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Abstract—Access control and privacy policy relations tend to
focus on decision outcomes and are very sensitive to defined
terms and state. Small changes or updates to a policy language
or vocabulary may make two similar policies incomparable. To
address this we develop two flexible policy relations derived from
bisimulation in process calculi. Strong licensing compares the
outcome of two policies strictly, similar to strong bisimulation.
Weak licensing compares the outcome of policies more flexibly
by ignoring irrelevant (non-conflicting) differences between out-
comes, similar to weak bisimulation. We illustrate the relations
using examples from P3P.

Index Terms—policy analysis; privacy policies;

I. INTRODUCTION

The growing complexity of access control policies has led
to the development of many policy comparison metrics and
tools to aid developers and authors in creating their desired
policies. Such metrics take advantage of the allow/forbid
nature of access control decisions, enabling them to perform
state space exploration of the decisions reached by different
policies. Even so, metrics are generally language specific
and sensitive to small changes in the terms or underlying
vocabulary. In particular, comparing policies with even slightly
differing representations of information or considering policy
equivalence based on the performance of multiple actions
under a policy is difficult with existing tools and techniques.

To that end, we offer policy comparison metrics which
are more general and flexible than those based on decision
tree based structures or straightforward comparison of policy
rules. We introduce flexibility in comparison by adapting
concepts from the process calculus literature, borrowing from
the notions of strong and weak bisimulation and applying them
to the comparison of privacy and access control policies. We
call the policy relations we devise strong and weak licensing
since they roughly parallel notions from strong and weak
bisimulation respectively.

The rest of this paper is organized as follows. Section II
develops the fundamentals of strong and weak licensing and
the relations that we derive from them. Section III mentions
related work and section IV concludes.1

II. STRONG AND WEAK LICENSING

Our goal in defining the licensing relations is to enable
the evaluation of policy comparison of the form “Is there a

1An extended technical report version of this work with more complete
examples and proofs is available [10].

way that the policy allows a person to at least achieve the
desired outcome in such and such circumstance?” instead of
“Does the policy permit/forbid the performance of an action in
such and such circumstance?” The former question is subtly
different from the latter in that it focusses on the outcomes
that the policy allows and compares them against an ideal
outcome. If one of the actual outcomes matches the ideal,
we conclude that the policy permits, or licenses the action
under the circumstances. Licensing is a state and transition
based comparison metric since it requires an initial state and
inspects the reachable states following transitions permitted by
the policy.

Focussing on the output behavior of policies enables flexible
relations since it lets us abstract away the internal workings
of policies and obligations. Furthermore, by relaxing the com-
parison of output states we can design policy relations which
match the intuition as to whether a policy “allows a person
to at least achieve” some action(s). As a guide for designing
flexible output based relations we draw lessons from the
process calculus literature’s formulation of bisimulation, the
notion that two processes behave similarly from a particular
initial state.

An action is strongly licensed (|=) by a policy if the policy
contains a rule which enables the achievement of its precise
outcome. An action is weakly licensed (|=∗) by a policy if
the policy contains some rule or series of rules which enables
the achievement of the action’s outcome modified by some
additional actions unrelated to the original action. To maintain
generality in developing our relations, we do not specify
precisely what kinds of actions are “unrelated” and may be
ignored. Such actions are determined on a policy by policy
basis.

We use the following variable conventions and families of
relations to analyze policies. A policy φ = {e1, e2, . . .} is a set
of paragraphs or sentences (“rules”) (e) which offer permitted
combinations of actions, rights are stored in the state s, and
a list of parameters is provided to make a decision from the
policy g. State representations are finite and updateable via
actions by agents as governed by the policy. Thus, when an
actor performs the actions of e with parameters g, it transforms
s to produce some resulting state s′ where the effects of e have
been performed. We denote such a transition s

e(g)−→ s′. We use
bar (e) for variable series and φ∗ for the set of all possible



ordered series of rules using the rules in φ. The empty state
(i.e., with no rights) is denoted s∅.

