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Abstract

Formal languages for policy have been developed for access control and confor-
mance checking. In this paper, we describe a formalism that combines features
that have been developed for each application. From access control, we adopt
the use of a saying operator. From conformance checking, we adopt the use of
operators for obligation and permission. The operators are combined using an
axiom that permits a principal to speak on behalf of another. The combination
yields benefits to both applications. For access control, we overcome the prob-
lematic interaction between hand-off and classical reasoning. For conformance,
we obtain a characterization of legal power by nesting saying with obligation
and permission.

The axioms result in a decidable logic. We integrate the axioms into a
logic programming approach, which lets us use quantification in policies while
preserving decidability of access control decisions. Conformance checking, in
the presence of nested obligations and permissions, is shown to be decidable.
Non-interference is characterized using reachability via permitted statements.

1. Introduction

Access control is an important problem in trust management systems. In-
formally, a trust management system involves a set of actors or principals, and
a set of controlled or regulated actions, e.g., accessing medical information, or
downloading a song. The goal of such a system is to administrate requests to
perform actions. Trust management systems are commonly decomposed into
two (interacting) components [1]: (a) authentication - determining the source of
a request, and (b) access control - determining whether a request is permitted
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according to a policy. Abadi et al. [3] cast access control as a problem for logic.
We assume as given an action (p), which is controlled by a principal (A), and
a request to perform p from a principal (B). Access is granted if we can prove,
using A’s policy, that A says that B is permitted to perform p. In access control
logics, such as [1–3, 16, 17], says is treated as a (modal) operator. However, the
use of an operator for permission has not been explored.

The concept of representation is prevalent in access control policies, and it
forms the central focus of this work. Representation arises in situations where
a principal is held to declarations made on her behalf (cf. [18]). For example,
consider a scenario where a software company authorizes project managers to
permit their team members to access the production server. If a project manager
says that a team member is permitted to access the server (on behalf of the com-
pany), we conclude that the company says that the team member is permitted
to access the server. In such a scenario, project managers represent the company
on permitting access to the server. All access control logics provide principals
with the capability to let other principals represent them on statements. In the
example above, the company would say, in its policy, that “Project managers
represent the company on permitting team members to access the production
server”. The manner in which such a policy is formally expressed depends on
the logic, and we will discuss a few choices in later sections.

In this paper, we argue for an explicit account of permission in a logic for
access control. We motivate and develop a logic that combines saying and per-
mission, using an axiom that permits a principal to speak on behalf of another.
The combination leads us to a novel account of representation. In the logics of
saying, where there is no notion of permission, representation is accommodated
using variants of the hand-off axiom [1]. Abadi [1] pointed out some problem-
atic interactions between the hand-off axiom and classical reasoning, which we
will discuss in detail in Section 2.1. The use of permission provides a way to
avoid these problems. An explicit account of permission leads naturally to an
explicit account of obligation, which in turn leads us to examine legal powers
and conformance checking. We now introduce these topics.
Legal Power: Representation is a special case of the broader concept of legal
power. Hohfeld, in his seminal work, defined the concept of power as follows [31,
Page 44]:

A person (or persons) may be said to have the power to effect a
change in legal relations, if the change in legal relations results from
some superadded facts that are under his volitional control.

We decompose this definition into three components, to give the main intuitions
for our approach:

1. The description of power - A principal (A) grants the power of represen-
tation to another principal (B) on certain statements, if A says that B is
permitted to issue those statements (on her behalf).

2. The “superadded facts” by which a power is exercised - B exercises the
power of representation by issuing statements on behalf of A.
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3. The change in legal relations - If A grants the power of representation to
B, and B exercises this power, then we will infer that the statement issued
by B is issued by A as well.

The logical analysis of power has been of interest for several years [18, 34–36, 40].
Our approach is related to two lines of research. With regard to the descrip-
tion of power (Item 1 above), Lindahl [40, Part II] (see also [34]) suggested
that various notions of power can be distinguished by nesting obligations and
permissions with an action modality. Saying is our analog of the action modal-
ity. With regard to the change in legal relations (Item 3 above), Jones and
Sergot [35] and Gelati et al. [18] describe general frameworks to reason about
situations where an act by a principal counts as a means to create a state of af-
fairs within an institution. We consider a restricted scenario where a statement
by one principal counts as an identical statement made by another principal.
However, in [18, 35], the concept of counts as is taken to be the description of
power itself, and it does not arise via saying. The dependence of power on say-
ing, in our approach, leads us to a novel analysis of recursive notions of power,
e.g., “empowerment to empower”. We discuss the differences in Section 2.2.
Conformance Checking: The problems of access control, representation, and
power arose for us while extending our prior work [14] on conformance checking
to privacy regulation. We introduce the problem of conformance here, and
discuss how the ideas in [14] relate to this work in Section 2.3. In conformance,
one is interested in checking whether the operations of organizations obey a
policy. We are given a policy and a description of an organization’s operations
(as a state or trace). An organization (A) conforms to the policy if we can
prove that for all p, if the policy says that A is required or obligated to do p,
then A does p. The design of logics for conformance, notably deontic logic, has
been of interest for several years, and we refer the reader to [33, 45] for a broad
perspective. In recent years, the focus has been more on tailoring logics for the
regulations at hand, and examples include business contracts [4, 19–21, 27, 38]
and health-care regulations [10, 14]. Our focus in this work is on how power
interacts with the question of conformance.
Contributions and Outline: In this paper, we motivate and design a formal-
ism that combines saying and permission, with applications to access control
and conformance. The combination yields benefits to both applications:

