R, i, v)

Proof. The proof follows straightforwardly from the constructionof ϕC(byId(θ, j))
and the single copy property. We sketch one of the cases.

Supposevalue(α,α′)(byId(ϕ, j), R, i, v) = ⊤. There exists id:v′(ψ) ∈ α(i) such
that v′(ψ) ∧ v(¬ϕ) is not satisfiable, or equivalentlyv′(ψ) ⇒ v(ϕ) is valid. It fol-
lows that there exists a substitutionθ such thatθ(ψ ⇒ ϕ) is valid. By definition
v′ ∈ γα(i), and hence,value(γα,γ′

α′
)(Pid(θ, j), R, i, v′) = ⊤. We can then argue us-

ing the construction thatvalue(γα,γ′

α′
)(∃z1, ..., zm : Pid(θ, j), R, i, v) = ⊤, and as a

result,value(γα,γ′

α′
)(ϕC(byId(θ, j)), R, i, v) = ⊤. The other cases are handled simi-

larly. ⊓⊔

GivenReg in which all subformulasbyId(ϕ) have the single copy property, we can
now produce the regulationRegC in L+

C with all occurences ofbyId(ϕ) replaced by
ϕC(byId(ϕ)). It follows from Lemma 1 that if(α, α′) is a fixed point w.r.t.Reg, then
(γα, γ

′
α′) is a fixed point w.r.t.RegC . In addition, the truth values assigned to regulatory

statements are identical.
The complexity of evaluation depends on the number of disjuncts inϕC(byId(ϕ)),

which in turn depends on the size of the set:S(ϕ, id). |S(ϕ, id)| ≤ (2k)2k, where
k is the maximum number of variables in a regulatory statement. (2k)2k is a bound
on the number of equivalence classes, i.e., we have2k variables (k in ϕ andk in ψ)
and at most one equivalence class for each variable. Hence, the size ofϕC(byId(ϕ))
is O(m × (2k)2k), wherem is the number of regulatory statements. Each quantified
precondition test can be evaluated inO(|O|k) time, whereO is the set of objects. As
a result, the time complexity for evaluatingϕC(byId(ϕ)) is O(m × (2k)2k × |O|k).
We now describe an evaluation of the system, using a prototype implementation which
performs this compilation procedure.

16 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

4.4 Evaluation

We have developed a prototype implementation of the checker. We briefly describe
two aspects of the implementation: (a) the interface between regulations and traces
(schemas), and (b) the trace-checker.

Schemas form the interface between the regulation and trace. A schema is a set of
class and type definitions. Classes can inherit from others,and have attributes which
have atomic types, tuples or unions of types, pointers to other objects or sets of values.

Our current implementation of the trace-checker is static in the sense that the en-
tire trace is stored on disk (in an NDBM database). The objects at each state belong
to classes in a given schema. The regulation, which is type-checked against the same
schema, is compiled using the techniques discussed in Section 4.3, and evaluated at
each state. We do not have any special optimizations for speed. The objects are stored
as strings, and reparsed every time they are loaded into memory. The checker evaluates
each obligation w.r.t. all variable assignments, loading into memory a single variable
assignment at a time.

We now describe a preliminary evaluation of the implementation. Our goal was
to check if we could scale to traces with a large number of objects, rather than very
long traces. We created a schema based on the CFR, capturing donors, donations of
several types, and various tests. We then checked a number ofsynthetic (final) states for
conformance. Given a schema, we generate a set of donors by choosing random values
for atomic attributes. For each donor we generate a set of donations again choosing
attribute values at random. Each donation is randomly tested as follows: withp = 0.3
it is tested for all diseases with negative results, withp = 0.3 it is test for diseases with
a random result, and otherwise it is not tested.

On the regulatory side, we created logic formulas for a portion of the CFR 610.40.
A total of 12 sentences, and a list of 6 disease names were used. Lists are frequent in
regulation, and statements refer to particular list items.Of the 12 sentences, 7 were obli-
gations and 5 were permissions. A total of 8 reference formulas (byId(ϕ)) were used,
and of these 3 referred to list items. The compilation step ofremoving the references
took 26 seconds with a total of 96 satisfiability tests. Each statement had at most 2
variables (one for donations and the other for disease names).

We evaluated performance of the checker against a number of states. The number
of disease names was 8, and the number of donations varied. The time taken varied lin-
early with a number of donations. For states with 100, 1000, 5000, and 10000 donations
the conformance check took 12s, 130s, 500s, and 1042s respectively. The performance
suggests that the approach is practical for checking short traces. However, more incre-
mental algorithms are needed to deploy such specifications in a runtime setting.

5 Discussion and Conclusions

We have described a logic for representing regulatory documents for the application of
conformance checking. The logic allows statements to referto others for conditions or
exceptions. While references give us a way to represent regulation directly, the eval-
uation of references during checking has high complexity. Algorithm 1 uses satisfia-
bility tests of size polynomial in the number of objects. In Sections 4.2 and 4.3, we

Checking Traces for Regulatory Conformance 17

described an emprically motivated assumption (the single copy property), which lets
us replace satifiablity tests with tests of lower complexity. The evaluation of our pro-
totype implementation suggests that the approach is suitable for conformance audits of
medium-sized traces.

