QuanTM: A Quantitative Trust Management System®

Andrew G. West, Adam J. Aviv, Jian Chang, Vinayak S. Prabhu,
Matt Blaze, Sampath Kannan, Insup Lee, Jonathan M. Smith, and Oleg Sokolsky

Department of Computer and Information Science - University of Pennsylvania, Philadelphia

{westand, aviv, jianchan, vinayak, blaze, kannan, lee, jms, sokolsky}@cis.upenn.edu

ABSTRACT

Quantitative Trust Management (QTM) provides a dynamic
interpretation of authorization policies for access control de-
cisions based on upon evolving reputations of the entities
involved. QuanTM, a QTM system, selectively combines el-
ements from trust management and reputation management
to create a novel method for policy evaluation. Trust man-
agement, while effective in managing access with delegated
credentials (as in PolicyMaker and KeyNote), needs greater
flexibility in handling situations of partial trust. Reputation
management provides a means to quantify trust, but lacks
delegation and policy enforcement.

This paper reports on QuanTM’s design decisions and
novel policy evaluation procedure. A representation of quan-
tified trust relationships, the trust dependency graph, and a
sample QuanTM application specific to the KeyNote trust
management language, are also proposed.

Keywords

Quantified Trust Management, Trust Management, Reputa-
tion Management, QuanTM, KeyNote, TNA-SL

1. INTRODUCTION

The emergence of distributed topologies and networked
services has resulted in applications that are stored, main-
tained, and accessed remotely via a client/server model. The
advantages of such a setup are many, but the challenges of
access control and identity management must be addressed.
Trust management and reputation management are two dif-
fering approaches to the problem. While effective with re-
gard to explicit declarations, trust management lacks appli-
cability when relationships are characterized by uncertainty.
Thus, trust management is useful in enforcing existing trust
relationships but ineffective in the formation of partially-
trusted ones. Reputation management provides a means of

*This research was supported in part by ONR MURI
N00014-07-1-0907. POC: Insup Lee, lee@Qcis.upenn.edu

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

EUROSECO09 Nuremberg, Germany

Copyright 2009 ACM 978-1-60558-472-0/09/0003 ...$5.00.

quantifying trust relationships dynamically, but lacks access
enforcement and delegation mechanisms.

To address this divide we introduce the notion of Quanti-
tative Trust Management (QTM), an approach that merges
concepts from trust and reputation management. It (QTM)
creates a method for specifying both policy and reputation
for dynamic decision making in access control settings. A
system built upon QTM can not only enforce delegated au-
thorizations but also adapt its policy as partial informa-
tion becomes more complete. The output is a quantitative
trust value that expresses how much a policy-based decision
should be trusted given the reputations of the entities in-
volved. Further, to make this novel concept concrete, we
propose QuanTM, an architecture for supporting QTM.

In this application of QuanTM, we use the KeyNote [8,
7] (KN) trust management language and specification, due
to its well defined delegation logic and compliance system.
Summarily, a KN evaluator checks a user’s access credentials
against local policy to produce a compliance value from a
finite and predefined set of values. The compliance value is
then used to make access decisions. KN allows principals to
delegate access rights to other principals without affecting
the resulting compliance value. Further, KN is monotonic: If
a given request evaluates to some compliance value, adding
more credentials or delegations will not lower that value.

We argue that credentials should not be explicitly trusted,
nor should the trustworthiness of delegating principals be
ignored. Furthermore, the result of evaluation for a given
access request may need to be dynamic [9]. Service providers
may find it desirable to arrive at different opinions based
on local constraints, policies, and principals for the same
request. In QuanTM, this is easily expressed.

We address these issues in the following two ways: (1) It
includes a means to dynamically assign reputation to prin-
cipals and their relationships within a request, and (2) It
provides a mechanism for combining this information to pro-
duce a trust value. In QuanTM, a trust value (often a real
number) is used to represent the the trustworthiness of a
given compliance value and how it was reached.

Our proposed QuanTM architecture (see Fig. 1) consists
of three sub-systems:

1. TRUST MANAGEMENT consists of a trust language eval-
uator that verifies requests meet policy constraints,
and a trust dependency graph (TDG) extractor that
constructs a graph representing trust relationships.

2. REPUTATION MANAGEMENT consists of two modules.
First, a reputation algorithm to dynamically produce

reputation values by combining feedback. These repu-
tation values weigh TDG edges. Second, a reputation
quantifier computes the trust value for a given request
by evaluating the weighted TDG.

3. DECISION MANAGEMENT is composed of a decision maker

that arrives at an access determination based on a trust
value, context, and an application specific meta-policy
that encodes a cost-benefit analysis.

The design of QuanTM has been guided by the require-
ment that the individual components will be application-
specific, and thus, we have designed QuanTM modularly.
QuanTM provides a simple interface by which different trust
management languages, reputation algorithms, and decision
procedures may be included. In this paper, we propose a
QuanTM design instance that utilizes the KeyNote language
and TNA-SL [11, 12] reputation algorithm. This instance’s
implementation and evaluation is the subject of future work.

