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Abstract. This paper considers the problem of checking whether amaga

tion conforms to a body of regulation. Conformance is cast &race checking

question — the regulation is represented in a logic thatatueved against an ab-
stract trace or run representing the operations of an argaon. We focus on a
problem in designing a logic to represent regulation.

A common phenomenon in regulatory texts is for sentencesfés to others for

conditions or exceptions. We motivate the need for a forreptesentation of

regulation to accomodate such references between statenvéa then extend
linear temporal logic to allow statements to refer to oth&he semantics of the
resulting logic is defined via a combination of techniquesrfrReiter's default

logic and Kripke's theory of truth.

1 Introduction

Regulations, laws, and policies that affect many aspectsuofives are represented
predominantly as documents in natural language. For exartii Food and Drug Ad-
ministration’s Code of Federal Regulations [1] (FDA CFRygms the operations of
American bloodbanks. The CFR is framed by experts in the @iéfdedicine, and reg-
ulates the tests that need to be performed on donationsad blefore they are used. In
such safety-critical scenarios, it is desirable to assassdlly whether an organization
(bloodbank) conforms to the regulation (CFR).

There is a growing interest in using formal methods to assgnizations in com-
plying with regulation [2—4]. Assisting an organizationdampliance involves a num-
ber of tasks related to the notion of a violation. For exannipls of interest to detect or
prevent violations, assign blame, and if possible, rectreen violations. In this paper,
we focus orconformance checkinghich involves detecting the presence of violations.

We cast conformance checking as a trace-checking questierregulation is trans-
lated to statements in a logic which are evaluated agaimata br run representing the
operations of an organization. The result of evaluationtigee an affirmative answer to
conformance, or a counterexample representing a subde¢ oferations of the orga-
nization and the specific law that is violated.

* This research was supported in part by NSF CCF-0429948, GI$5-0610297, ARO
W911NF-05-1-0158, and ONR MURI N00014-07-1-0907.
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There are two important features of regulatory texts thadrie be accomodated
by a representation in logic. First, regulations conveyst@ints on an organization’s
operations, and these constraints can be obligatory @edjudr permitted (optional).
Second, statements in regulation refer to others for cmmditor exceptions. An orga-
nization conforms to a body of regulation iff it satisfies #hlé obligations. However,
permissions provide exceptions to obligations, indiseaffecting conformance. Our
formulation of obligations and permissions follows thedheof Ross [5], and we will
discuss the relationship to other theories (cf. [6]) in #erB.1.

The central focus of this work is the function of regulatoeptences as conditions
or exceptions to others. This function of sentences malas ttependent on others for
their interpretation, and makes the translation to logfitadilt. We call this the problem
of references to other lawsn Section 2, we argue that a logic to represent regulation
should provide mechanisms for statements to refer to atNeesprovide motivation
using examples from the FDA CFR. We discuss how these serg@an be represented
in a logic without references, and conclude that this wouddtethe translation difficult.

We then turn to the task of defining a logic that lets statemesfier to and rea-
son about others. In Section 3.1, we define a trace or rurdbapeesentation for the
operations of an organization, and a predicate-basedr lteegporal logic (PredLTL)
to make assertions about runs. PredLTL is extended to expxeskinds of normative
statements (obligations and permissions), leading tomadbdefinition of conformance.

In Sections 3.2 and 3.3, we extend PredLTL to allow refersruetween laws
thereby making permissions relevant to conformance. Spalty, we introducean
inference predicatewhose interpretation is determined by inferences fronslalihe
justifications in default logic [7] can be cast as an instaofcthis predicate. Default
logic has been used in computing extensions to a theorygimianner of logic pro-
grams [8, 9]. In conformance checking, we need to separateisgs of statements: (a)
extending a theory (the regulation), and (b) determinirggsfabout an organization.
This separation is achieved using the inference prediGat¢ements are evaluated us-
ing the fixed points of an appropriate function, based on lartiggie used in Kripke's
theory of truth [10]. An axiomatization is discussed in $&t3.4.

Section 4 concludes with a discussion of related and futwmw

2 Motivation

In this section, we argue that a logic to represent reguiatimuld provide a mechanism
for sentences to refer to others. We discuss shortenedwsrsi sentences from the
CFR Section 610.40, which we will use as a running exampleutfinout the paper.
Consider the following sentences:

(1) Exceptas specified in (2), every donation of blood or Bloomponent must be
tested for evidence of infection due to Hepatitis B.

(2) Youare notrequired to test donations of source plasmavidence of infection
due to Hepatitis B.

Statement (1) conveys an obligation to test donations afdtr blood component
for Hepatitis B, and (2) conveys a permission not to test aation of source plasma
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(a blood component) for Hepatitis B. To assess an organizatconformance to (1)
and (2), it suffices to check whether “All non-source plasroaations are tested for
Hepatitis B". In other words, (1) and (2) imply the followimdpligation:

(3) Every non-source plasma donation must be tested foepeilof infection due
to Hepatitis B.

