Department of Computer & Information Science

Departmental Papers (CIS)

University of Pennsylvania Year 2008

Checking Traces for Regulatory

Conformance
Nikhil Dinesh * Aravind K. Joshi
Insup Lee Oleg Sokolsky **

*University of Pennsylvania, nikhild@seas.upenn.edu
TUniversity of pennsylvania, joshi@seas.upenn.edu
fUniversity of Pennsylvania, lee@cis.upenn.edu

**University of Pennsylvania, sokolsky@cis.upenn.edu

Postprint version. Presented at RV’08 - FEighth Workshop on Runtime Verification,
Satellite workshop of ETAPS’08, March 2008.

This paper is posted at ScholarlyCommons@Penn.
http://repository.upenn.edu/cis_papers/370

Checking Traces for Regulatory Conformancé

Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

Department of Computer Science
University of Pennsylvania
Philadelphia, PA 19104-6389, USA
{ni khi Il d,joshi, | ee, sokol sky}@eas. upenn. edu

Abstract. We consider the problem of checking whether the operatidrano
organization conform to a body of regulation. The immedratgtivation comes
from the analysis of the U.S. Food and Drug Administratiagutations that ap-
ply to bloodbanks - organizations that collect, processestind use donations of
blood and blood components. Statements in such regulatmmsey constraints
on operations or sequences of operations that are perfdognad organization.
It is natural to express these constraints in a temporatlogi

There are two important features of regulatory texts thadne be accommo-
dated by a representation in logic. First, the constraiatseyed by regulation
can be obligatory (required) or permitted (optional). Setstatements in regu-
lation refer to others for conditions or exceptions. An arigation conforms to a
body of regulation if and only if it satisfies all the obligais. However, permis-
sions provide exceptions to obligations, indirectly afiieg conformance.

In this paper, we extend linear temporal logic to distinguistween obligations
and permissions, and to allow statements to refer to otheéhsle the resulting
logic allows for a direct representation of regulation, leating references be-
tween statements has high complexity. We discuss an emlpjrimotivated as-
sumption that lets us replace references with tests of loaeplexity, leading to
efficient trace-checking algorithms in practice.

1 Introduction

Regulations, laws and policies that affect many aspectsuofliges are represented
predominantly as documents in natural language. Mechiiyici@ecking compliance
with these regulations and policies is an area of growingirtgmce [1-3].

In this paper, we will consider one such regulation, the Fardi Drug Administra-
tion’s Code of Federal Regulations (FDA CFR) [4] that gowdime operations of U.S.
bloodbanks. The CFR is developed by experts in the field oficired] and regulates
the tests that need to be performed on donations of bloodéd#fey are used.

Bloodbanks are organizations that perform collectiortjrigs storage, and distri-
bution of blood donations and are required to conform to #wulation (CFR). The
operations of a bloodbank are logged in a database that kesgsof donations that
are collected by the bloodbank, tests that are performedhem and, ultimately, the

* This research was supported in part by NSF CCF-0429948, ARQIWF-05-1-0158, and
ONR MURI N0O0014-04-1-0735.

2 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

way each donation is used. Our goal is to check in an efficiemtmar that the opera-
tions as recorded in the database are compliant with the @fdRto raise an alarm if a
non-compliant action is detected. To achieve this goal, vgéffieed to settle on an ap-
proach to formalize regulatory documents, and then congliégfeasibility of checking
database logs with respect to the formalized regulations.

As we illustrate with examples in Section 2, the basic stmecof regulatory state-
ments is to declare that a certain action can take place wérairc conditions apply.
At a first glance, it seems that such statements can be eneadedical clauses, where
a set of preconditions imply a postcondition. However, ¢hame two complications that
need to be addressed. First, regulations convey permgsaiahobligations, which have
to be reflected in the formal description and handled acogigdiduring the checking.
Second, a common phenomenon in regulatory texts is foriseegeo function as con-
ditions or exceptions to others. This function of sentenmoe&es them dependent on
others for their interpretation, and makes the translatoogic difficult. We call this
the problem ofeferences to other lawsnd it is the central focus of this paper.

In Section 2, we argue that a logic to represent regulatiaulshprovide mech-
anisms for statements to refer to others, and to make infeefrom the sentences
referred to. We then turn to formalization of regulatory doents and regulated oper-
ations. In Section 3.1, we define an abstract model for reptesy the operations of an
organization, followed in Section 3.2 by a predicate-bdseghr temporal logic to ex-
press normative statements in regulation. Formal defimstaf conformance are given.
We then extend the logic to allow sentences to refer to otfreection 3.3.

Section 4 describes the checking process. We adapt the dodtigy of the rule-
based formalism Eagle [5] to handle references. In ordehézk statements with ref-
erences, we need to compute a fixed point, propagating isfiiombetween references
from one statement to another until we get a consistent atialu The evaluation of
references has high complexity. We identify a conditiontivaded by a case study of
the CFR, under which references can be replaced by testa/ef tomplexity. We also
discuss a prototype checking tool.

Section 5 concludes with a discussion of future researattiins and a survey of
related work.

2 Motivation

In this section, we consider a representative sample of B &d argue that a logic
to represent regulation should provide a mechanism foegess to refer to others.
Example. Below we present shortened versions of sentences from tiie SHetion
610.40, which we will use as a running example throughouptyeer.

(1) Exceptas specified in (2), every donation of blood or Bloomponent must be
tested for evidence of infection due to Hepatitis B.

(2) Youare notrequired to test donations of source plasmavidence of infection
due to Hepatitis B.

Statement (1) conveys an obligation to test donations afdtr blood component
for Hepatitis B, and (2) conveys a permission not to test aation of source plasma

Checking Traces for Regulatory Conformance 3

(a blood component) for Hepatitis B. To assess an organizatconformance to (1)
and (2), it suffices to check whether “all non-source plasmiaations are tested for
Hepatitis B". In other words, (1) and (2) imply the followimdpligation:

(3) Every non-source plasma donation must be tested foepeilof infection due
to Hepatitis B.

There are a variety of logics in which one can capture thapnétation of (3), as
needed for conformance. For example, in first-order logie, can writevz : (d(x) A
—sp(x)) = test(z), whered(x) is true iff z is a donationgp(x) is true iff « is a source
plasma donation, andst(z) is true iff « is tested for Hepatitis B. Thus, to represent (1)
and (2) formally, we inferred that they implied (3) and (3uttbbe represented more
directly in a logic.

Now suppose we have a sentence that refers to (1):

(4) To test for Hepatitis B, you must use a screening test Kit.