2. ARCHITECTURE OVERVIEW

Our proposed architecture is broken into three sub-systems:

A trust manager, reputation manager, and decision man-
ager. One goal of QuanTM is to be highly modular, so the
system can be customized to application specifics. In Fig. 1
below, we present the QuanTM architecture using KeyNote
as the trust management language.

Compliance Value

e T | (ﬁL \‘
|
|
|
|

] N\ / \
(Reputation /" Context
\\Quantiﬁir /)

\Infon-nanon/ I

! !

I I

I I

|
| |
|
| |) | v
Request -~ ~ N A SN
& g KeyNote) : GCPUlal‘On\ | </TV\>-\‘—>‘/ Decision | Action
Credentials| |\ / | "\ Algorithm / \ _ Maker /
N Nlgorithm SN N Maker S
21 1 | p
: | I ‘ | | ‘ |
T | | |
I/ 1c /D S | /Reputation \ | </ Decision\> !
\ ! \) . |
| _ Extractor / |\ Database / \Meta-Polic
‘ \\ e // ‘ \ / | ;)7 |
| Trust | | Reputation | | Decision |
N Manager | N Manager | | Manager |
_——— — - — _ N
Feedback

Figure 1: Proposed QuanTM Architecture

In what follows we will assume that a group of princi-
pals initiate each action request. First, a set of principals
present an action request along with their credentials. The
KeyNote (KN) compliance checker computes the compliance
value using local policy. This value is then relayed to the
decision manager to (later) make an action decision. The
compliance checker also passes relevant delegation data to
the trust dependency graph (TDG) extractor. The resulting
TDG is given to the reputation management sub-system. In
Sec. 5 we present a detailed discussion of TDG extraction.

The reputation management sub-system’s task is twofold:
(1) Use a reputation algorithm and a reputation database
(that is dynamically updated based on feedback from run-
time behavior) to assign reputation values on the edges of
the TDG, and (2) Evaluate the TDG using the reputation
quantifier to produce the final trust value (TV). Sec. 6 pro-
vides a description of reputation management modules.

The last sub-system, the decision manager (see Sec. 7), is
composed primarily of a decision maker that requires input

from the previous sub-systems as well as context monitors.
It analyzes the information using a decision meta-policy and
cost-benefit analysis to grant or deny a request.

3. RUNNING EXAMPLE

Trust is at the heart of all access decisions, and to demon-
strate this property, we introduce a running example. As-
sume there is a central database resource that stores orders
for bicycle manufacturer Arrow Bikes (A). Certainly, stores
selling Arrow Bikes should be able to update the DB with
new orders. However, should a store have the ability to view
(query) the DB and see other stores orders? This should de-
pend on the conditions of their access request.

Let us suppose Arrow Bikes are sold in two stores it owns,
Bikes-R-Us (B) and Cathy’s Bike Supply (C). A third store,
Driven-2-Bike (D), is owned by a third party but operated
by B. Finally, a fourth store, E-Bike (E), sells Arrow Bikes
on-line. Because of Internet security concerns (i.e., injection
attacks), Arrow Bikes requires all E-Bike query requests to
be signed off by a trusted seller, either B or C.

This scenario presents a number of trust relationships.
From A’s perspective, its most prominent relations are with
B and C. They are both more trusted than third-party D,
whose trust follows from that given to B. Clearly, requiring
the approval of B or C, seller E is in the least trusted position.

Throughout the paper, we will refer back to this example
and its trust relationships. We will first encode these rela-
tionships as KeyNote assertions and show how this encoding
meets the trust needs of Arrow Bikes. Next, relationships
will be represented in a trust dependency graph that will be
evaluated to determine the trust value for a given request.
Lastly, we will describe a decision procedure and meta-policy
that best suits this example. We will refer to the principals,
i.e., Arrow Bikes and Bikes-R-Us, by the first letter in their
name, i.e., A and B, wherever appropriate.

4. KEYNOTE

KeyNote is a declarative language describing relationships
among principals and evidence that permits principals to
perform certain actions. These relationships are specified as
policies. If cryptographically signed and used externally, a
policy can be viewed as a credential. KeyNote credentials
and policies are known as assertions. When a trust inquiry
is made, a set of action requesters (principals), present a set
of policies and credentials that allow the group to perform
an action. The KeyNote ‘compliance checker’ evaluates this
input and returns a compliance value (CV) in a linearly
ordered set, between an application specified MIN_CV and
MAX_CV!, which is used to make application control decisions.

4.1 Language Specification

A policy has three primary? components; the Authorizer,
Licensees, and Conditions fields.

The Authorizer is the principal delegating trust, who is
essentially ‘saying’ this assertion. KeyNote provides a spe-
cial Authorizer, POLICY, that is the root of all trust. Valid
delegation chains must emanate from POLICY. Additionally,
a Signature field specifies the signature of a credential.

KN specifies these as MIN_TRUST and MAX_TRUST, we label
them CVs to distinguish them from the TVs used herein.

2For a more complete language specification we refer the
reader to RFC 2704 [6].