There are a variety of logics in which one can capture thepnégation of (3), as
needed for conformance. Now suppose we have a sentencefiratto (1):

(4) To test for Hepatitis B, you must use a screening test kit.

The reference is more indirect here, but the interpretasiofif (1) requires a test,
then the test must be performed using a screening test kitloédbank is not prevented
from using a different kind of test for source plasma donatiq4) can be represented
by first producing (3), and then inferring that (3) and (4) iynghe following:

(5) Every non-source plasma donation must be tested foepeilof infection due
to Hepatitis B using a screening test kit.

It is easy to represent the interpretation of (5) directlnilogic. However, (5) has
a complex relationship to the sentences from which it waiveleyi.e., (1), (2) and (4).
The derivation takes the form of a tree:

5)
SR

af @

To summarize, if one wishes to use a logic with no support ééerring to other
sentences, derived obligations must be created manualarguie that the manual cre-
ation of derived obligations is impractical in terms of theaunt of effort involved. We
give two (pragmatic) reasons. First, the derived obligatian become very complex.
The full version of statement (1) in the CFR contains six @xicms, and these excep-
tions in turn have statements that qualify them furthes Hifficult to inspect a derived
obligation, and determine if it captures the intended jmtetation of the sentences from
which it came. Second, references between laws are frecaraptifying the effort in
creating a logic representation. In [11], we discuss lebdtatistics which suggest that
references are a common way of establishing relationshépgden sentences in the
CFR, and [12, 3] point out their frequency in other bodiesagfulation.

We advocate an approach that allows us to introduce refesanto the syntax of
the logic, and resolve references during evaluation.

3 Representing Regulatory Documents in Logic

In this section, we extend linear temporal logic (LTL) totatiguish between obligations
and permissions, and allow references between staterifémtsegin, in Section 3.1, by
representing a bloodbank as a run or trace. LTL is extendatistonguish between
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obligations and permissions, leading to definitions of oomiance. We then extend
the logic to allow sentences to refer to others. Section B@sgan informal example-
driven account, and Section 3.3 provides a formal accoarfielction 3.4, we discuss
an axiomatization.

Sections 3.1 is intended as background, in which we disoesssral underlying
assumptions. Our goal is to focus on the problem of refeigrased to treat the repre-
sentation of obligations and permissions as an importariaogonal issue.

3.1 Predicate-based Linear Temporal Logic (PredLTL)

Representing regulated operationsGiven the need to demonstrate conformance to
the regulation in case of an audit, regulated organizatsuth as bloodbanks keep
track of their operations in a database, for example, dariorination and the tests they
perform. Such a system can be thought of abstractly as @aomdéstructure evolving
over time. At each pointin time (state), there are a set adabj(such as donations and
donors) and relations between the objects (such as an assndietween a donor and
her donations). The state changes by the creation, remowabdification of objects.
We represent this as a run.

Definition 1 (A Run of a System).Given a setO (of objects) and countable sets
b1, ..., P, (Whered; is a set of predicate names of arify, a run of a systenk(O,
b4, ..., d,), abbreviated asz, is a tuple(r, 7y, ..., 7, ) where:

—r: N — Sis asequence of state¥. is the set of natural numbers, arttlis a set
of states.

-+ ®; x S — 297 is a truth assignment to predicates of arjtyGivenp € &;,
we will say thatp(o, ..., 0;) is true at states iff (o1, ...,0;) € 7;(p, 5).

Given a runR and a timei € N, the pair(R, 1) is called a point (statements in
linear temporal logic are evaluated at points). Given thegljmate nameg&py, ..., &,,),
the corresponding space of runs is denote®§®- , ..., &,,), abbreviated a&.

Conceivably, we could construct a state-transition diagrepresenting all possible
behaviors of the system and explore conformance from theshobebcking perspective
(e.g., [13]). We chose to restrict our attention to tracedm reasons. First, checking
of traces is easier to explain, and all interesting theoaétind algorithmic aspects that
we explore in this paper manifest themselves in trace chgcl8econd, many parts
of the operations of an organization, such as a bloodbankptiinvolve computers.
A complete model of operations has to include a model of huosans, which is a
research problem in its own right that is well beyond the soofthis paper. However,
if a finite-state model of an organization can be createdptbpositional version of the
logic developed here can be adapted to work with availabléaihoheckers.
Representing the regulation:The logic that we define in this section is a restricted
fragment of first-order modal logic. The restriction is tha allow formulas with free
variables, but no quantification over objects. Formulatkhvélinterpreted using the uni-
versal generalization rule, i.e., over all assignmentsde ¥ariables. The restrictions
are similar in spirit to the logic programing approachessgulation [8, 9]. PredLTL is
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less expressive than the variants of first-order logic ugdé #]. However, when refer-
ences are added, the logic becomes more expressive thaorfiestlogic (Section 3.3).