The reference is more indirect here, but the interpretasiofif (1) requires a test,
then the test must be performed using a screening test kitloddbank is not prevented
from using a different kind of test for source plasma domegid4) can be represented
by first producing (3), and then inferring that (3) and (4) iynghe following:

(5) Every non-source plasma donation must be tested foepeilof infection due
to Hepatitis B using a screening test kit.

It is easy to represent the interpretation of (5) directlnilogic. However, (5) has
a complex relationship to the sentences from which it waseeyi.e., (1), (2) and (4).
The derivation takes the form of a tree:

)
af’ (3<tz)\(4)

We argue that constructing a single derived obligation fromdtiple statements
should be avoided. On the one hand, the derived obligatiotbeaome very complex.
The full version of statement (1) in the CFR contains six gxicas, and these excep-
tions in turn have statements that qualify them further. &eshent can be used as an
exception to multiple other statements, and it is easy tdisseghe derived obligation
can be exponentially larger than the original set of statemé&\Ve advocate an approach
that allows us to introduce references into the syntax olidbie, and resolve references
during evaluation.

3 Formalization of Regulatory Documents

In this section, we extend linear temporal logic (LTL) totatiguish between obligations
and permissions, and allow references between statenwatbegin, in Section 3.1,
by representing a bloodbank as a run or trace. Section 3eh@xt TL to distinguish

between obligations and permissions, leading to defirstiminconformance. We then
extend the logic to allow sentences to refer to others (Se&i3).

4 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

3.1 Model for Regulated Operations

Given the need to demonstrate conformance to the regulaticase of an audit, regu-
lated organizations such as bloodbanks keep track of tphelrations in a database, for
example donor information and the tests they perform. Sugystem can be thought
of abstractly as a relational structure evolving over tidseeach point in time (state),
there are a set of objects (such as donations and donorsgkatioms between the ob-
jects (such as an association between a donor and her dusjafidne state changes by
the creation, removal or modification of objects. We repmeti@s as a run.

Definition 1 (A Run of a System).Given a setO (of objects) and countable sets
b4, ..., P, (Whered; is a set of predicate names of arify, a run of a syster®(O, &1, ..., §,,),
abbreviated a<R, is a tuple(r, 71, ..., 7,) where:

— r: N — Sis asequence of state¥. is the set of natural numbers, arttlis a set
of states.

-7 P; xS — 20’ is a truth assignment to predicates of arityGivenp € D,
we will say thatp(oq, ..., 0;) is true at states iff (o1, ..., 05) € 7;(p, s).

Given a runR and a timei € N, the pair(R, i) is called a point (statements in
linear temporal logic are evaluated at points). Given theljmate nameg&b., ..., ¢,,),
the corresponding space of runs is denote®l$,, ..., $,,), abbreviated a®.

Time|ObjectsPredicates

1 01 d(01), sp(o1), —test(o1)
2 o1 d(01), sp(o1), —test(o1)
02 d(02), ~sp(02), —test(o2)
3 o1 d(01), sp(o1), test(o1)

02 d(02), ~sp(02), —test(o2)

Table 1. A run of a bloodbank

Table 1 shows a possible run of a bloodbank. First, an objeis entered into the
systemo, is a donation of source plasmé&¢;) andsp(o;) are true). When a donation
is added, its test predicate is initially false. Then, aneobj, is added, which is a
donation but not of source plasma. In the third step, theabbjeis tested.

3.2 Logic for Regulatory Conformace

Predicate-based Linear Temporal Logic (PredLTL) The logic that we define in this
section is a restricted fragment of first-order modal lo@iee restriction is that we al-
low formulas with free variables, but no quantification oebjects. Formulas will be
interpreted using the universal generalization rule, @eer all assignments to free vari-
ables. The restrictions are similar in spirit to logic praxgs, which have been observed
to be sufficiently expressive for the generic statementsgulation [6, 7].

Checking Traces for Regulatory Conformance 5

Definition 2 (Syntax).Given set®, ..., &,, (of predicate names) and a set of variables
X, the languagd. (%, ..., ®,,, X), abbreviated ad, is the smallest set such that:

- p(y1,...,y;) € L wherep € &; and(yi, ..., y;) € X7.
—Ifpe L, then-p € LandOp € L. If p,¢ € L, thenp A ¢ € L.

Disjunctiony V ¢ = =(—¢ A —p) and implicationp = ¢ = —¢ V 1) are derived
connectives. The temporal operator is understood in thalwsay: Oy (¢ holds and
will always hold (globally)).$o (¢ will eventually hold) is defined asO—p.

We now extend the syntax to express normative statementsadyaof regulation,
by distinguishing between obligations and permissions.

Definition 3 (Syntax of Regulation).Given a finite set of identifiersD, a body of
regulation Reg is a set of statements such that for eaéhe 1D, there existp,) € L
such that eitherid.o: ¢ ~ 1) € Reg, orid.p: ¢ ~ 1) € Reg

id.o: p ~ 9 (id.p: ¢ ~) is read as: “it is obligated (permitted) that the precondi-
tion ¢ leads to the postconditiaf”.

Definition 4 (Semantics).Given a runR = (r,71,...,m,), ¢ € L, and a variable
assignment : X — O, the relation(R, i, v) = ¢ is defined inductively as follows:

- (R’ i, U) ': p(yla ceny yj) iff (U(Ol)v) U(Oj)) € 7Tj(p, 7'(2))
— The semantics of conjunction and negation is defined in thalugay.
- (R,i,v) E Qplffforall k > i: (R, k,v) E .

We extend the semantic relation to regulatory staments.akiekt to stand for
“conforms to”:

- (R,i,v) Eid.0: ¢ ~ ¢ iff (R,i,v) = ¢ = ¢ (= is implication)
— (R, i,v) Eid.p: ¢ ~ 1. Runs vacuously conform to permissions. Permissions will
become relevant when references from obligations are pt¢Section 3.3).

Consider again our example from Section 2. We use three qgatedi defined as
follows. d(z) is true iff 2 is a donationsp(x) is true iff 2 consists of source plama.
test(x) is true iff z is tested for Hepatitis B.

Statement (3) is represented asx 3(x) A —sp(x) ~ Otest(z). Statement (2) can
be represented as:;R.d(y) A sp(y) ~ —Otest(y). However, statement (1) cannot be
represented directly.

The deontic concepts of obligation and permission aredceas properties of sen-
tences. Only obligations matter for conformance. If a noarse plasma donation is not
tested, there is a problem. On the other hand, a bloodbankhwmse to test a donation
of source plasma or not. In assessing conformance, theidnnzt a permission is to
serve as an exception to an obligation, and in this indiresstmer it becomes relevant.
We will give a semantics to this function of permissions irt®m 3.3. Such a treatment
of permissions has its basis in the legal theory of Ross [8].