The Licensees states to which principal(s) the Authorizer
is delegating trust to, and it also expresses from whom dele-
gation chains must be present. It is written as a logical state-
ment of AND/OR operators between principals®. The logic of
the Licensees field also describes how CVs are combined
to form a single output. The MAX function is applied to OR
delegations and the MIN function to AND ones. For example,
if the Licensees field is ‘ADAM && JOHN’ then the CV of the
delegation will be the minimum of the CVs of the delegation
chains emanating from Adam and John. Note that when de-
scribing the presence of a delegation chain, ‘ADAM && JOHN’
will evaluate to true iff either (1) Adam and John are both
action requesters; or (2) JOHN is an action requester and
there is a delegation chain from ADAM to an action requester
(i.e., there exists a delegation from ADAM to PAUL and PAUL is
an action requester), or vice versa,; or (3) there are delegation
chains from both JOHN and ADAM to the action requesters.

Finally, the Conditions field permits comparison using
environmental variables. Conditions are written as propo-
sitions, which when true imply a CV. When more than one
value is implied, the maximal one is used.

Provided this specification, one can now determine a CV
for an entire delegation chain. First one computes CVs via
the comparisons of the Conditions field for all credentials
in the chain. These are then combined up the chain using
MIN/MAX per the Licensees field until the root node (POLICY)
is reached. This final CV is then returned to the application.

By design, the KeyNote evaluator is monotonic. That is,
the addition of assertions/principals/etc. will never decrease
the returned CV.

4.2 Example Policy

We now use our running example to demonstrate how
KeyNote is used. Recall that Arrow Bikes (4), with an order
database, wants to give sellers full ‘update’ rights but poten-
tially limit ‘query’ rights. As shown below, POLICY delegates
all trust to A, giving it full database access (ASRT_0). Then,
A delegates a portion of these rights to two stores it owns, B
and C (CRED_1). Namely, B and C are authorized to update
the database and potentially issue a query.

Comment: ASRT_O
Authorizer: POLICY
Licensees: A

Conditions:
operation == "update" -> "True";
operation == "query" -> "True";

Comment: CRED_1
Authorizer: A

Licensees: B || C

Conditions:
operation == "update" -> "True";
operation == "query" -> "Maybe";

Signature: "rsa-sig:1294..."

We use {False7 Maybe, True} as our CV set. True, rep-
resenting MAX_CV, implies an action should be permitted.
False, representing MIN_CV, implies an action should be de-
nied. Maybe indicates that permission is unclear. In ASRT_0

3The specification also defines a K-OF operation, but it can
be composed using AND/OR delegations and thus is omitted
from this discussion.

and CRED_1 above, A has more rights than B or C. If A were
to request a query, KN would return True. If B or C made
the same request, the result would be Maybe. These asser-
tions precisely match the requirements of the example as
described in Sec. 3.

Next, we wish to represent seller D, who has third-party
ownership, but is operated by B. This can be encoded by
having D’s access rights emanate from B, or, more precisely,
D’s access rights are authorized by B as shown below:

Comment: CRED_2
Authorizer: B
Licensees: D

Conditions:
operation == "update" -> "True";
operation == "query" -> "Maybe";

Signature: "rsa-sig:8471..."

Finally, the relationship between A and seller E is the most
complex. In our example, query requests by E must be
approved by either B or C. This can be encoded into the
Licensees field of the credential as below:

Comment: CRED_3
Authorizer: A
Licensees: E && (B || C)

Conditions:
operation == "update" -> "True";
operation == "query" -> "Maybe";

Signature: "rsa-sig:3850..."

If E presents CRED_1 and CRED_3 without either B or C as
co-requesters, then the request will be invalid and the CV
will be False, by default. However, if E co-requested with
either B or C or provided a credential from either authorizing
E, the request would be walid. This example also provides
another valid credential chain for E to gain access rights. If
E were to present CRED_1, CRED_2, and CRED_3 with D as a
co-action requester, then a different — albeit valid — chain
would form. When B delegated access rights to D, it also
delegated authorization rights (a property of KN), so D may
also authorize requests made by E.

These two valid but structurally different requests result
in the same CV. However, as we will later exemplify with our
reputation manager, the TVs associated with these requests
may differ, since the principals, delegations, and credentials
involved also differ.

5. TRUST DEPENDENCY GRAPH

We now describe the format and properties of a trust de-
pendency graph (TDG). A TDG is a directed graph represen-
tation of the relationships between principals, delegations,
and credentials that were used to obtain a CV. We design
our TDG to be expressive enough to specify, and therefore
quantify, at least three types of reputation: (1) Reputation
of a principal, p1, (2) Reputation of a delegation, p2, and
(3) Reputation of a credential, ps.

These three types allow us to apply reputations to pre-
cisely those entities that can influence a CV. The influence
of the first type (p1) is clear; a principal involved, either
as an authorizer or action requester, holds direct influence
over the CV computed. The reputation of a delegation (p2)
is the reputation of a principal with respect to how it dele-
gates its access rights. The third reputation type (p3) is of a

credential itself. Since a credential can be used many times
in many contexts, past observations of its use can influence
its reputation.

If there is a cycle in the credentials, it will be broken by the
compliance checker (KeyNote, in our example). However,
there may be multiple ways to break a cycle and still arrive
at the same CV. Instead of exploring all possible forms we
argue that the appropriate TDG encodes the precise depen-
dency structure that the compliance checker used to produce
it (the CV). In this way, the computed TV will character-
ize precisely that CV and the evaluation structure which
brought it (the CV) about®.