Definition 2 (Syntax).Given set®y, ..., &,, (of predicate names) and a set of variables
X, the languagd. (¥, ..., 9, X ), abbreviated ad, is the smallest set such that:

- p(y1,...,y;) € L wherep € &; and(y1, ..., y;) € X7.
—Ifpe L, then-p € LandOp € L. If p,¢ € L, thenp A ¢ € L.

Disjunctiony V ¢ = =(—¢ A =) and implicationp = ¢ = —¢ V 1) are derived
connectives. The temporal operator is understood in thalwsay: Oy (¢ holds and
will always hold (globally)).$o (¢ will eventually hold) is defined asO—p.

We now extend the syntax to express normative statementsadyaof regulation,
by distinguishing between obligations and permissions.

Definition 3 (Syntax of Regulation).Given a finite set of identifiersD, a body of
regulation Reg is a set of statements such that for eaére 1D, there existp, 1) € L
such that either:id.o: ¢ ~ ¢ € Reg, or id.p: ¢ ~ ) € Reg

id.o: ¢ ~ @ (id.p: ¢ ~ ) is read as: “it is obligated (permitted) that the pre-
conditiony leads to the postcondition”. The distinction between preconditions and
postconditions corresponds to the distinction betweentiapd output in input-output
logic [14].

Definition 4 (Semantics).Given a runR = (r,71,...,7,), i1 € N, ¢ € L, and an
assignment : X — O, the relation(R, i, v) | ¢ is defined inductively as follows:

= (R,i,v) E p(y1, ..., y;) iff (01,...,0;) € wj(p, (i) whereo,, = v(yy) if yx € O.
— The semantics of conjunction and negation is defined in thalwgay.
- (R,i,v) E Qplffforall k >i: (R, k,v) E e

We extend the semantic relation to regulatory statemenrgstalké= to stand for
“conforms to”:

- (R,i,v) Eid.o: o ~ ¢ iff (R,4,v) E ¢ = v (= is implication)
— (R,i,v) Eid.p: ¢ ~ 9. Runs vacuously conform to permissions. Permissions will
become relevant when references from obligations are ptéSection 3.2).

Consider again our example from Section 2. We use three qgatedi defined as
follows. d(x) is true iff « is a donationsp(x) is true iff x consists of source plama.
test(x) is true iff z is tested for Hepatitis B. Statement (3) is represented as:

3.0:d(z) A —sp(z) ~ Otest(x)

Statement (2) is be represented ag: 2(y) A sp(y) ~ —<test(y). However,
statement (1) cannot be represented directly.

We will now define conformance, and then discuss the vari@iimitions in the
context of related work. Given a ruR, let V' ( R) denote the set of variable assignments.
Conformance is defined using the notion of validity. A foraulis valid at the point
(R,i), denoted R, i) = ¢, iff forall v € V(R): (R,i,v) = ¢. Aformulay is valid
on R iffitis valid at all points, thatisR = ¢ iffforall i € N : (R,i) E .
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Definition 5 (Run Conformance).Given a body of regulatiof®eg and a runR rep-
resenting the operations of an organization, we say #atonforms to the regulation
iff for all obligations id.o: ¢ ~ ¢ € Reg, we haveR = id.0: ¢ ~ .

Discussion:The deontic concepts of obligation and permission aredteas properties
of sentences. Only obligations matter for conformancenifia-source plasma donation
is not tested, there is a problem. On the other hand, a blobdinay choose to test a
donation of source plasma or not. In assessing conform#meé,nction of a permis-
sion is to serve as an exception to an obligation, and in tidiseéct manner it becomes
relevant. We will give a semantics to this function of pemsiugs in Section 3.2. Such
a treatment of permissions has its basis in the legal thedRpss [5].

Ross’ approach to permission is by no means the only one.riHsloave distin-
guished between various kinds of permission (cf. [6]), thestrtommon distinction
being that of positive and negative permission. We disclissahalysis by Makinson
and van der Torre [15]p is said to positively permitted iff it is explictly permitieby
the laws, andp is negatively permitted iff it is not forbidden. The key issis whether
positive permissions can give rise to violations. In regjales phrased exclusively in
terms of permissions, it is desirable to say thiap denotes a “relevant” condition
which is not explicitly permitted, then it should not holdaanforming implementa-
tions While this has been analysed as a property of permissitloniog Ross, we
take such violations as arising from an implicit obligati@e., the italicized clause.
This implicit obligation can be represented using the tégpimes we discuss in Section
3.2, provided that the relevance of the condition is known.

In the formulation here, obligations and permissions apeléwel operators and
cannot be negated. This restriction can be removed bynigatligation and permis-
sion as KD modalities (c.f. [16]), and using a many-valuddrpretation to decide if a
run belongs to the set of ideal runs. However, we avoid thirplify presentation. A
more crucial restriction is that iterated deontic congBwannot be expressed directly,
i.e., sentences of the form “required to allow x” or “allowdrequire x.”. One has to
decide what top-level obligations or permissions are ietphy these constructs. To our
knowledge, handling iterated constructs is an open problaieontic logic [17].