An important part of making this approach useful in practiceis to provide support
for translating the regulatory documents into their formalrepresentation. Such support
has to rely heavily on natural language processing techniques, which require substantial
extension of current state of the art. We are actively pursuing this line of research.
Preliminary results are reported in [14, 15].
Related Work. The use of logic to represent and reason about regulation hasbeen of
interest for several years. We begin by discussing the literature in relation to two issues:
a) the representation of obligation and permission, and b) references between laws. We
compare our work with other approaches to conformance checking, and place it in the
context of previous work on run-time checking of LTL.

The goal of deontic logic is a formalization of concepts suchas obligation, per-
mission and rights. There are many systems of deontic logic,but the most common
approach is to treat obligation and permission as modal operators [16, 17]. The logic
developed here focusses on the problem of references between laws, and we believe
that the representation of obligation and permission is an important but orthogonal is-
sue. In future work, we plan to add a modal treatment of obligation and permission to
our system.

The problem of references between laws has been observed in regulatory texts in
different domains [18, 2]. More generally, the function of sentences as conditions or
exceptions to others has been studied in a variety of contexts. Alchourron and Makinson
[19] proposed a hierarchical structure for a legal discourse, to handle exceptions to
statements. This led to the development of input-output logic [20], which is closely
related to default logic [11]. Previous work on applying default logic has been mainly
in the context of computing extensions to a theory, in the manner of logic programs [7,
18, 6]. We believe that the application of these ideas in conformance checking is novel.

Conformance checking has been receiving increasing attention in recent years [1–
3, 21]. [1] represents business contracts as SQL queries. [3, 21] use a logic on a UML
description of a domain. While the approaches of [1, 3, 21] are similar in spirit to ours,
they do not provide a treatment of references. [2] discussesthe problem of references
in the context of privacy regulation, and the references areresolved manually.

Our work builds upon the well-established work on run-time checking of LTL and
its extensions. We have adapted the calculus of Eagle [5] to handle references. Rule-
based formalisms [5, 22] are quite general, but the transformation of formulas at each
state can be expensive. Automata-based approaches [13] offer a more efficient alterna-
tive at the price of generality. We are currently exploring ways to adapt the automata-
based approach to our setting.

References

1. Abrahams, A.: Developing and Executing Electronic Commerce Applications with Occur-
rences. PhD thesis, Univeristy of Cambridge (2002)

18 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

2. Breaux, T.D., Vail, M.W., Anton, A.I.: Towards regulatory compliance: Extracting rights
and obligations to align requirements with regulations. In: Proceedings of the 14th IEEE
International Requirements Engineering Conference. (2006)

3. Giblin, C., Liu, A., Muller, S., Pfitzmann, B., Zhou, X.: Regulations Expressed as Logi-
cal Models (REALM). In Moens, M.F., Spyns, P., eds.: Legal Knowledge and Information
Systems. (2005)

4. U.S. Food and Drug Administration: Code of Federal Regulations.
http://www.gpoaccess.gov/cfr/index.html

5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In:
Proceedings of 5th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 2004). Volume 2937 of LNCS. (January2004) 44–57

6. McCarty, L.T.: A language for legal discourse - i. basic features. In: Proceedings of ICAIL.
(1989)

7. Sergot, M., F.Sadri, Kowalski, R., F.Kriwaczek, P.Hammond, Cory, H.: The british national-
ity act as a logic program. Communications of the ACM29(5) (1986) 370–86

8. Ross, A.: Directives and Norms. Routlege and Kegan Paul (1968)
9. Marcus, R.B.: Iterated deontic modalities. Mind75(300) (1966)

10. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions
and exceptions to laws in regulatory conformance checking.In Submission:
http://www.cis.upenn.edu/˜nikhild/reasoning.pdf (2008)

11. Reiter, R.: A logic for default reasoning. In: Readings in nonmonotonic reasoning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1987) 68–93

12. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic. ACM32
(1985) 733–49

13. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Proceedings
of the 26th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’06). Volume 4337 of LNCS. (December 2006)

14. Dinesh, N., Joshi, A.K., Lee, I., Webber, B.: Extractingformal specifications from natural
language regulatory documents. In: Proceedings of the Fifth International Workshop on
Inference in Computational Semantics. (2006)

15. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Logic-based regulatory conformance checking.
In: Proceedings of the 14th Monterey Workshop. (2007)

16. von Wright, G.H.: Deontic logic. Mind60 (1951) 1–15
17. Aqvist, L.: Deontic logic. In Gabbay, D., Guenthner, F.,eds.: Handbook of Philosophical

Logic, Volume II: Extensions of Classical Logic. (1984) 605–614
18. Bench-Capon, T., Robinson, G., Routen, T., Sergot, M.: Logic programming for large scale

applications in law: A formalisation of supplementary benefit legislation. In: Proceedings of
the 1st International Conference on AI and Law. (1987)

19. Alchourron, C., Makinson, D.: Hierarchies of regulation and their logic. In Hilpinen, R., ed.:
New Studies in Deontic Logic. (1981)

20. Makinson, D., van der Torre, L.: Input/output logics. Journal of Philosophical Logic29
(2000) 383–408

21. Glasse, E., Engers, T.V., Jacobs, A.: Power: An integrated method for legislation and regula-
tions from their design to their use in e-government services and law enforcement. In Moens,
M.F., ed.: Digitale Wetgeving, Digital Legislation. (2003) 175–204

22. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: From
Eagle to RuleR. In: Proceedings of the 7th Workshop on Runtime Verification. Volume 4839
of LNCS. (March 2007) 111–125