A. Bisimulation

As a background for readers unfamiliar with process calcu-
lus relations we provide a brief overview of strong and weak
bisimulation. Since an in depth discussion of bisimulation is
beyond the scope of this work, we focus only on the aspects
which we apply to privacy policy relations in this work. For
more in depth study of bisimulation, we refer the reader to the
many books and papers on the subject.

Strong and weak bisimulation are run time relations in
that they refer to the behavior of processes from an initial
state through transitions (a trace) until either a final or a
“stuck” state is reached. Simply, for two processes p and q
and a series of transitions e1, e2, . . ., if we can show that
p

e1−→ p1
e2−→ p2 . . . and q

e1−→ q1
e2−→ q2 . . ., then the two

processes are strongly bisimilar. For each step taken by p, q
can take the same step. Weak bisimulation is a relaxation of
strong bisimulation to allow for the execution of invisible τ
operations. For instance, for the traces p e1−→ p1

τ−→ p2
τ−→

p3
e2−→ p4 . . . and q

e1−→ q1
e2−→ q2 . . ., p and q are weakly

bisimilar. A τ operation is non-observable to outsiders and so
is not considered in the comparison.

B. P3P Example

For this work we use a running example in P3P. P3P enables
web sites to publish their privacy practices in a standardized
XML format. The most important elements in P3P policy are
the “Statement” elements which include the following child
elements:
• Data-Group (D): the data covered
• Non-identifiable (i): promises that no identifiable infor-

mation will be collected
• Purpose (P ): set of purposes for which data is collected
• Recipient (R): Indicates who may receive the data col-

lected
• Retention (T ): Indicates how long the data will be kept
Comparing two P3P statements e1 and e2 requires a data

category by data category examination of the policies. A full
policy φ may contain several statements. Often a simple state-
ment level comparison between two policies is not possible
for a few reasons. For instance, since the “Purpose” element
is a set of purposes, if e1 and e2’s “Purpose” elements are
not a superset one of the other, the comparison will fail.
The retention and recipient elements also contain confounding
elements. See Agrawal, et al. [1] for a fuller discussion.A
trace based comparison mechanism such as the licensing
relations may be more fruitful.

We define an action in P3P as the collection of a data item
d. Let i be a boolean which is true iff “Non-identifiable” is
included in the statement. Then, for a website’s statement e =
(D, i, P,R, T ), a successful collection of data item d ∈ D
under e results in the addition of a 4-tuple (d, P,R, T ) to the
website’s rights (stored in state s) if d is non-identifiable or if d
is identifiable and i is false. The 4-tuple means that the website

A
1 <DATA-GROUP><DATA REF=”#USER.NAME.GIVEN” />

</DATA-GROUP>
2 <PURPOSE><CONTACT/><TAILORING/></PURPOSE>
3 <RECIPIENT><OURS/></RECIPIENT>
4<RETENTION><BUSINESS-PRACTICES/></RETENTION>

B
1 <DATA-GROUP><DATA REF=”#USER.NAME.GIVEN” />

</DATA-GROUP>
2 <PURPOSE><TAILORING/><PSEUDO-ANALYSIS/>

</PURPOSE>
3 <RECIPIENT><OURS/></RECIPIENT>
4 <RETENTION><NO-RETENTION/></RETENTION>

Fig. 1. Example P3P policy snippets

has the right to use d for purposes P , disclose it to entities
implied by R, and retain it for a time frame implied by T . A
website’s rights is a collection of 4-tuples s = {(d, P,R, T )}
for the rights the website has over each data item d.

A state transition represents the collection of d under e:
s1

e(d,b)−→ s2 where b is a boolean indicating whether d is non-
identifiable. If the transition is permitted (i.e., (d ∈ D) ∧ (b ∨
(¬b ∧ e.i))) then s2 = s1 ∪ (d, e.P, e.R, e.T ).

We develop |= and |=∗ for P3P using the example statement
snippets in Figure 1. Note A and B are not comparable using
simple syntactical comparison since neither “Purpose” element
is a subset of the other.