3.2 References to Other Laws — An Informal Description

In this section, we give an informal accountreference logiqRefL), which is used
to handle references. We extend the syntax of PredLTL waittinference predicate
by1a(¢), where Id is a set of identifierby1q(ip) is read as “by the laws in ld; holds”.
There are two restrictions: (g is a statement in PredLTL (Definition 2) and (b) the
predicatebyiq () can appear only in preconditions of laws. These restristare sim-
ilar to those that apply to justifications in default logid.[7

Consider again our example statements (1) and (2), whiclegresented in RefL
as follows:

— 1o d(z) A —bya (¢(x)) ~ Otest(x), and
— 2.p:d(y) A sp(y) ~ ~Otest(y)
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In the obligation above, the subformuig,, (¢(x)) is understood as “by the law (2)
the formulap(z) holds”. It remains to define the formulgx). Intuitively, this should
be the negation of the postcondition of (1). In other woris;dtest(z) follows from
(2), then the postcondition of (1) need not hold. This gives u

1.0 d(x) A —by (o) (—Otest(x)) ~ Otest(x)
We interpret the predicafiey (o) (—<test(x)), by letting formulas have output. In

other words, when the precondition of an obligation or pssioin is true at a point, the
point isannotatedvith the postcondition.

Time|ObjectsPredicates Annotations
1 o d(01), sp(o1), —test(o1) |2: ~Otest(o1)
2 o1 d(01), sp(o1), —test(o1) [2: ~Otest(o1)
02 d(02), ~sp(02), —test(o2)|1: Otest(o2)
3 o1 d(01), sp(o1), test(o1)  |2: ~Otest(o1)
02 d(02), ~sp(02), —test(o2)|1: Otest(o2)

Table 1. A run and its annotations

Table 1 shows a run of a bloodbank augmented with annotatitrst, an object
o1 is entered into the systeny, is a donation of source plasmé(¢;) andsp(o;) are
true). When a donation is added, its test predicate is ilyitialse. Then, an objeai,
is added, which is a donation but not of source plasma. Intting step, the objeat;
is tested. At this point, unless the run is extended todgss well, it does not conform
with the regulation. We now discuss how the annotations eneed at and used to
assess the regulation.

We begin by defining an annotation. Given a f®nan assignment € V(R), and
¢ € L,v(yp) is the formula obtained by replacing all variableby the unique name for
the objectv(x). We assume that all variables are free. Note tl{al) is equivalent to
a propositional LTL formula, as the variables have beeraegi by constant symbols.
An annotation, idv(y), is a propositional LTL formula associated with an identifie

Given a point R, i) and an assignmentc V (R), first we consider the permission
2p:d(y) A sp(y) ~ —Otest(y). If (R, i,v) E d(y) A sp(y), then(R, i) is annotated
with 2: v(—Otest(y)). Otherwise, there is no annotation.

Since the precondition of statement (2) is true for the assi@nt ofy to o1, we
have the annotation 2iCtest(oq) at all points. However, sincg is not a donation of
source plasma, there is no correponding annotation.

Now consider the formuly 5 (—Otest(z)). This is evaluated as follows. We eval-
uate 2p: d(y) A sp(y) ~ —Otest(y) at (R, 1) w.r.t. all variable assignments. Lét be
the conjunction of the annotations produced by the formald2).

(R,i,v) | by (—Otest(x)) iff = o = v(=Otest(x))
Notice that this requires a validity check in propositioliell, which can be decided
in space polynomial in the size of the formula [18].
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Returning to the run in Table 1, the states are annotatedwitt>test(o;) and=
~Otest(o1) = —Otest(o1), Sincep = ¢ is a propositional tautology. S@r, 4, v) =
by 21 (=Ctest(x)) whenv(z) = oy.

We can evaluate @. d(z) A —byz; (=Stest(x)) ~ Otest(x) similarly by an-
notating states witt>test(x) if the precondition holds. In Table 1, this results in an
annotation of 1test(o2) on the appropriate states.df is never tested, the run will
be declared non-conforming (by Definition 5), but the antiotewill remain. This lets
a law which depends on (1) draw the correct inference.