6 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

In the formulation here, obligations and permissions apelével operators and
cannot be negated. This restriction can be removed in devays, e.g., using a many-
valued interpretation. However, we avoid this to simplifggentation. A more crucial
restriction is that iterated deontic constructs cannoidpeessed directly, i.e., sentences
of the form “required to allow x” or “allowed to require X.”. 1@ has to decide what
top-level obligations or permissions are implied by thesestructs. To our knowledge,
handling iterated constructs is an open problem in deoogiic|[9].

Conformance of a rumR is defined using the notion of validity. is valid at the
point(R, i), (R, 1) [¢, iff for all variable assignments: (R, i,v) | ¢. ¢ is valid in
R, R E yiffforall i: (R,i) = .

Definition 5 (Run Conformance).Given a body of regulatiof®eg and a runR rep-
resenting the operations of an organization, we say #atonforms to the regulation
iff for all obligationsid.o: ¢ ~ ¢ € Reg we haveR [=id.0: ¢ ~ .

The definition of conformance is given in terms of obligaiowe now extend the
logic to allow sentences to refer to others making permissielevant to conformance.

3.3 References to Other Laws

In this section, we describe the logical machinery we usepoess and handle refer-
ences to laws. We give an example-driven account herewetidoy a formal account
in the context of a runtime checking algorithm in Section 4.1

We extend the syntax within inference predicateyq (), where Id is a set of iden-
tifiers. by () is read as “by the laws in Ig holds”. There are two restrictions: (@)is
a statement in PredLTL (Definition 2) and (b) the predidatg () can appear only in
preconditions of laws. These restrictions are similar tséhthat apply to justifications
in default logic [11]. In the examples that we discuss, thddéas a single element,
i.e., a statement refers to a single other law. In generas tafer to sets of statements,
e.g., “except as specified in this section”.

Consider again our example statements (1) and (2), whicloarbe represented
as follows:

— 1o d(z) A —bya(¢(x)) ~ Otest(x), and
— 2p:d(y) A sply) ~ =Otest(y)

In the formula above, the subformuig s (»(z)) is understood as “by the law (2) the
formulay(x) holds”. It remains to define the formula(z). Intuitively, this should be
the negation of the postcondition of (1). In other words;dftest(x) follows from (2),
then the postcondition of (1) need not hald.

1.0 d(x) A —byg) (=Ctest(x)) ~ Otest(x)

We interpretby 5, (=<test()), by letting formulas have output. In other words,
when the precondition of an obligation or permission is tati@ point, the point is
annotatedvith the postcondition. Given a poitR, <) and a variable assignmentfirst
we consider the formulag: d(y) A sp(y) ~ —<test(y). We evaluate this as follows:

L Whenby1a(p) appears in the precondition of a lay,need not be the negation of the post-
condition. An example is statement (4) in Section 2, whiahloa represented as:
4.0: by 1} (Otest(z)) ~ Oscr(z), whereser(z) is true iff 2 is tested using a screening test.

Checking Traces for Regulatory Conformance 7

— If (R,i,v) = d(y) A sp(y), (R, i) is annotatedwith 2: =Otest(v(y)) . Observe
that the annotation happens regardless of whétRef, v) = —=<Ctest(y) and the
variable is replaced with the object assigned to it.

— Otherwise, there is no annotation.

Given a variable assignmentand a PredLTL formula, v(y) is the formula ob-
tained by replacing all variablesby an identifier for the objeai(z). Note thatv(y)
is equivalent to a propositional LTL formula, as the vareabhave been replaced by
constant symbols. We now define annotations:

Definition 6 (Annotation). Given a runR, a set of identifierd D, a variable assign-
mentv, and a body of regulatiofeg, an annotation is a statement id(v)) such that
id € ID and idx: ¢ ~ 1 € Reg (which is either an obligation or a permission). The
set of annotations is denoted By R, ID, Reg), abbreviatedA.

Definition 7 (Annotation Function). Given a runR, an annotation function. : N —
24 assigns a set of annotations to each point. Given a set ofiftes ID andId C
1D, we usen.Id(i) to denote the set of annotations id:€ «(i) such thatid € Id.

Time|ObjectsPredicates Annotations
1 Jox d(01), sp(o1), test(o1) [2: ~Otest(o1)
2 Jou d(01), sp(o1), —test(o1) [2: ~Otest(o1)
02 d(02), —sp(02), —test(o2)|1: Otest(o2)
3 Jou d(01), sp(o1), test(o1) |2: ~Otest(o1)
02 d(02), —sp(02), —test(o2)|1: Otest(o2)

Table 2. A run and its annotations

Table 2 shows a run of a bloodbank augmented with annotathkewe discussed
in Section 3.1p; is a donation of source plasma which is tested at time 3cand a
non-source plasma donation which has not been tested. $Jilesun is extended to
testos as well, it does not conform with the regulation accordin@#dinition 5.

Since the precondition of statement (2) is true for the assi@nt ofy to o1, we
have the annotation 2iCtest(o1) at all points. However, sincg is not a donation of
source plasma, there is no correponding annotation.

Now consider the formully ;) (—Otest(x)). This is evaluated as follows:

— Evaluate 20: d(y) A sp(y) ~ =<Otest(y) at (R, i) w.r.t. all variable assignments.

— Let ¢, be the conjunction of the annotations produced by the faarfar (2), i.e.,
Yo = Npforall ¢ € a.{2}(i).

— (R,i,v) = byoy (=Otest(x)) iff |= vy = ~Otest(v(x)).

Notice that the last step requires a validity check, butatvalidity check in (propo-
sitional) LTL. Validity in LTL is coNP-complete when the gninodality isglobally, and

8 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

PSPACE-complete with thentil modality [12]. In Section 4, we discuss cases where
the size of the validity tests grows large, and we explorestricgion that lets us avoid
validity tests during checking.

Returning to the run in Table 2, the states are annotatedwitidtest(o;) and=
—Otest(o1) = —Otest(o1), sincep = ¢ is a propositional tautology. S@, i, v) |=
by 21 (= Ctest(x)) whenv(z) = o1.

We can evaluate @. d(z) A —byz; (=Stest(x)) ~ Otest(x) similarly by an-
notating states witt>test(x) if the precondition holds. In Table 2, this results in an
annotation of 10test(02) on the appropriate states.df is never tested, the run will
be declared non-conforming (by Definition 5), but the antiotewill remain. This lets
a law which depends on (1) draw the correct inference.