C. Strong Licensing

First, let us consider a simple case of strong licensing: when
a policy enables the effects of e from just an initial state s1
with parameters g. Then, φ strongly licenses e at s1 with g,
denoted φ |=(s1,g) e. Let s1, s2 be states:

Definition 1: φ |=(s1,g) e iff s1
e(g)−→ s2 =⇒ ∃e′ ∈

φ . s1
e′(g)−→ s2 �

Adapting the relations from a single e to a series e =
{e1, e2, . . .}, if φ enables the effects of performing the actions
in e in order from s1 with a parameters list g = {g1, g2, . . .}
(|e| = |g|) with a series of rules in φ of the same length, φ
strongly licenses e at s1 with g. Let si, 1 ≤ i ≤ |e|+ 1 be the

state such that si
ei(gi)−→ si+1:

Definition 2: φ |=(s1,g) e iff for i = 1..|e|, si
ei(gi)−→

si+1 =⇒ ∃e′ ∈ φ . si
e′(gi)−→ si+1. �

Although |=(s,g) parameterizes over the infinite set φ∗ and
may not be decidable in general, it is decidable so long as e
finite since we need to perform a maximum of |φ| operations
for each e ∈ e. Intuitively, strong licensing corresponds to
a policy precisely enabling some action(s). It also restricts
the relationship between the policy and the rule(s) to be “in
lockstep” meaning that for e or each e ∈ e, the policy has one
rule which enables precisely performing e’s behavior with the
same parameters.



The complexity of evaluating |= depends on several policy
and state dependent variables. Let us denote the complexity
of comparing two states as |S|. Let us denote the worst case
complexity for executing any given rule (i.e., performing all
of its checks and state updates) as rt(e). Let |φ| denote the
number of rules in φ.

A naive algorithm for evaluating φ1 |=(s1,g1) e1 is:

1) Evaluate s1
e1(g1)−→ st.

2) For each ei ∈ φ1:

a) Evaluate s1
ei(g1)−→ si

b) If si = st Then Quit;
The worst case complexity for the above algorithm is

rt(e) + (|φ| × (rt(e) + |S|)) since we perform one initial
evaluation followed by a maximum of |φ| evaluations and
comparisons. For e, the complexity is multiplied by the length
of e. Pre-filtering rules from φ which clearly do not satisfy the
transition s1

e1(g1)−→ st may reduce the complexity by reducing
the number of evaluations and state comparisons in the best
case.

Example 1: (|= for P3P)
Alice is willing to disclose her name to a website if the

site will only acquire rights to use it for contacting her and
tailoring her home page, use it internally, and retain it for as
long as is common in the industry. Then, since a name may be
identifiable, g1 =(“Alice”, true), Alice’s target addition to the
website’s rights is s1 =(“Alice”, {CONTACT, TAILORING},
{OURS}, {BUSINESS-PRACTICES}). Let e1 be a rule such that

s∅
e1(g1)−→ s1 Then, A |=(s∅,g1) e1 since A’s policy precisely

grants the given rights. However, B 6|=(s∅,g1) e1 since B
grants the rights (“Alice”, {TAILORING, PSEUDO-ANALYSIS},
{OURS}, {NO-RETENTION}).

Bob is willing to disclose his name for the same reasons as
Alice in addition to the right to use the name for anonymous
analysis of usage (pseudo-analysis). Then g2 = (“Bob”,
true) and s2 =(“Bob”, {CONTACT, TAILORING, PSEUDO-
ANALYSIS}, {OURS}, {BUSINESS-PRACTICES}). Let e2 be a

rule such that s∅
e2(g2)−→ s2. As before, B 6|=(s∅,g2) e2, but also

A 6|=(s∅,g2) e2 since A doesn’t permit reaching precisely s2.�

D. Non-conflicting Rules

The above example motivates a more relaxed relation for
policies which perform the actions of a rule with some slight
modifications. We call the relation noconflict. The intuition
for noconflict is that a policy enables an approximation of the
actions of a rule or rule series. We mean to define a function:

noconflict(s,g)(e2, e1)

which is read, “The effects of performing the actions of e2
at s with g do not conflict with the effects of e1 under the
same conditions”. The relation will necessarily be policy or
policy language specific since it requires semantic analysis
of the state. We offer an example definition for P3P below.
The relation need not be reflexive, so noconflict(s,g)(e2, e1) ;
noconflict(s,g)(e1, e2).