3.3 Reference Logic (Refl)

The semantic evaluation outlined in Section 3.2 works onhemwthe references are
acyclic, since an order of evaluation needs to be defined.analle cycles, we adopt
a fixed-point technique from Kripke’s theory of truth [10]hd idea is to move to a
three-valued logic where the third (middle) value standsuftgrounded|nitially, all
statements are ungrounded and there are no annotatiomg &isiinflationary func-
tion, we add annotations until a fixed point in reached. |s #@ction, we define this
inflationary function and show that it has least and maximxadipoints. We begin by
extending the syntax described in Section 3.1:

Definition 6 (Syntax of Preconditions).Given set%, ..., @,, (of predicate names), a
set of variablesY, and a finite set of identifie®sD, the languagd.’ (&1, ..., ¢, X, I D),
abbreviated ad//, is the smallest set such that:

- p(y1,...,y;) € L' wherep € &, and (v, ..., y;) € X7.
—Ifpe L then~p e L'anddp € L'. If p,¢p € L', thenp A € L’
—IfIdCIDandy € L(®4,...,P,, X) (Definition 2), therbya(¢) € L'

The syntax of regulatory statements (Definition 3) is modifie that the precondi-
tions of laws are statements frohl. We useid.x : ¢ ~» 1) to stand for a normative
statement (either obligation or permission). We now defmaranotation:

Definition 7 (Annotation). Given a runR, a set of identifierg D, a body of regulation
Reg andv € V(R), an annotationis a statement id(t)) such thatd € ID andid.x :
¢ ~ 1 € Reg. The set of annotations is denoteddyR, I D, Reg), abbreviatedA.

Definition 8 (Annotation Function). Given a runR, an annotation function. : N —
24 assigns a set of annotations to each point. We adel(i) to denote the set of
annotations idw € «(i) such thatid € Id.

We will formalize the semantics using the fixed point tecleigputlined in [10].
Before we turn to the formal definitions, we sketch some ok#neideas involved.

Let us assume as given a riih Statements i’ and Reg are divided into three
classes corresponding to truk((, v)), false (¢, v)) and ungrounded{(i, v)) for all
timesi € N and assignments € V(R). Intuitively, U(i, v) is the set of statements
that are waiting for the evaluation of another statement.
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As we discussed in Section 3.2, to determine whellyer(¢) € T(i,v), we need
to check if there is a set of annotations which imp(y). We construct the annotation
functiona such that for all assignmentswe have idw(vy) € (i) iff ¢ € T(i,v) for
someid.x : ¢ ~ 1 € Reg andid € Id. We will say thatbyi4(p) € T(i,v) only if
a.1d(i) U {v(—p)} is not satisfiable.

To determine whethésyiq(¢) € F(i,v), we need to ensure that there is no un-
grounded statement that could make it true. To check thiglion, we construct the
annotation functiory’ such that idw(y) € o/ (¢) iff ¢ € T(i,v) U U(4,v) for some
idx : @~ 1 € Reg andid € Id. The condition for falsity w.r.to/ is simply the
negation of the condition for truth w.ra.. More formally,byq(p) € F(i,v) only if
o/ Id(i) U{v(—¢p)} is satisfiable.

When there are circular references, one cannot alwaysateadistatement to be true
or false. The Nixon-diamond problem (introduced in [7]) iwell-known example. We
rephrase it in “legalese”:

(6) Except as otherwise specified, Quakers must be pacifists.
(7) Except as otherwise specified, Republicans must not tigis.

These statements can be represented in RefL as follows:

6.0 q(x) A ~byj,7y (~p(2)) ~ p(x), and

7.0:7(x) A =by(e 73 (p(2)) ~ —p(x)

Suppose we are given a state with an individug@lor Nixon), who is both quaker
and republican, i.e¢(n) andr(n) hold. How should we evaluate the statements above?
[10] suggests two answers to this question: (A) The statésrage neither true or false
(they are ungrounded). This corresponds to skeptical néagm non-monotonic logic.
(B) Exactly one ofby g 73 (p(n)) andby e 73 (—p(n)) is true, which leads us to con-
cludep(n) (by (6)) or—p(n) (by (7)) resply. This corresponds to credulous reasoning
in non-monotonic logic.

In the semantics we give below, different answers corredgondifferent fixed
points. We refer the reader to [10] for examples and disoussf the various possi-
bilities with regard to fixed points. The choice of what to dbem there are multiple
fixed points depends on the application, and we discussdhimifurther at the end of
this section.

Definition 9 (Evaluation). Given a runk and a body of regulatioieg, an evaluation
isatupleE = (T,F,U), whereT, F and U are functions of the forrV x V(R) —
2.7 whereL™ = Reg U L. Furthermore, for alli € N andv € V(R), we have
T(i,v) NF(i,v) = ) andU(i,v) = 257 — (T(i,v) UF(i,v)).

Given an evaluatiol, o is the annotation such that for alle V andid € ID,
we have idw(¢) € ag(i) iff ¢ € T(i,v), whereid.x : ¢ ~ 1) € Reg. Similarly, o/
is the annotation such that idi(y)) € o'y (d) iff ¢ € T(¢,v) UU(,v).