The semantic evaluation outlined above works only whendferences are acyclic,
since an order of evaluation needs to be defined. To handles;yee move to a three-
valued logic where the third (middle) value stands for uadatned. Initially, all state-
ments are undetermined, and there are no annotations. Atsteg we assign truth
values and annotations, using truth values and annotdtimmsthe previous step, until
we reach a fixed point. In a companion paper [10], which foesiss the design of the
logic, we prove that there is a least fixed point, which candraputed in an iterative
fashion. In this paper, we use the existence of the least fin@t to derive a runtime
checking algorithm.

4 Runtime Checking of Specifications with References

4.1 An Algorithm for Evaluating Specifications with References

We augment the evaluation procedure of the rule-based fam&agle [5] to handle
references. In Eagle, formulas in LTL are evaluated by faansng them into other
formulas, and discharging the remainder (if any) at track €he update calculus used
in [5] provides a general treatment of past modalities artd dapendencies. To sim-
plify presentation, we will work directly with the formulas the logic.

The key ideais to treat the predicéta () as kind of eventuality. As we discussed
in Section 3.3, to evaluatey4 () at times, we need to check the annotations obtained
from the laws inId at time:. If the preconditions of the laws ikl are temporal, we
need to wait until they are evaluated before the annotaBoa®btained. So, we need
to keep annotations for a timeuntil all subformulasbyq(¢) for time ¢ have been
evaluated. Givemy4(p) and a timei, we attempt to evaluate it using the current set
of annotations. If we cannot determine the truth valbe,(¢) is transformed into
by1d(p, i) (read as bya (i) is true at time”), and evaluated at subsequent times.

Following [13], we use a three-valued logic with values fr8th= {T, L, 7}, with
the meaning true, false, and undetermined, respectivelynétational simplicity, we
use truth values as terms in preconditions:

Definition 8 (Syntax of Preconditions).Given set%, ..., @,, (of predicate names), a
set of variablesY, and a finite set of identifie®sD, the languagd.’ (&1, ..., ¢,,, X, I D),
abbreviated ad.’, is the smallest set such that:

—Ift € B3, thent € L'. p(y1,...,y;) € L', wherep € &; and (v, ...,y;) € X7.

Checking Traces for Regulatory Conformance 9

—Ifpe L’ then~p € L’andOp € L'. If p,9p € L', thenp Ay € L'
—IfId C ID andy € L(®,...,P,, X) (Definition 2), thenbyia(¢) € L. In
addition, for all natural numbers € N, byiqa(y,1) € L'

The syntax of regulatory statements (Definition 3) is modife that the precon-
ditions of laws are statements frofd. The setL’ together with a set of regulatory
statementsieg is denoted byL™ = L’ U Reg. Given a set of object®, V (X, O)
denotes the set of all variable assigments, i.e., functian¥ — O.

We can now adapt the Eagle procedure of transforming forsnilae transforma-
tion function uses two annotation functionsanda’ such that for all, «(:) C o/ (i).
a(i) is the set of annotations obtained from laws with true prddams, whilea/(7)
is set of annotations from laws with true or undetermined@néitions. The truth of
by1d() is determined using, and falsity is determined using.

Definition 9 (Transformation function). Given a set of object® and annotation
functionsa: and o’ such thata(i) C o/(4) for all ¢ € N, the transformation function
T(a,ay : LT X S x N x V(X,0) — LT is defined as follows:

= T(a,ar)(t,8,4,v) = tif t € B3.

- T(a,o/)(p(ylv 7yj)a S, 7;5 1}) =Tif (v(yl)v 7U(yj)) € ﬂ-j(pv S)
Ta,ay (P15 -+, Y5), 8,4,v) = L otherwise.

- T(a,o/)((p N, 8,1, U) = T(a,a’)(goa Sy 1, 1)) A T(a,a’)(wv Sy 1y U)'
T(a,a’) (_'903 8,1, 1)) = "T(a,a’) (903 8,1, 1))

- T(a,o/)(lj(pv S,i,’U) = T(a,o/)((pv S,i,’U) A Oy

— T(a,a’) (byId (‘p)a 8,1, U) = T(a,a’)(byld(907 2)7 EN S U)

Tifj <iandA a.Id(j) A v(—yp) is not satisfiable
T(a,a) (by1a(e, j), 8,4,v) = ¢ Lif j <iand A o' .1d(5) A v(—y) is satisfiable
by1a (e, 7) otherwise

= T(a,a)(id.0: 0~ P, 5,4, v) =id.0: T(q,01) (0, 8,1, V) ~> T(a,a) (¥, 5,1,)
T(a,a)(1A.P2 @~ P, 5,4, v) =id.p: T(q,00) (@, 5,1,V) ~ P

Note that the postcondition of permissions are not transéal;, as their truth value
is irrelevant. The only use of postconditions of permissi@to provide annotations.
To update the annotation function, we need to know if a prditimm has become true
or false. We now define a function to map formulas to truth &siu

Definition 10. Given a set of object® and annotation functions and o’ such that
a(i) C o/ (i) for all i € N, the functionvalue , oy : LT x S x N x V(X,0) — B3
is defined as follows:

— Truth values, predicates, conjunction and negation aredbehin the usual way.
— value(, o) (Ogp, s,i,v) = T if sis the final state.

value, o) (0w, s,4,v) =7 otherwise.
- Value(a,a’) (bYId(QO)a 8,1, 1)) = Value(a,o/) (bYId (90’ i)a 8,1, 1))

Tif j <iandA a.ld(j) A v(—y) is not satisfiable
value oy (byta(w,), s,i,v) = § Lif j <iandA o'.1d(j) A v(—y) is satisfiable
? otherwise

10 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokglsk

— value(, o) (id.0: ¢ ~ 1, 5,i,v) = value(q, o (@ = ¥, 5,1,0).
value, o (id.p: @~ 1, 5,i,v) =T

Atthe end of the trace, subformulas are replaced by, but subformulabyq (¢, j)
may still be undetermined. This is due to the fact that witludar references, we can
create paradoxical statements -oid=by ;43 () ~ . This statement requirgs to
hold when it doesn't require, and is always undetermined.