5.1 TDG Design

A TDG is a directed graph G = (V,E). Every TDG
has a root node, vpor, that encodes the root of trust, i.e.,
KeyNote’s special authorizer POLICY. The set of principal
nodes, Vprg, represent either authorizers or action requesters,
i.e., principals. Operator nodes, Vop, are used to represent
propositions of licensing, i.e., AND and OR operations of the
Licensees field. Operator nodes must have two children. To
facilitate this, null nodes denoted by Vj, are used in place of
principals who are neither authorizers or action requesters.

Legend
<> Root Node vpop.
O Principal Nodes
[Operator Nodes

Figure 2: Defining TDG Edges and Nodes

There are four mutually disjoint sets of edges (E). The
first set of edges consists of policy edges, which are used only
to connect the vpor, node with operator nodes. The set of
policy edges is denoted as Fpor where Epor C {vpor} X
Vop. These edges represent assertions authorized by the
root of trust. The set of delegation edges, Epgr, consists
of edges between principal nodes and operator nodes, i.e.,
Eper, C Vpr X Vop. These edges represent credentials au-
thorized by the principal at the tail of the edge. The set of
operator edges, Eop C Vop X Vop, is used to express com-
plex delegations and is a result of our binary constraint. The
final set of edges, Fpr C Vop X Vpr, consists of principal
edges, which connect operator nodes with principal nodes.

5.2 TDG Properties

Edge weights (reputations) will be assigned using the rep-
utation algorithm. The edge type determines the reputation
type that will be applied. More precisely, weights applied
to edges from Eppr are for reputations of a principal (p1).
Reputations of delegations (p2) are placed on Epgr edges.
In this manner, the first two types of reputation are rep-
resented. We identify sub-graphs of the TDG according to
the credential from which they were extracted. These sub-

41t is possible to compute a TV from a TDG with cycles as
a least fixed point, but we do not describe it here.

graphs form credential groups (indicated by dashed group-
ings in Fig. 2) that are weighed by p3 reputations.

Edges from Eop are not weighed because operator edges
are used to combine operations for a complex delegation
and do not represent separate delegations themselves. Edges
from Epor, are not weighed either, as permitting weights on
policy edges would allow a discount in the root of trust, i.e.,
POLICY, which is assumed to be fully trusted.

5.3 TDG Examples

Returning to our running example, recall the two request
formats presented in Sec. 4.2. E wants to make a request
to the database and there are two scenarios by which it can
gain access. In the first request format (R:), E makes a
request with B (or C), and presents CRED_1 and CRED_3 in
order to form a valid request. ASSRT_O is used locally to
complete the chain to POLICY. In the second format (Rz),
E requests with D and presents one additional credential,
CRED_2, which delegates rights from B to D. In Fig. 3, we
present the TDG for both requests.

Request R

Request Rz

Figure 3: Running Example TDGs

In both requests the dependencies are clear. In Ri, A
authorizes CRED_3 whose Licensees field is satisfied by the
presence of B and E as action requesters. In Rz, the action
requesters are E and D. Principal B is still present, but as an
authorizer, not an action requester. Reputations of princi-
pals (p1), can now be assigned on edges from Epg, i.e., those
edges terminating at nodes E, B, and A in R; and addition-
ally D in R. Reputations of delegations (p2) are placed on
edges from Epgr, i.e., the edges connecting A and B with
an operator node. Credential reputations (p3) are placed on
the groupings.

The additional credential and edges present in Rs reflect
a longer delegation chain by which E may gain access rights;
they will have a profound effect on the resulting TV. This
will become clear in the next section when we assign rep-
utation values to the TDGs and evaluate the structure to
produce a TV for each request.

6. REPUTATION MANAGEMENT

The reputation management sub-system has two distinct
tasks: (1) It assigns reputation values to TDG edges using
a reputation algorithm that aggregates reputation database
entries, and (2) It evaluates the TDG using a reputation
quantifier to produce a TV.

6.1 Reputation Database

We utilize a reputation database (DB) to obtain interac-
tion histories concerning the principals, delegations, and cre-
dentials in a TDG. The DB may, for example, store positive
and negative feedbacks® between directed principal pairs.
Context data is stored so reputation can be calculated at
varying granularity. An example reputation DB specific to
our running example is shown in Tab. 1. Database entry F'1,
for example (which would result from request Ri), states
that principal A had a positive experience with requesters
B and E, when they utilized a service authorized by A via
CRED_3. Note the presence of principal F (Frank’s Bikes),
which despite being external to the TDG(s), may have ex-
perience relevant to reputation computation.

ID SRC DEST +/- AUTH CRED

F1 A {B,E} + {A} {CRED_3}

F2 A {D,E} — {A,B} {CRED_2,CRED_3}
F3 A {F} + {aA,c} {CRED_W,CRED_X}
F4 F

{D} + {C,F} {CRED_Y,CRED_Z}

Table 1: Example Reputation Database

Depending on the reputation type (p) the reputation algo-
rithm is asked to calculate, it will query the DB differently,
thereby limiting the entries it aggregates. To calculate repu-
tation of a principal (p1), the entire DB is used. Reputation
of a delegation (p2) would select only rows where the autho-
rizer matches the principal that is delegating, i.e., the start
terminal of Epgr. Reputation of a credential (ps3) would do
a similar matching on the credential field.