Definition 10 (Consistent Evaluation).An evaluationZ is consistent iff for ali € N
andv € V(R), T(i,v) = F(i,v) = 0, or T(i,v) andF (i, v) are sets such that:

1. p(z1,...,x;) € T(i,v) .iff (v(z1), ..., v(x;)) € mj(p,r(9))
p(x1,...,x5) € F(i,v) iff (v(z1),...,v(z;)) & m;(p, (7))
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2. If ¢ € T(i,v) andy € T(i,v), thenp A € T(i,v)
If ¢ € F(i,v) or¢ € F(i,v), theng Ay € F(i,v)
and similarly for negation and temporal operators
3. Ifp =4 € T(i,v), then ido: ¢ ~ ¢ € T(i,v)
If o = ¢ € F(i,v), then ido: ¢ ~ ¢ € F(i,v)
id.p: ¢ ~ ¢ € T(i,v). Runs vacuously conform to permissions.
4. Ifbyia(p) € T(4,v), thenag.Id(i) U {v(—¢p)} is not satisfiable.
If byra(¢) € F(i,v), thena/z.I1d(i) U {v(—y)} is satisfiable.

The set of all consistent evaluations for a réihand regulationReg is denoted by
E(R, Reg), abbreviatect.

Observe that in consistent evaluationshifia(¢) € T(i,v), thenag.Id(i) U
{v(—¢)} is not satisfiable (Clause 4 in Definition 10). The converssinet be true.

Definition 11 (Partial Order). Given evaluations; = (T1,F;,U;) and B> =
(T3, F2,Us, as), we say that; < Es iff forall i € N andv € V(R), T1(i,v) C
Ty (Z, 1)) andFl(i, 1)) CFy (Z, 1)).

The pair (€, <), where€ is the set of consistent evaluations is a partially ordered
set (poset).

We now define the inflationary function whose fixed points wilvé interested in.

Definition 12 (Inflationary function). Given(&, <), the functiorf : £ — £ is defined
as follows. Given a consistent evaluatibh = (T1,F,U;), Z(F;) is the smallest
consistent evaluatio’s = (T2, Fs2, Us) such thatk; < Es, forall i € N and
v € V(R), Ta(i,v) # 0, Fa(i,v) # 0, and E; extendsE; .

We say that, extendsF, iff for all ¢ € N and assignments € V(R):

If ag, (i) U{v(—p)} is not satisfiable, thehyiq () € T2(i,v)

If o', (i) U {v(—yp)} is satisfiable, thebyiq(v) € Fa(i,v)

It remains to show thdf is well-defined, has maximal fixed points and a unique
least fixed point. We give a brief sketch here, and refer thdeeto [19] for detailed
proofs.

Proposition 1. Given(&, <) and E; € &, let&; C £ be the set of consistent evalua-
tions such that, € & iff £y < E,, for all i andv, Ta(i,v) # 0, Fa(i,v) # (), and
E> extendst;. Then &> has a smallest element.

The existence of fixed points is established using Zorn’samwhich applies to
chain-complete posets. Given the poget<), a set€’ C £ is called a chain (totally
ordered set) iff for allE,, F> € £, we haveE; < E, or E5 < Fj. A poset is chain
complete iff every chain has a supremum. The following castmvn:

Proposition 2. (£, <) is a chain-complete poset.

Lemma 1 (Zorn (c.f. [20])). Every chain complete poset has a maximal element
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The existence of maximal fixed points is immediate from Zetemma and the fact
thatZ is inflationary, i.e.,E < Z(F). Let E* be a maximal element ifi, sinceE* is
maximal andE™ < Z(E*) it follows that E* = Z(E™).

To show the existence of a least fixed point, as [10] notes, iNe@ed the obser-
vation thatZ is monotonici.e., if E4 < E, thenZ(E;) < Z(E,). This can be shown
by an argument similar to the proof of Proposition 1. With rotmmicity, we obtain the
following corollary to Zorn’s lemma:

Corollary 1. GivenFE; € &, leto(E;) be the smallest set such that: (&) in &, (b)
if £ € o(E) thenZ(E) € o(E4), and (c) ifC C o(FE;) is a non-empty chain, then
E,. € 0(E1), whereE,, is the supremum af w.r.t. £. Then:

1. o(E4) is a chain whose supremum is a fixed poinf of

2. o(E,) contains a unique fixed paint

3. If By < Es, thenE,; < E,q, whereE,; and E,» are the suprema of (F;) and
o(E,) resply., and

4. 7 has a unique least fixed point.

The first claim follows from a technique to prove Zorn's lemfg@]. The second
and third claims follow from the first using monotonicity. éyfor the last claim, con-
sider the evaluatioiry = (T, Fo, Up), where foralli € N, v € V(R), To(i,v) =
Fo(i,v) = 0, andUy(i,v) = 2L". SinceE, < E for all E € &, it follows from the
third claim thato (Ey) is the least fixed point. The results are summarized in theviel
ing theorem, which provides a base for extending RefL witteotnference predicates.
We discuss the need for other predicates at the end of tHisiseand in Section 4.

Theorem 1. Given the poset of consistent evaluati¢fis<) and a functiorf : £ — £
which is inflationary and monotoni€, has a least fixed point and a maximal fixed point.