Update(Reg, ®, o, o', s, 1):
Input: The regulationReg, the set of formulas to be updatéd the annotation functions
a andd’, the states and timei
Leta(i) = o' (i) = 0;
for allid.x: ¢ ~ ¢ € Reg and assignments do
Let¢ = T(a’a/)(id.XZ © ~> 1/}7 s, 1, U);
& =P U{(p,id: v(¢),4,v)}, anda’ () = ' (3) U {id: v(¢») }
end
repeat
for all (id.x: ¢ ~» 1, a,j,v) € ®do
If value(p,s,i,v) = T, thena(j) = a(j) U {a};
If value(yp, s,i,v) = L, thena/(j) = &'(j) — {a}
end
Letd’ = 0
for all (id.x: ¢ ~ 1), a,j,v) € P do
Letd = T(a,on) (ildX: @ ~ 9, 5,4, v) andy’ = T4 0y (@, 8,4, V);
If value(, s,4,v) =7 or value(y’, s,4,v) =7, thend’ = &' U {(¢, j)};
If value(g, s,i,v) = L, then raise alarm.
end

until & anda’ do not change
Algorithm 1: An algorithm for evaluating statements with references

/

We note that the functiomalue, /) does not determine a formula to be true or
false as early as possible. To decide if a formula is true dg aa possible, we need to
check whether all possible suffixes to the trace satisfy dnedla, as in [13]. In other
words, we need to decide if the transformed formula is v#idi1 0], we show that with
references one can encode formulas in first-order logic@da#ons, and as a result,
the validity problem is undecidable fdr*. The satisfiability tests used to evaluate the
inference predicates are in propositional LTL, and aredtale.

Fixed points are defined at the level of a run. Suppose we amn @ body of
regulationReg, a run R and annotation functiongy;, /). The result of evaluation
gives us new annotatioris, o) corresponding to laws that have true preconditions
(a2), and true or undetermined preconditions), We will say that(«q,) is a fixed
pointiff (a1, o)) = (g, o).

The functionvalue,, . is extended to runs. The definition remains identical ex-
cept that forby14(ip, j) we do not require that < i to determine truth or falsity, and
for the temporal operator:

Checking Traces for Regulatory Conformance 11

Tifforall j > i, value(y o (0, R,i,v) =T
value(, o (Op, R,i,v) = ¢ L ifthere existsj > 4, value o) (¢, R,i,v) = L
7 otherwise

Definition 11 (Consistent Annotations)Given a body of regulatioReg and a runR
with a set of object®), the pair of annotation function@y, o) is consistent iff for all
(id.x: o~ 1),4,v) € Reg x N x V(X,O):

Ifid: v() € a(i) N a'(i), thenvalue, o) (¢, R,i,v) = T

Ifid: v(v) & a(i) U d/(i), thenvalue , o) (¢, R,i,v) = L

In addition, for allZ, we require thatx(i) C o/ ().

Definition 12 (Fixed Point).Given a body of regulatio®eg and a runR with a set of
objectsO, the pair of consistent annotation functiofig o) is a fixed point iff for all
(id.x: o~ 1),i,v) € Reg x N x V(X,0):

If value(q, oy (0, R,i,v) = T, thenid:v(y) € a(i) Na'(i)

If value (o o (0, R,i,v) =7, thenid:v(y) € o/ (i) — a(i

Otherwise, idw(v) € «(i) Ua/(i)

We say thataq, o)) < (ae, ob) if forall 4, we haven; (i) C az(i). We now review
some results that are proved in [10]. The partially ordesg@&consistent annotations
has a least fixed point and one or more maximal fixed pointsirdigixed points arise
if there are circular references. The converse is not naggssrue, i.e., there may be
circular references and a unique fixed point. There is a sstadlement in the set of
consistent annotationsv, o) such that for alk, ag(i) = @ anday(¢) contains all
annotations. The least fixed point can be obtained itefgitiv@ng («o, o).

Algorithm 1 describes the procedure for computing the l&gstl pointin a runtime
setting. In addition tex anda’, we maintain a set of tupleg, where each element is a
transformed regulatory statement, the associated ammmtéitne and variable assign-
ment. Given(id.x: ¢ ~ ¥, a,j,v) € P, if ¢ is determined to be true, the annotation
is added tax(j). On the other hand, ip is determined to be falseis removed from
o/(j). Forallj € N, a(j) increases monotonically, amd(j) decreases monotonically
with each execution of the repeat loop, until a fixed poinesahed.

4.2 Complexity Analysis by Example

The complexity of Algorithm 1 in each state of a run dependsvem factors — the
number of steps necessary to reach a fixed point, and the fsgagigfiability problem
instances that need to be handled in the evaluation of thikgateby (). We discuss
examples that illustrate these two aspects, by encodingrdph reachability problem
in different ways. In the first example, the number of stefertao reach the fixed point
grows with the number of objects. In the second example,iteedcf the satisfiability
instances grows with the number of objects.

Both examples operate on the same model, where a state iarttintains a de-
scription of a graph. Objects; ando, represent nodes, and the predic#ie, , o2) is

12 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokglsk

true iff there is an edge between andos. In addition,& (01, 02) is true iff there is a
path fromo; to os. Suppose we wish to check whetliérhas been computed correctly.
Example 1.Consider a self-referential sentence:

id.o: 0(z, 2) V (8(z,y) Abypiay (01 (y, 2))) ~ 6+ (x, 2)
The precondition of this sentence corresponds to the defirof a path. In other words,
there is a path betweanandz (67 (x, 2)), if there is an edge betweerandy (6(z, y)),
and a path betweepandz (byiay (07 (y, 2))). Consider the sequence of annotations
obtained in the least fixed point computationy, ..., ay. It is easy to see that id:
dt(0,0") € «;(i) iff there is a path of length at mogtfrom o to o’. Given a graph
with |O| nodes, there is a path frooto o’ iff there is a path of length at mogD| from
otoo'. As aresult, the fixed point will be reached in at m@3} steps. The worst-case
number of steps needed to reach the fixed poifiX(s: x |O|*), wherem is the size of
the regulation, and is the maximum number of variables appearing in a sentence.
Example 2.Consider now the following statements:

A.o: bY{B7c} (5+ (517, y)) ~ 5+(.§C, y)
B.o: §(x,y) ~ 6T (x,y)
Co T~ (6T (x,y) Aot (y,2)) = 0 (x,2)

Note that A refers to C. The presence of implication in thetgmsdition of C is an
important feature of this example. Let, for simplicity, theaph in the state be a chain.
Since the precondition of C is always true, the first step efftked point computation
yields an annotation that contains @:" (o, o’) A 67 (0, 0")) = 67 (0,0") € a1 (i) for
all 0,0’,0” in the graph. The next step of the evaluation will yield thedixpoint, but
the size of the validity test performed in this ste@i§ O|?), as Algorithm 1 uses all the
available annotations. The worst-case size of the validigtances is ifO(m x |O|),
and the time complexity of a step in computing the fixed pa@{2mx/01").
Discussionln both examples above, Algorithm 1 checks validity inst&naef size poly-
nomial in|O|. However, there is a crucial difference in the maximum sizeests that
are needed. In Example by ;qy (07 (0,0")) is true iff id: 6 (0,0") € a(i). In other
words, at most one annotation is need to evalbgig;, (07 (0,0')). In Example 2, we
do need validity tests of sizg| to evaluateby g ¢} (6% (0,0)). A case study of the
CFR revealed that the references behaved like Example hirathingle annotation or
copy of the referenced statement suffices to evaluate fasbutq (). We call thisthe
single copy property