For the sake of simplicity, we will focus on calculating
trust in principals (p1), keeping in mind the capability for
such refinement. Further, we omit feedback mechanisms in
this paper and assume the reputation database is given. We
plan to present a detailed feedback system in future work.

6.2 Reputation Algorithm

The reputation algorithm describes the procedure by which
reputation DB entries are combined to assign weights to ap-
propriate TDG edges. Reputations represent a directed val-
uation of trust between a principal and another entity. In
particular, the source of this directed reputation will always
be the service provider, SP. This is intuitive; SP hosts the
service, so it should be the root of all reputations used to
make an access decision regarding that service.

For example, an Epgr edge to a licensee L would be weighed
by calling computeRep(L). This returns SP’s reputation
in L. Depending on the algorithm implemented, the value
may be user-centric, i.e., computeRep (L) may return differ-
ent values to different service providers (reputation DBs can
span many services), or it may be global, i.e., computeRep (L)
will return the same value, regardless the service provider.

There are two p types our proceeding (and eventually con-
tinued) example neglects. To weigh an FEpgr edge repre-
sentative of a delegation made by L, computeRep(DEL(L))
would be called. The reputation algorithm will utilize the
query style of Sec. 6.1 to obtain a feedback set, perform
computation, and return SP’s trust in L with respect to au-

5Though we discuss only binary feedback, it could take the
form of an ordered set, or a continuous variable.

thorizations. In a similar fashion, a computeRep(CRED x)
call will return SP’s reputation in credential CRED x .

How feedbacks are combined is reputation-algorithm de-
pendent. Generally, some combination of direct and indi-
rect (transitive) experience is used. Feedback aggregation
may involve principals external to the TDG, as we exem-
plified with principal F in the reputation database example.
Further, reputation algorithm design is primarily focused
on limiting the capabilities of malicious principals who may
purposely manipulate feedback to gain an advantage. There
are many reputation algorithms in existence. The survey
work of Li and Singhai [16] describes several. We do not be-
lieve that any single reputation algorithm is most effective
on all application domains.

Most reputation algorithms can be interfaced into our sys-
tem, with one limiting constraint; the resulting reputation
value must have an absolute interpretation. This way, appli-
cations can set and consistently interpret policies based on
reputation thresholds. Systems like EigenTrust [14], which
uses relative trust, are therefore inappropriate.

To provide an example of a reputation algorithm, we present
Trust Network Analysis with Subjective Logic [11, 12] (TNA-
SL), which will be exclusively used in forthcoming examples.

6.2.1 TNA-SL

The expressiveness and rigor of TNA-SL make its use ap-
propriate in this application. While theoretically sound,
TNA-SL suffers from a lack of scalability [23]. In TNA-
SL, trust is stored as an opinion (w), a 4-tuple (b,d, u, c)
which represent belief, disbelief, uncertainty, and a base-
rate, respectively. At all times (b+d+u) =1, and a € R
on [0...1] is used to store a-priori notions of trust. TNA-
SL converts past (positive and negative) interactions into a
4-tuple opinion per Tab. 2.

belief (b)) = (pos/(pos + neg + 2.0))

disbelief (d) = (neg/(pos+ neg + 2.0))

uncertainty (u) = (2.0/(pos + neg + 2.0))
base-rate () = User-Defined

Table 2: Calculating Opinions from Feedback

Two logical operators, discount and consensus are of note.
Tab. 3 shows their calculation. Discount is used to evaluate
transitive chains. It would be used, for example, if user A
wanted to calculate an opinion about user C using informa-
tion at intermediate user B (w&? = wa @ w8). Consensus
is used to average together two opinions. Suppose user A
and user B both have opinions about user C. To consol-
idate these into a single opinion, consensus would be used
(wéoB =wi® wg). To export opinions to a numeric value,
the expected value is calculated as EV = b+ au.

When TNA-SL is called, it first converts reputation DB
entries into an opinion digraph. Then, an uncertainty mini-
mal graph between two (provided) terminals is constructed.
Finally, the SL-operators reduce the graph to a single opin-
ion. We will take a more detailed look at how TNA-SL is
computed in conjunction with our running example.

6.2.2 Edge Weight Example

Returning to the example, recall the TDGs of Fig. 2. We
weigh the Epr edge (present in R1 and R2) terminating at
E, via service provider A, by calling computeRep (E).

Discount: ® Consensus: @

bA:B — bAbB bAOB — bé“g+bgué
¢ = bibe = hgedr
44 = b 48P = Spugricas

ué+ugfuéug
A B

A:B __ A A A B AoB __ U Uc

ug”’ =dpt+up+bpug || uc”T = WA Tul udul

o = a 0 = a

Table 3: Discount and Consensus Operators

Suppose we are utilizing the (extended) reputation database

of Tab. 1, which we assume to contain all the relevant feed-
back history. We begin by summing interaction histories
pair-wise between principals, i.e., the direct relation from A
to E is characterized by 3 positive and 1 negative feedbacks.
Tab. 2 describes how to convert these relations to opinions,
i.e., wh = (0.50,0.17,0.33, a)®. Using this, we can construct
a digraph with principals as nodes and opinions on edges.