We may adapt noconflict to allow a policy to approximate
the effects of a rule with a series of rules. Let e be a rule
series. Let s1 be the state such that s

e(g)−→ s1 and s2 be the
state such that s

e(g)−→ s2. We restrict the function to a single
argument list for the entire series e to restrict comparison to
similar cases. The function for series is then nearly identical
to the one for single rules:

noconflict(s,g)(e, e)

Applying the function to comparing the effects of series of
rules is straightforward.

Example 2: (noconflict for P3P)
A simple definition for noconflict under P3P would be

noconflict(s,g)(e2, e1) if (e2.d = e1.d) ∧ (e2.P ⊆ e1.P ) ∧
(e2.R ⊆ e1.R) ∧ (e2.T ⊆ e1.T ). This misses the hierar-
chical nature of some P3P elements, however. For instance,
the retention term NO-RETENTION clearly permits less than
BUSINESS-PRACTICES or INDEFINITE. The definition of a
partial order over P3P policies is beyond the scope of this
work (but see Hayati, et al. [6]), so we simply write t1 ⇒ t2
if t1 is semantically more restrictive than t2. Generalizing for
sets,

T1 ⇒ T2 if ∀t1 ∈ T1,∀t2 ∈ T2, t1 ⇒ t2

Then noconflict(s∅,g)(e2, e1) if:
(e2.d = e1.d) ∧ (e2.P ⊆ e1.P ∨ e2.P ⇒ e1.P ) ∧

(e2.R ⊆ e1.R∨e2.R⇒ e1.R)∧(e2.T ⊆ e1.T ∨e2.T ⇒ e1.T )
�

E. Weak Licensing

Using noconflict we define weak licensing as a more flexible
policy relation than |=. We define weak licensing in terms of a
policy φ weakly licensing a rule but the relation can be easily
adapted to the case of one rule weakly licensing another.

If φ approximates the effects of e at s1 with g with a rule
series which is not conflicting with e, φ weakly licenses it at
s1 with g, φ |=∗(s1,g) e. For s1 we would like to write:

φ |=∗(s1,g) e iff ∃e ∈ φ∗ . noconflict(s1,g)(e, e).

The problem is that depending on the definition of noconflict
and the way state is represented, it may be undecidable since
φ∗ is unbounded. Specific languages and representations may
either be decidable or reach a fixed point from given states or
parameters, properties which can be evaluated with a model
checker in a straightforward manner. To maintain generality
and decidability, we instead restrict |=∗ to the power set of
rules (pwr(φ)):

Definition 3: φ |=∗(s1,g) e iff ∃e ∈ pwr(φ) .
noconflict(s1,g)(e, e) �

Adapting |=∗ to series of rules is straightforward:
Definition 4: φ |=∗(s1,g) e iff ∃e2 ∈ pwr(φ) .

noconflict(s1,g)(e2, e). �
Note that |=⊆|=∗. The intuition for the limitation is that in

deciding whether an action is permitted it is sufficient to try all
possible rules once. This imposes the (reasonable) assumption
on φ that rights are not enabled by repeated performance of



the same action, or more specifically: ∀e1 ∈ φ∗,∀s,∀g, s
e1(g)−→

s′ =⇒ ∃e2 ∈ pwr(φ) . s
e2(g)−→ s′.

Weak licensing intuitively means that an action is permitted
by a policy. A policy weakly licenses a series e when it
contains a series of rules which enables an outcome state
which does not conflict with the outcome of e. We do not look
at the intermediate states reached by e2, only restricting that
they use the same parameters list to ensure that the comparison
is justified. Since we do not restrict the length of g, the series
do not need to be the same length.