Definition 13 (Single Copy Property).Given a body of regulatioiReg, by1a (¢, j)
has the single copy property iff for all rui, and consistent annotatioite, o'):

T if ¥ A v(—g) is not satisfiable for somg € a.1d(j)
t =< Lify Av(—gp) is satisfiable for alky € o .1d(5)
? otherwise

wheret = value(,, /) (by1a(y,), 5,4, v)

While the single copy property allows us to reduce the siz¢hefsatisfiability
tests, we need to perfor@(m x |O|*) tests for each inference predicate. The question
arises as to whether satisfiability tests can be avoideshgghecking. We answer this
question positively in the following section.

Checking Traces for Regulatory Conformance 13

4.3 Pre-computing Satisfiability

Algorithm 1 evaluateby4 () using satsfiabilty tests. The size of the satisfiabilitysest
depends onv.Id(4), which in turn depends on the number of objectsifs(p) has
the single copy property, we can consider smaller satidifigbests. In this section, we
show that the single copy property gives us a way to assdsfiaatity symbolically,
and use tests of lower complexity during checking.

The strategy we use is as follows. Given a body of regulatigperform a compila-
tion step which involves: a) testing satisfiability, andéplacing the predicatés 4 ()
by equivalent formulas in another logic. We begin by dismwgstvo examples, and then
formalize the compilation step.
Example 1: Consider our regulatory sentences:

— 1o d(z) A —byg) (=Ctest(x)) ~ Otest(x), and
= 2,p:d(y) A sp(y) ~ ~Otest(y)

Consider a state at whieh, oo, ..., 0,, are source plasma donations. This would result
in ~Otest(o1), =Otest(o02), ..., ~Otest (o,) being available as annotations. To evaluate
by1a(—Otest(o;)), Algorithm 1 uses all the annotations in the satifiabilitgtteHow-
ever, in this case, it suffices to check-if>test(o;) is present as an annotation. The
other annotations are irrelevant. To checkibtest(o;) is present as an annotation, it
suffices to evaluate the precondition of the referencedilaw,whethewd(o;) A sp(o;)

is true (whethep; is a donation of source plasma). Instead of evaludting(¢) using
satisfiability tests, we will check if the precondition ofeferenced law is true.

Informally, the compilation step involves anwering the sfiem when does state-
ment 2 provide an exception for statemeriEduivalently, when does<test(y) imply
—Otest(z). The answer is only whep = x. We can then evaluate the precondition of
2 with y replaced byz, i.e.,d(z) A sp(x). This lets us replace statement 1 witlo:1.
d(x) A —=(d(x) A sp(x)) ~ Otest(x), which is equivalent to b: d(x) A —sp(x) ~
Otest(x). Observe that this is the derived obligation implied byesta¢nts 1 and 2, i.e.,
every non-source plasma donation must be tested.

Example 2: The example above is simple in two ways: a) the number of bkagain
both statements are the same, and b) the references arie adjecdiscuss the general
case in the context of the reachability example we saw in teeigus section:

id.o: 0(z, 2) V (8(z,y) Abypiay (01 (y, 2))) ~ 61 (x, 2)

We observe that the precondition is structurally similaa fwrocedure that checks if
a path exists between two nodesindz. That s, ifé(z, z) thend ™t (z, z) is true. Oth-
erwise, if there existg such that(z, y) and there is a path fromto z, thend ™ (z, 2)
is true, otherwise false.

We will produce a formula which mimics the procedure. Thetavo pieces of
machinery used by the procedure that are not directly adaila the logic: a) an ex-
istential quantifier over objects (there exigls and b) a mechanism for recursion. To
address this, let us consider a logic which extends PredLifth existential quantifiers,
and a function symbadP;yq for id € ID (P stands for preconditionp;y takes as ar-
gument a substitutioft : X — X, which is a function from variables to variables. A
substitution is represented a set of replacemenjqread as “x is replaced by y”), such
that each variable has at most one replacement. We repladerthula above with:

14 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokglsk

id.o: 6(z,2) V (6(z,y) A y1 : Pial{z/y,y/y1,2/2})) ~ 61 (x, 2)

It remains to give this formula a semantics. Given a variagsignmenv and
a subtitutiond, 6(v) denotes the variable assignmentsuch that'(x) = v(0(y)).
Given a runR, timei and regulationReg, the idea is to say thdtR,i,v) = Pia(6)
iff (R,%,0(v)) = ¢ where idx: ¢ ~ ¢ € Reg. We now formalize the compilation
procedure.
Compiling References into Precondition TestsWe begin by defining the syntax of
compiled preconditions:

Definition 14 (Syntax of Compiled Preconditions).Given setsb, ..., &,, (of pred-
icate names), a set of variable, and a finite set of identifier§D, the language
Ly (P1,...,9,, X, 1D), abbreviated ad.., is the smallest set such that:

- Ifte B te L. And,p(yi,...,y;) € L), wherep € &, and(y1, ..., y;) € X7.
—If p € L, then—p € L, andOg € L. If ¢, € L, thenp Ay € Ly,

If p € L, forally € X, we havedy : ¢ € L.

For all id € Id and substitution$: X — X, we havePi4(0) € L. In addition,
for all natural numbers € N, Piq(6,7) € L,

The syntax of regulatory statements (Definition 3) is modife that the precon-
ditions of laws are statements frof}.. The setL. together with a set of regulatory
statementsiegc is denoted by}, = L/, U Regc. We remind the reader that™ and
L' are the languages with the predichtgq (y).

The semantics of.}, is defined in a manner similar tb*. Rather than using an-
notations(«, o), we now evaluate statements w.r.t. two sets of assignmewtifuns
(v,7"). v(i,id) (resply.,~'(i,id)) is a set of variable assignments for which the pre-
condition of the law with identifieid is true (resply., true or undetermined). As with
annotations, we require that for dlle N andid € ID, ~(i,id) C +/'(i,id). Given
an assignment and a substitutiof, 6(v) denotes the assignmeritsuch that for all
y € X, we havev’(y) = v(6(y)). We can now adapt thealue function:

Tif 8(v) € v(4,id)
value(, . (Pia(0,7), R,i,v) = ¢ Lif 0(v) & +/(j,id)
? otherwise

The definitions of consistency and fixed points (Definitioisahd 12) are easily
adapted, and we leave the details to the reader.