Using this digraph, we enumerate all acyclic paths be-
tween our start terminal (A) and end terminal (E). The con-
fidence, (1 —wu), in each path is calculated using the discount
operator, and the path list is sorted from most-to-least con-
fident. This is presented in Tab. 4.

ID Path Confidence-Expression || Conf
P1 A=E [1—u € wi] 0.66
P2 | A=F=B=E | [l —u € (wf @ wi @wE)] 0.58
P3 A=F=E 1—u€ (wpwp)] 0.56
P4 A=B=E 1—u€ (wi®wh)] 0.17
P5 | A=B=F=E | [l —uc (v ®wi®wi)] 0.05

Table 4: Confidence-sorted Path List

A graph, G, is now constructed. Traversing the sorted list,
a path p is added to G iff (G + p) is a direct-series parallel
graph (DSPQG) [22]. At list’s end, G is the DSPG between
A and E that minimizes uncertainty. In our example, G =
{P1UP2UP4}. G may be written as a canonical expression
of SL-operators (notice that discount and consensus apply
to series and parallel composition, respectively):

OPg = wp ® [{wr ® (wh @wp)} @wi] = (0.52,0.18,0.30, 0.50)

This opinion, OPg, or its expected-value, EV(OPg) =
0.67, defines the reputation of A in principal E and weighs
the aforementioned edge.

6.3 Reputation Quantifier

Now that reputation values have been assigned to TDG
edges, it is the responsibility of the reputation quantifier to
evaluate the TDG to produce a final TV. In order to do
this, the quantifier requires: (1) Parallel operations and (2)
Transitive operations. Parallel operations combine reputa-
tions across edges on the same level of the graph, i.e., two
reputation values beneath a single edge. Transitive opera-
tions combine reputation values up the graph, i.e., between
a sub-graph and its connecting edge or credential group.

Because there are three reputation types (p), seven differ-
ent functions must be defined per application specifics:

SFor the purposes of this example, & = 0.5 in all opinions,
as we assume there is no a-priori trust between principals.

Parallel Operations:

e fu,fn combine values on edges beneath an operator
node, with respect to the operator label.

e f4e combines values on edges beneath a principal node.

® fced combines values across credential groupings.

Transitive Operations:

® gpin combines a p; value on an edge with the value of
the edge’s connecting sub-tree, the output of fered-

® g4 combines a p2 value on an edge with the value of
the edge’s connecting sub-tree, the output of fv/fx.

® gced combines a p3 value of the credential group with
the value of the containing sub-tree, the output of fyei.

6.3.1 Computing Trust

The function evalTrust(v) computes the TV of a TDG, and
it proceeds in a depth first matter beginning at vpor. To
properly define the function we introduce access functions:
(1) chld(v,) returns a tuple (€,7) with respect to credential
group ¢, where € = (e1, ..., ex) denotes the list of outgoing
edges from node v in the credential group ¢, 7 = (v1,...,vx)
denotes the corresponding list of child nodes, and each v;
is connected by edge e; (if v € Vop, then irrespective of
¢, {e1,e2,v1,v2) corresponding to the credential group of v
is returned because by definition a Vop node can only be
a member of a single credential group); (2) crd(v) returns
(c1,...,ck) where each ¢; corresponds to a different creden-
tial group that node v is the authorizer per the graph; and
finally, (3) wt(e) and wt(c) return the weight on an edge e
and on the credential group c, respectively (if no weight is
present, NULL_REP is returned).

The function evalTrust is defined as follows:®

Function evalTrust (v) for the trust value of a TDG

switch v do
case v € Vop s.t. OP € {V,A}
(e1, e2,v1,v2) = chld(v, *);
p1 = gprin(Wt(e1), evalTrust(v1));
P2 = gprin(Wt(e2), evalTrust(v2));
return fop(p1,p2)
case v € Vpgr U {"UPOL} U V@

¢ = NULL_REP;
foreach ¢’ in crd(v) do
d = NULL_REP;

foreach ¢’,v’ in chld(v,c’) do
d = faer(gae(wt(e), evalTrust(v')), d);
end
c= fcred (gcred(d7 Wt(C/)), C);
end
return c;
end

"NULL_REP corresponds to null-trust for all reputation types.
It differs from the notion of complete distrust, and when
combined with other reputation values, NULL_REP should
leave them unchanged: i.e., MIN(a, NULL_REP)= a.

8In KeyNote it is not possible for two delegations to occur
in a single credential. Hence, for a KeyNote based trust
manager, fcred is the identity function.

Request R, Request R,

Figure 4: R; and R; with Reputation Values

6.3.2 Example Quantification

We now refer the reader back to the running example.
In the last section, we assigned a p; value to the edge that
connects E to the TDG. Now, we present the TDGs of R;
and Ry with the rest of the reputation values applied (see
Fig. 4). Recall the TDG for R; is the same as that for Ra,
but the latter has an additional delegation from B. Given
both requests occur with equivalent reputation database val-
ues, the edge weights are the same wherever applicable. We
also choose functions for the parallel/transitive operations.
For the purposes of this example, we choose f, and fa to
be AVG and MIN, respectively® Multiplication is used for all
transitive functions. In general, function selection is made
on an application specific basis.