We mention the upper and lower bounds for the complexity of@onance check-
ing w.r.t. the least fixed point. Given a rdhiand regulatiomReg, we say thal? = Reg
iff all obligations are valid inR at the least fixed poinf® is assumed to be finite in two
ways: (a) The set of object is finite, and (b) There exists, such that for allj > n,
r(n) = r(j), i.e., R eventually reaches a stable state.

Lemma 2 (Upper Bound).Given a finite runk and regulationReg, R = Reg can
decided in EXPSPACE (space exponential in the siZécgj

The upper bound is obtained by turning Corollary 1 into a sieai procedure. We
start with the evaluatioty, and applyZ until a fixed point is reached. The worst-case
size of the satisfiability tests are exponential in the siz® regulation. Since testing
satisifiablity for propositional LTL is PSPACE-complete8]lapplyingZ requires EX-
PSPACE. For the fragment of LTL discussed in this paper (usimy O) satisfiability
is NP-complete [18], an® |= Reg can be decided in EXPTIME.

Lemma 3 (Lower Bound).Given a finite runR and regulationReg, R |= Reg is hard
for EXPTIME (time exponential in the size Bég)
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The lower bound is shown by a reduction from first order logidehed with a least
fixed point predicate (the system YF in [21]). With circuleferences, we can encode
reachability computations that cannot be expressed indfidgr logic.

Discussion:We now discuss some options in defining conformance, depgrudi the
needs of the application. The sections of the FDA CFR that ave lexamined can be
formalized so that there is a unique fixed point, and confaoeas simply the satisfac-
tion of obligations at this fixed point.

However, examples discussed in the literature suggesitthmty not be desirable
to always have a unique fixed point. A well-known example & tf contrary-to-duty
(CTD) obligations (c.f. [16]). CTD obligations are thosatlarise when other obliga-
tions have been violated. Prakken and Sergot [16] point nun&exibility in casting
CTD structures as an instance of non-monotonic reasonieg@Wine how this inflex-
ibility can be avoided, using alternate definitions of canfance. Consider the follow-
ing example from [14] (similar to one in [16]The cottage must not have a fence or a
dog. If it has a dog, then it must have both a fence and a warsigny The question is
what are the obligations when the cottage has a dog. We diseogossible solutions.

The first solution is to treat the CTD norm as an exception éditist:

1.0 =byy (f Vd) ~ =(f Vd)and 20:d~ f Aw

The propositiong’, d andw correpond to the cottage having a fence, dog and warn-
ing sign resply. Since there is a dog, the precondition ofsixond law is true, and
this leads to the precondition of the first law being falseifSbA w holds, there is no
violation. However, as [16] points out, it may be useful tdet¢ that the situation is
worse than the one in which there is no dog. In the secondisn|uve represent the
laws as excluding each other, i.e., we conjelsy 11 (—(f A w)) to the precondition of
the second law. At the least fixed point, both obligationswargrounded, and we get
two maximal fixed points — one in which(f V d) is obligated, and one in whichA w
is obligated. Sincd holds, there is a violation w.r.t. the former fixed point. Isc@nario
where there is no dog, a unique fixed point is obtained.

Our analysis of CTD structures achieves the same effectasarnhlyses in [16,
14]. However, [16, 14] characterize the CTD norm as pressingcthe violation of the
other, and then revising the situation. In future work, wangto investigate predicates
that capture this presuppositional analysis more directly

3.4 Axiomatization

As we discussed in the context of Lemma 3, RefL contains fidéiologic enriched
with a least fixed point predicate. It can be shown that thigligglproblem is/7{-hard,
and as a result, it cannot be recursively axiomatized. sglction, we briefly discuss
an axiomatization of the propositional fragment/df(the language of preconditions).

We assume as given a fixed finite domain of quantification, apthce variables by
identifiers for domain elements. Given a set of identifiel a propositionalized body
of regulation has one or more statements of the fatm : ¢ ~» 1 for eachid € ID.
For example, the presence @fx : ¢1 ~ 11 andid.x : ps ~» 19 corresponds to
different assignments to the variables.
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To simplify presentation, we will assume that the referarioethe regulation are
acyclic. This lets us obtain a unique fixed point and restit#ntion to a two-valued
logic. We discuss the general case at the end of this section.

Al All substitution instances of propositional tautologjie
A2 O(p =) = (Op = OY)

A3 Op = pAOOp

R1 Fromk- ¢ = ¢ andt ¢, infert ¢

R2 Fromk @ infert Oy

We characterize the inference predicate by the laws it seti@r To axiomatize
by1a(), we need to reason about provability in the languégg@ropositional LTL).
We say thatp € L is is provable (denoted ) iff it is an instance of the axioms
A1-A3, or follows from the axioms using the rules R1 and R2u&ally, we will use
the negation of provability in the premise of a rule. Simitagchanisms have been used
to axiomatize default logic, e.g., in [22], satisfiability iised in the premise of a rule,
and in [23], a modal language is augmented with an operataatisfiability.