We now describe the compilation procedure. Giyea LT, we useX () to denote
the set of variables appearinggnandd(y) to denote the formula obtained by perform-
ing the substitutior® on ¢. Considerby4 (¢, j), Which has the single copy property,
and variables disjoint from all regulatory statements:

— LetS(p,id) ={ 0] id.x: ¢ ~ 1) € Reg, andf(y) =) is valid}.

— Foralld € S(y,id), letoc (8, id) = 321, ..., zm : Pia(6, j), where the existentially
quantified variables are in one-to-one correspondencetiage inX (¢) — X (v).
More formally,z; ¢ X (¢) — X (¢) andé is a one-to-one function frorfiz;|1 <
j <m}toX(p) — X(1).

Checking Traces for Regulatory Conformance 15

= wc(byta(p, 1), id) = V{pc(0,id)|0 € S(p,id)}, and
= pc(byale, 4)) = \/{ec (byale,), id)lid € 1d}

We note that the first step makes crucial use of the single popperty (SCP).
In computingS (¢, id), it suffices to find substitutions such thiy =) is valid.

If the SCP does not hold, then we need to check if multiple e®pif postconditions

provide the necessary implication (as in Example 2, Seetigh For example, we need
to check ifd(y1 A ... A, =), whereyy, ..., 1, are copies of the postcondition of a
law with the variables renamed. It can be shown that detgetimether the SCP holds
is undecidable. In future work, we plan to investigate ietms on postconditions that
make SCP-detection decidable.

To prove the correctness of the compilation procedure, veeausotion of corre-
spondence between annotations and assignments. Let useassugiven a body of
regulationReg (in L™), a run R and consistent annotatioa, /). Rather than pro-
ducing a regulation i}, we prove correctness by evaluating formulad.fn against
Reg. We constructy,,~.,,) such that for ali € N andid € ID, v € 7,(i, id) iff id:
v(¥) € a(i), andv € v, (i,4d) iff id: v(¢p) € /(7). We can now show the following:

Lemma 1. Given a body of regulatioReg, a run R, consistent annotationgy, o),
andbyq (¢, j) which has the single copy property, for al& N and assignments:

Value(a,o/) (bYId (903 .])a Rv iv U) = value(%w;/) (QOC (bYId (97]))7 Ra ia 1))

Proof. The proof follows straightforwardly from the constructioh o (byra(6, 7))
and the single copy property. We sketch one of the cases.
Supposevalue , o) (by1a(w, j), R,i,v) = T. There exists idv’(¢) € a(i) such
thatv'(y)) A v(—y) is not satisfiable, or equivalently (¢)) = v(y) is valid. It fol-
lows that there exists a substitutiohsuch thatf(yy = ¢) is valid. By definition
V' € 74(i), and henceyalue,, ')(Pi(0, j), R,i,v") = T. We can then argue us-
ing the construction thatalue(%%,)(ﬂzh vy Zm : Pia(0,7), R,4,v) = T, and as a
result,value(%%,)(<pc(by1d(0,j)), R,i,v) = T. The other cases are handled simi-
larly. a

Given Reg in which all subformulady4 () have the single copy property, we can
now produce the regulatioReg¢ in LJCr with all occurences obyq(¢) replaced by
o (byra(e)). It follows from Lemma 1 that i, ') is a fixed point w.r.tReg, then
(Y, 74,) 1s @ fixed point w.r.tRege. In addition, the truth values assigned to regulatory
statements are identical.

The complexity of evaluation depends on the number of diggim ¢ (by1a(¢)),
which in turn depends on the size of the sBtip,id). |S(yp,id)| < (2k)%F, where
k is the maximum number of variables in a regulatory statem@a?* is a bound
on the number of equivalence classes, i.e., we Raveariables g in ¢ andk in 1))
and at most one equivalence class for each variable. Hemesjze ofpc (byia(p))
is O(m x (2k)%*), wherem is the number of regulatory statements. Each quantified
precondition test can be evaluatedr{|O|*) time, whereO is the set of objects. As
a result, the time complexity for evaluating: (byia()) is O(m x (2k)%* x |O|F).

We now describe an evaluation of the system, using a pratatgplementation which
performs this compilation procedure.

16 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokglsk

4.4 Evaluation

We have developed a prototype implementation of the chetKerbriefly describe
two aspects of the implementation: (a) the interface batwegulations and traces
(schemas), and (b) the trace-checker.

Schemas form the interface between the regulation and thasehema is a set of
class and type definitions. Classes can inherit from otlaard,have attributes which
have atomic types, tuples or unions of types, pointers teraihjects or sets of values.

Our current implementation of the trace-checker is statithe sense that the en-
tire trace is stored on disk (in an NDBM database). The objatiach state belong
to classes in a given schema. The regulation, which is tyyeeled against the same
schema, is compiled using the techniques discussed inoBeti8, and evaluated at
each state. We do not have any special optimizations fordsgé® objects are stored
as strings, and reparsed every time they are loaded into nyefitee checker evaluates
each obligation w.r.t. all variable assignments, loadirtg imemory a single variable
assignment at a time.

We now describe a preliminary evaluation of the implemeatatOur goal was
to check if we could scale to traces with a large number ofaibjeather than very
long traces. We created a schema based on the CFR, captoriogsgd donations of
several types, and various tests. We then checked a numggntbietic (final) states for
conformance. Given a schema, we generate a set of donor®bgiolg random values
for atomic attributes. For each donor we generate a set dditams again choosing
attribute values at random. Each donation is randomlydessefollows: withp = 0.3
it is tested for all diseases with negative results, with 0.3 it is test for diseases with
a random result, and otherwise it is not tested.

On the regulatory side, we created logic formulas for a partif the CFR 610.40.
A total of 12 sentences, and a list of 6 disease names were luis&slare frequent in
regulation, and statements refer to particular list ite@fghe 12 sentences, 7 were obli-
gations and 5 were permissions. A total of 8 reference foaslily14(0)) were used,
and of these 3 referred to list items. The compilation stepeafoving the references
took 26 seconds with a total of 96 satisfiability tests. Eaeltesnent had at most 2
variables (one for donations and the other for disease ames

We evaluated performance of the checker against a numbéatessThe number
of disease names was 8, and the number of donations variedirmé taken varied lin-
early with a number of donations. For states with 100, 100005and 10000 donations
the conformance check took 12s, 130s, 500s, and 1042s teghed he performance
suggests that the approach is practical for checking steaé$. However, more incre-
mental algorithms are needed to deploy such specificativastntime setting.