By application of the above algorithm to the TDGs pre-
sented in Fig. 4, we arrive at the following TV for Rj:

0.53 = (0.92 0.86) + MIN(0.67,0.72).
The TV for R> evaluates to
0.20 = (0.92 0.86) + MIN(0.67, (0.72 0.51 0.7)).

7. DECISION MANAGER

The decision manager (DM) is the last component in the
QuanTM workflow. It aims to make an optimal decision
with respect to the current context, CV, TV, and a pre-
defined meta-policy. The final decision will be sent to the
service provider where the action request will either be ful-
filled or denied.

The decision manager’s meta-policy is defined during set-
up and is application dependent. For example, a simple
strategy is to define the meta-policy in terms of a trust
threshold, i.e., fulfill the request if TV is greater than a
threshold. A more sophisticated meta-policy may take con-
text information into account. This could be the specific
true conditional statements that produced the CV, or it
could include system states and other context monitors.

Complex meta-policies will also utilize a cost-benefit eval-
uation strategy. For example, a TV may be read as the

®Our choice of AVG may produce non-monotonic TV results
for some delegation chains. Such monotonicity is neither re-
quired nor desired. For simplicity of presentation, we define
parallel operation functions to compositional, e.g., we define
AVG(z,y, z)) to be AVG(z, AVG(y, z)). The evalTrust algorithm
needs minor modifications to lift this restriction.

probability a request is trustworthy, and risk/reward func-
tions will be defined as quantified measures describing the
consequences of some action. Then, the optimal decision is
the one that maximizes the expected benefit and minimizes
the cost. The precise specification and formal model of this
meta-policy is a focus of future work.

7.1 Decision Example

Concluding our running example, let us assume that ser-
vice provider A is implementing a simple meta-policy of the
threshold style. When the calculated CV is True the request
is permitted, if False the request is denied; this decision is
irregardless of the TV. Only when the CV is Maybe is the
TV examined. In such a situation, A has determined that
requests with TVs greater than 0.5 are trustworthy enough
to proceed, and otherwise the request is denied.

One can now see how the differing structure of the two re-
quests bears heavily on the final access decision. We above
calculated the TV of Ry as 0.53 and the TV of Rz as 0.20. R,
has a higher TV because more reputable principals/delegations
are involved. The addition of CRED_3 and principal D in R2
produce a lower TV. As it pertains to this meta-policy, even
though E has an authorization in both requests, the autho-
rization in R, is stronger than in Rs. Thus in the R2 case,
E is denied access, while an R; request is permitted.

8. RELATED WORK

While literature is plentiful with respect to trust manage-
ment and reputation management as separate domains, their
intersection offers fewer resources. Perhaps most similar to
our system is the work of Columbo et al. [10] who com-
bine a reputation system with the Role-based Trust Man-
agement Language [18] to permit fine-grain access control
for Grid computing. Much as our reputation quantifier per-
mits, Colombo et al. use operators to combine trust across
and down delegation paths. While the operations Columbo
employs are fixed, ours are modular. Additionally, Columbo
stores reputation as a separate credential using [19]; we pre-
fer a reputation database. At the highest level, QuanTM is a
general-purpose framework whereas Columbo’s work is spe-
cific to Grid computing and perhaps a subset of QuanTM.

Our work also draws parallels to the PACE approach of
Suryanrayana et al. [21]. PACE describes an integration
architecture for trust/reputation systems into decentralized
applications. A layered approach with visibility constraints
is utilized to prevent exposing the infrastructure to mali-
cious attacks. Much like our design it is application driven,
complete with trust, credential, and key managers. How-
ever, it differs in the fact it is only specifies a generalized
model and is not an actual use-case.

It should be noted many languages could have been cho-
sen to exemplify the QuanTM framework, not just KeyNote.
Examples include SecPAL [5], Delegation Logic [17], DCC [2,
3], and WS-Security [4], among others [13]. KeyNote was
chosen for a number of reasons. First, the KeyNote language
is well documented and thus allows for easy implementation
and extension. Second, KeyNote is terse and has few del-
egation formats, simplifying both our development process
and our examples herein. Finally, KeyNote is one of the
few TM languages that has been deployed as a standard,
including modules in operating systems like FreeBSD and
OpenBSD [20, 1].

9. CONCLUSION

We have proposed the QuanTM framework which provides
a dynamic interpretation of authorization policies for access
control decisions. In the past, the statement and evalua-
tion of application-relevant authorization policies has been
a major challenge for decentralized systems and distributed
topologies, especially in the context of networked services.
While trust management has addressed aspects of this prob-
lem, it lacks the ability to provide partial trust analysis in
principals, delegations, and credentials. Reputation man-
agement allows for a more nuanced approach to handling
partial trust, but lacks access enforcement and delegation.

We make three major claims concerning the work we have
described herein. First, we have presented the concept of a
Quantitative Trust Management (QTM) system, one which
has the desirable attributes of both trust and reputation
management. Second, we have refined this approach in a
novel framework, QuanTM, which adds reputation mech-
anisms to trust management enforcement. In particular,
QuanTM arrives at dynamic decisions based upon context, a
quantified trust value, and a cost-benefit aware meta-policy.
Third, we have developed the trust dependency graph (TDG)
to represent information internal to QuanTM’s unified trust
and reputation management systems.