The complexity of evaluating |=∗ depends on the complexity
of evaluating noconflict, denoted |nc|, which may be policy
dependent, in addition to the variables defined above. Let
nc(s1, s2) denote the evaluation of noconflict between two

states. Since s1
e1(g1)−→ st may be weakly licensed by a series

of rules in φ, the naive algorithm for φ1 |=∗(s1,g1) e1 is:

1) Evaluate s1
e1(g1)−→ st.

2) For each {ei, ei+1, . . . , ei+n} ∈ pwr(φ1):

a) Evaluate s1
ei(g1)−→ si

ei+1(g1)−→ . . .
ei+n(g1)−→ sn

b) If nc(sn, st) Then Quit;
The worst case complexity for the above algorithm is

rt(e) + (|pwr(φ)| × ((|φ| × rt(e)) + |nc|)) since we perform
one initial evaluation followed by a maximum of |pwr(φ)|
evaluations. Each evaluation involves evaluating up to |φ|
steps followed by a single check of noconflict. Evaluating
φ |=∗(s,g) e1 requires |e| × rt(e) more running time since only
one evaluation of noconflict is needed. As with |=, preselecting
likely rules in φ can reduce the best case complexity.

Example 3: (|=∗ for P3P)
Using the definition of noconflict in Example 2, |=∗

for P3P is as follows. Let Alice and Bob have prefer-
ences and let e1, g1, s1, e2, g2, s2 be as in Example 1. Since
A |=(s∅,g1) e1, trivially A |=∗(s∅,g1) e1. For Bob’s preference,
noconflict(s∅,g2)(A, e2) since e2.P is a subset of A’s purposes,
so A |=∗(s∅,g2) e2.

For B, B 6|=∗(s∅,g1) e1 since B permits the purpose “pseudo-
analysis” which e1 does not contain and noconflict does
not hold for Alice. For Bob’s, since “no-retention” is more
restrictive than “business-practices”: noconflict(s∅,g2)(B, e2)
and therefore B |=∗(s∅,g2) e2. �

III. RELATED WORK

There have been many policy comparison metrics proposed
for and applied to access control policies. Fisler, et al. [4]
present Margrave, a framework for policy comparison and
change impact analysis Margrave detects changes in the de-
cision tree of an XACML [11] access control policy. LeMay,
et al. [7] present PolicyMorph, a tool for composing, compar-
ing, and analyzing attribute based access control policies. Like
Margrave, it enables exploration of changes in the decision
tree caused by policy changes and provides user feedback
and suggestions. Lin, et al. [8] propose a filtering mechanism
for finding access control policies with similar decisions. The
decision relations derived in such work is a special case of

strong licensing where the outcome of rules is the allow/forbid
decision determined by the policy.

Policy languages such as EPAL [2] and XACML are
amenable to comparison using |= and |=∗ as well. Since both
languages allow policies to define their own custom vocabu-
laries, user input indicating which obligations, purposes, and
other custom elements are non-conflicting is required to enable
comparison using noconflict and |=∗. An efficient algorithm
to compare EPAL policies in shown by Backes, et al. [3].
Access control policies in the structure proposed by Harrison,
et al. [5] are directly comparable using |= since the policies
include operational descriptions of rule outcomes. May [9]
applies the licensing relations discussed here to a custom
language designed for modeling legal privacy policies.

IV. CONCLUSION

Strong and weak licensing are policy comparison relations
derived from applying some concepts of bisimulation from
process calculi. The relations are more flexible than other
policy comparison measures in that they enable comparison
while ignoring irrelevant actions.

Strong licensing compares policies strictly, requiring that
every action permitted one policy be permitted by another. The
comparison is performed by running the policy on an under-
lying state and examining differences between the outcomes
of the two.

Weak licensing compares policies more flexibly, akin to
weak bisimulation where invisible τ transitions may be ig-
nored. A policy weakly licenses an action if it permits the
outcome of the action, possibly with some additional, irrele-
vant obligations.
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