5 Discussion and Conclusions

We have described a logic for representing regulatory decisfor the application of
conformance checking. The logic allows statements to tefethers for conditions or
exceptions. While references give us a way to representasggu directly, the eval-
uation of references during checking has high complexitgofithm 1 uses satisfia-
bility tests of size polynomial in the number of objects. lacBons 4.2 and 4.3, we

Checking Traces for Regulatory Conformance 17

described an emprically motivated assumptitire(single copy proper}y which lets
us replace satifiablity tests with tests of lower complexitye evaluation of our pro-
totype implementation suggests that the approach is $eitabconformance audits of
medium-sized traces.

An important part of making this approach useful in practicto provide support
for translating the regulatory documents into their formegdresentation. Such support
has to rely heavily on natural language processing teclesiguhich require substantial
extension of current state of the art. We are actively pagstiis line of research.
Preliminary results are reported in [14, 15].

Related Work. The use of logic to represent and reason about regulatiobédes of
interest for several years. We begin by discussing theatitiee in relation to two issues:
a) the representation of obligation and permission, andfeyences between laws. We
compare our work with other approaches to conformance éhgcand place it in the
context of previous work on run-time checking of LTL.

The goal of deontic logic is a formalization of concepts sashobligation, per-
mission and rights. There are many systems of deontic Idgicthe most common
approach is to treat obligation and permission as modaladper [16,17]. The logic
developed here focusses on the problem of references betaxws, and we believe
that the representation of obligation and permission igrgwortant but orthogonal is-
sue. In future work, we plan to add a modal treatment of obiigeand permission to
our system.

The problem of references between laws has been observedutatory texts in
different domains [18, 2]. More generally, the function ehtences as conditions or
exceptions to others has been studied in a variety of cantdkdhourron and Makinson
[19] proposed a hierarchical structure for a legal disceuts handle exceptions to
statements. This led to the development of input-outputl@20], which is closely
related to default logic [11]. Previous work on applyingaldf logic has been mainly
in the context of computing extensions to a theory, in themeaof logic programs [7,
18, 6]. We believe that the application of these ideas in@enénce checking is novel.

Conformance checking has been receiving increasing attein recent years [1—
3,21]. [1] represents business contracts as SQL querigal]8ise a logic on a UML
description of a domain. While the approaches of [1, 3, 2&]samilar in spirit to ours,
they do not provide a treatment of references. [2] discugseproblem of references
in the context of privacy regulation, and the referenceseselved manually.

Our work builds upon the well-established work on run-tirheeking of LTL and
its extensions. We have adapted the calculus of Eagle [Satalle references. Rule-
based formalisms [5, 22] are quite general, but the transdtion of formulas at each
state can be expensive. Automata-based approaches [&Bhaffiore efficient alterna-
tive at the price of generality. We are currently exploringys to adapt the automata-
based approach to our setting.

References

1. Abrahams, A.: Developing and Executing Electronic Commae\pplications with Occur-
rences. PhD thesis, Univeristy of Cambridge (2002)

18

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokglsk

Breaux, T.D., Vail, M.W., Anton, A.l.: Towards regulayocompliance: Extracting rights
and obligations to align requirements with regulations: Rmoceedings of the 14th IEEE
International Requirements Engineering Conference.qR00

Giblin, C., Liu, A., Muller, S., Pfitzmann, B., Zhou, X.: Belations Expressed as Logi-
cal Models (REALM). In Moens, M.F., Spyns, P., eds.: Legabl{tedge and Information
Systems. (2005)

U.S. Food and Drug Administration: Code of Federal Redgia.
http://www.gpoaccess.gov/cfr/index.html

Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rblsed runtime verification. In:
Proceedings of 5th International Conference on Verificgatddodel Checking and Abstract
Interpretation (VMCAI 2004). Volume 2937 of LNCS. (Janu&g04) 44-57

McCarty, L.T.: A language for legal discourse - i. basiattees. In: Proceedings of ICAIL.
(1989)

Sergot, M., F.Sadri, Kowalski, R., F.Kriwaczek, P.HanmahoCory, H.: The british national-
ity act as a logic program. Communications of the ACB(5) (1986) 370-86

Ross, A.: Directives and Norms. Routlege and Kegan PaéigjL

Marcus, R.B.: Iterated deontic modalities. Mins(300) (1966)

. Dinesh, N., Joshi, A., Lee, l., Sokolsky, O.: Reasoningoua conditions

and exceptions to laws in regulatory conformance checking.In Submission:
http://www.cis.upenn.edu/ nikhild/reasoning.pdf (8D0

Reiter, R.: A logic for default reasoning. In: Readingsionmonotonic reasoning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1987P88—

Sistla, A.P., Clarke, E.M.: The complexity of propamital linear temporal logic. ACN82
(1985) 733-49

Bauer, A., Leucker, M., Schallhart, C.: Monitoring o&k¢ime properties. In: Proceedings
of the 26th Conference on Foundations of Software Techiodmgl Theoretical Computer
Science (FSTTCS'06). Volume 4337 of LNCS. (December 2006)

Dinesh, N., Joshi, A.K., Lee, |., Webber, B.: Extractiognal specifications from natural
language regulatory documents. In: Proceedings of thé Fiternational Workshop on
Inference in Computational Semantics. (2006)

Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Logic-tthsegulatory conformance checking.
In: Proceedings of the 14th Monterey Workshop. (2007)

von Wright, G.H.: Deontic logic. Min60(1951) 1-15

Aqvist, L.: Deontic logic. In Gabbay, D., Guenthner, dds.: Handbook of Philosophical
Logic, Volume lI: Extensions of Classical Logic. (1984) 6@83.4

Bench-Capon, T., Robinson, G., Routen, T., Sergot, Mgid¢.programming for large scale
applications in law: A formalisation of supplementary biéregislation. In: Proceedings of
the 1st International Conference on Al and Law. (1987)

Alchourron, C., Makinson, D.: Hierarchies of regulatand their logic. In Hilpinen, R., ed.:
New Studies in Deontic Logic. (1981)

Makinson, D., van der Torre, L.: Input/output logics.udwl of Philosophical Logi@9
(2000) 383-408

Glasse, E., Engers, T.V., Jacobs, A.: Power: An intedratethod for legislation and regula-
tions from their design to their use in e-government sesvisel law enforcement. In Moens,
M.F., ed.: Digitale Wetgeving, Digital Legislation. (200B75-204

Barringer, H., Rydeheard, D., Havelund, K.: Rule systdéan run-time monitoring: From
Eagle to RuleR. In: Proceedings of th& Torkshop on Runtime Verification. Volume 4839
of LNCS. (March 2007) 111-125