We see several promising directions for future work. First,
we intend to implement the QuanTM instance describe herin
and apply it to real life data sets to validate its effective-
ness and applicability. The Internet Domain Name System
(DNS) is one possibile target for analysis, as it has both
delegation and reputation aspects.

Second, we intend to further analyze each QuanTM sub-
system, with particular emphasis on developing a formal
presentation of the decision meta-policy, a thorough spec-
ification of the feedback mechanism, and a detailed study of
the properties of TDGs and their evaluation procedure.

Third, by using KeyNote in our example implementation,
we gained the benefit of identity authentication via a pub-
lic/private key model. Some languages require third-party
certifying authorities, and the inclusion of such in QuanTM
would provide greater generality. The use of KeyNote illus-
trates one intriguing possibility to explore; the use of rep-
utation management as a possible control path by which
credential revocation (a challenge for KeyNote [15]) can be
achieved. This can be accomplished by applying a minimal
reputation value for a revoked credential (see Sec. 6).

Fourth and finally, we wish to analyze QuanTM’s effec-
tiveness against different attack scenarios, especially as it
relates to malicious manipulation of feedback mechanisms
and the handling of stale credentials.

We believe much experimentation is necessary to under-
stand the benefits of QTM, and QuanTM is a first step in
demonstrating its feasibility and applicability.

10. REFERENCES

[1] OpenBSD. http://wuw.openbsd.org.

[2] M. Abadi. Access control in a core calculus of dependency.
ACM SIGPLAN Notices, 41(9):263-273, 1999.

[3] M. Abadi, A. B. N. Heintze, and J. G. Riecke. A core
calculus of dependency. In Proceedings of the 26th ACM
Symposium on Principles of Programming Languages,
pages 147-160, January 1999.

[4] B. Atkinson. Web services security (WS-Security).
http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnglobspec/html/ws-security.asp, 2002.

[5]

[6]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

19]
20]

(21]

(22]

23]

M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL:
Design and semantics of a decentralized authorization
language. Technical report, Microsoft Research, 2006.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.
Keromytis. The KeyNote trust-management system,
version 2. IETF RFC, 2704:164-173, September 1999.

M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures (position
paper). In Security Protocols Workshop, volume 1550 of
Lecture Notes in Computer Science, pages 59-63, 1999.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In IEEE Symposium on Security and
Privacy, pages 164—-173. IEEE Computer Society, 1996.

M. Blaze, S. Kannan, A. D. Keromytis, I. Lee, W. Lee,

O. Sokolsky, and J. M. Smith. Dynamic trust management.
IEEE Computer (Sp. Issue on Trust Mangement), 2009.
M. Colombo, F. Martinelli, P. Mori, M. Petrocchi, and

A. Vaccarelli. Fine grained access control with trust and
reputation management for Globus. In GADA ’07, volume
4804 of LNCS, pages 1505-1515, 2007.

A. Jpsang. A logic for uncertain probabilities. International
Journal of Uncertainty, Fuzziness, and Knowledge-Based
Systems, 9(3):279-311, June 2001.

A. Jgsang, R. Hayward, and S. Pope. Trust network
analysis with subjective logic. In Proceedings of the 29th
Australasian Computer Science Conference, 2006.

L. Kagal, S. Cost, T. Finin, and Y. Peng. A framework for
distributed trust management. In Proceedings of IJCAI-01
Workshop on Autonomy, Delegation and Control, 2001.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-molina. The
EigenTrust algorithm for reputation management in P2P
networks. In Proceedings of the Twelfth International
World Wide Web Conference, Budapest, May 2003.

A. D. Keromytis and J. M. Smith. Requirements for
scalable access control and security management
architectures. ACM Transactions on Internet Technology,
7(4), November 2007.

H. Li and M. Singhai. Trust management in distributed
systems. IEEE Computer, 40(2):45-53, February 2007.

N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic:
A logic-based approach to distributed authorization. ACM
Transactions on Information and System Security, 6, 2003.
N. Li and J. Mitchell. RT: a role-based trust-management
framework. DARPA Information Survivability Conference
and Ezposition, 2003. Proceedings, 1:201-212, April 2003.
J. Liu and V. Issarny. Enhanced reputation mechanism for
mobile ad hoc networks. LNCS, 2995:48-62, 2004.
ports@FreeBSD.org. FreeBSD port keynote-2.3-1.
http://www.freebsd.org/ports/security.html.

G. Suryanarayana, J. R. Erenkrantz, and R. N. Taylor. An
architectural approach for decentralized trust management.
IEEE Internet Computing, 9(6):16-23, 2005.

J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition
of series parallel digraphs. In Proceedings of the 11th
Annual ACM Symposium on Theory of Computing, pages
1-12, Atlanta, GA, 1979. ACM.

A. G. West, S. Kannan, I. Lee, and O. Sokolsky. An
evaluation framework for reputation management systems.
Working chapter for Trust Modeling and Management in
Digital Environments: From Social Concept to System
Development, (Zheng Yan, ed.).