We begin by developing some notation. Given a set of reguyla@atementd” =
{idix: @1~ Y1, .., idpX 1 pp ~ U}, let Fpre = {1, ..., o, } be the set of pre-
conditions,Fy,qs: = {41, ..., ¥ } be the set of postconditions, aidtl; = {ids, ..., id, }
be the set of identifiers. Given a finite set of formuldsve denote the conjunction by
/\ I'. The conjunction of the empty set is identified with(a tautology). We use two
rules for the inference predicate:

R3 ForallF' C Regwith Fyq C Id,frombp A Fpost = ¢, infer= A Fpre = by1a(¢)
R4 Forally € L, if for all F C Reg with F;q C Id, eithert/, A\ Fpost = ¢, Or
F 1 = = A Fyre, theninfer ¢ = —bya (o).

Informally, R3 says thabyiq(¢) is true, if there exists a set of laws whose post-
conditions imply¢, and whose preconditions are true. R4 saysligat(¢) is false, if
one of the preconditions is false for all sets of laws whosstqgmditions implyg. In
particular, ift/r A Fpost = ¢ for all appropriate subsets, thenT = —by(¢), and
using R1}- —byiqa(¢).

The rules have an equivalent axiomatic characterizatitwghwis important in es-
tablishing completeness. Giveh € L, let F(;44) be the set of subsetd’(C Reg
with Fig C Id) such thatF" € Fiff - A Fpost = ¢. Let I'144) be the set such
that = A\ Fpre € I(1a,¢) iff F' € F1a,). Finally, let A4 4) be the set such that
/\Fp'r‘e S A(Id,d)) iff '€ ./T(]d7¢).

Proposition 3. The following are provable:

1.+ /\F(Id,(b) = —'bYId(QS)
2. Ebyra(¢) = V Agra,e)

The first claim is an immediate consequence of R4. And, therskclaim follows from
the first by propositional reasoning. It is easy to show thataxioms A1-A3, together
with Proposition 3, and the rules R1 and R2 imply the rules RBR4. The inference
predicate behaves like a modality:
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Proposition 4. + bya(p = ¢) = (byia(¢) = by ()

Completeness is be established by a standard pre-modétwction (see [19] for
details). We now discuss the general case, i.e., when thereiraular references and
multiple fixed points. In the presence of multiple fixed psjnte can define validity
w.r.t. all fixed points, the least fixed point, or maximal fixgdints. The axioms and
rules discussed here can be adapted to characterize valdityall fixed points [19].
However, we have not obtained a direct characterizatiorabflity w.r.t. the least or
maximal fixed points. [22] provides an axiomatization ofdb¢hree notions of validity
for default logic, by translating the default rules into aniaepistemic logic. A question
of interest is whether the the translation procedure in §22] be adapted for RefL.

4 Conclusions and Future Work

We have motivated and described a logic (RefL) that accotesdaferences between
laws. RefL separates two uses of statements — drawing imfesgfrom regulation, and
determining facts about an organization. We believe thattparation is crucial to the
application of conformance checking.

The inference predicate blends two ideas from logic prognang. First, the Kripke-
Kleene-Fitting semantics [24], which uses three valuesiégation in logic programs.
In RefL, we place the burden on a predicate, rather than oatiteg The advantage is
that connectives can behave as they do in a many valued Begond, contextual logic
programs [25] use operations to restrict the context froritivmferences are derived.
Referring to specific laws (via identifiers) gives us a finakged control of context.

RefL provides a staring point in bringing the advantagesosf-monotonic reason-
ing to systems such as [2, 4]. [2] represents business ataia SQL queries, and [4]
uses first-order logic augmented with real time operatadng. ihference predicate can
be added to these systems, provided that the existentiatifjcation is relativized to ei-
ther the preconditions or the postconditions. Howevetric®ns are needed to ensure
that the satisfiability tests remain decidable. [3] disesgbe importance of anlayzing
references, but do not provide a formalization.

In this work, we have considered references to laws thatappepreconditions.
There is also the need for references in postconditions. ioas case is for laws
that cancel obligations and permissions given by anothgr,ia donation is not used
for transfusion, exemption (3) no longer applidsmore speculative case can be made
for iterated deontic constructs [17], e.g., “required tmwlx”. We suggest that the
semantics will involve representing agents who introdaeeslthat reason about each
other, e.g.You are required to (introduce laws that) allow a patient é& $iis records

On the computational side, our goal is to be able to scale uprte with a large
number of objects, and incorporate RefL into a runtime checkamework for LTL.

In a companion paper [26], we identify a fragment of RefL matgd by a case study
of the FDA CFR. The fragment assumes that; () can be evaluated by using at most
one of the laws referred to. This assumption allows us tcaepsatisfiability tests with
tests of lower complexity, and lets us scale up to runs witdrgd number of objects. In
this paper, we have focussed on formally characterizing#imeantics and complexity
of RefL, and in [26], we focus on optimizations that are nekidepractice.
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