1. For access control, we propose a new decidable axiomatization which ac-
commodates delegation [3, 39] and “speaking for” [2, 3, 16]. Our approach
overcomes the problematic interactions with classical reasoning, pointed
out by Abadi [1]. “Speaking for” and delegation are obtained as conse-
quences of an axiom that permits a principal to speak on behalf of another.

2. For conformance, the proposed axiomatization is used to reason about
declarative powers [18], by nesting saying with obligation and permission.
We obtain a novel analysis of recursive notions of power, e.g., “empow-
erment to empower”. Conformance, as the satisfaction of obligations, is
shown to be decidable.
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In Section 2, we give a detailed motivation and background for our approach
in three parts. First, we consider representation in access control, under which
we include delegation [3, 39] and “speaking for” [1, 3, 16]. Second, we discuss
examples of powers, and compare our approach to the counts as frameworks for
power [18, 35]. And, finally, we discuss how we integrate the work here with
our prior work [14].

Section 3 develops a logic in the form of two interacting components. The
inference component determines what has been said, and involves the choice
of appropriate axioms [1, 3, 17]. We introduce two axioms to characterize the
interaction between saying and permission. The decidability of the resulting
logic is established. The saying component is used to create new utterances. For
this component, we extend the formalism in [14], which is a generalized form
of logic programming. The modularization allows us to use restricted forms of
quantification while preserving decidability of access control and conformance.
We also prove a non-interference property which is crucial for the distributed
policies that arise in access control.

In Section 4, we discuss our formalism in the context of related work. We
consider access control examples, and conformance in the presence of powers.
We also identify some interesting lines for further research. Section 5 concludes.

2. Permission to Speak

In this section, we motivate the explicit use of saying and permission in a
formal language for policy. Section 2.1 considers the problem of representa-
tion in access control, under which we include delegation [3, 39] and “speaking
for” [1, 3, 16]. In Section 2.2, we discuss examples of powers conveyed by nested
permissions. We compare and contrast our approach with the counts as ap-
proaches to power. Finally, we discuss how we integrate the work here with our
prior work [14], to clarify some methodological decisions (Section 2.3).

2.1. Representation in Access Control

While there are a wide variety of access control logics, one commonality that
stands out is a notion of saying [1]. We can express the fact that a principal
makes a statement. We use saysl(A)ϕ to denote that principal A says ϕ in
the set of laws l(A). Informally, a law is understood as a single statement in
the policy of a principal, e.g., a hospital says “Alice is permitted to access her
health information”, in its policy. And, the interpretation of a set of laws is the
conjunction of the individual laws. These intuitions are formalized in Section 3.
Our approach differs from others in that we associate statements to a principal
via a set of laws (saysl(A) ϕ) rather than directly with the principal (saysA ϕ).
This indirection lets us use saying to reason about exceptions to laws, as in [14],
and we will discuss an example in Section 3.3.

All access control logics give a principal the ability to let another principal
make statements on her behalf. As an example (based on [16]), consider a file
access scenario, where an administrator (A) has control the operation of deleting
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files shared by groups of principals. When there are many shared files in the
system, A cannot personally handle all requests. Suppose that the administrator
authorizes the leader of a group (B) to decide when a particular file is to be
deleted (del). In this scenario, we say that B represents A on del, and we wish
to conclude that if saysl(B)(del), then saysl(A)(del).

How do we accommodate this inference? A naive approach is to introduce
“saysl(B)(del) ⇒ saysl(A)(del)” into A’s policy (where ⇒ is the implication
connective of the underlying logic). However, such statements create an access
control risk, because “saysl(B)(del) ⇒ saysl(A)(del)” could be introduced by B,
thereby giving B the ability to decide whether any file is to be deleted.

To address this security risk, a principal A is only allowed to introduce
statements of the form saysl(A) ψ. Additional machinery (usually an axiom) is
needed to accommodate representation. Abadi [1] discusses several alternatives,
involving variants of the hand-off axiom:

• saysl(A)(φ⇒ saysl(A) ψ) ⇒ (φ⇒ saysl(A) ψ)

B represents A on del is expressed as:

• saysl(A)(saysl(B)(del) ⇒ saysl(A)(del))

The hand-off axiom lets us conclude that saysl(B)(del) ⇒ saysl(A)(del). How-
ever, the hand-off axiom has displeasing consequences in classical logics. For
example, saysl(B) ϕ ⇒ (¬ϕ ⇒ saysl(B) ψ) (for all ψ) is provable [1], i.e., if a
statement by B fails, then B gives access to all the actions that she controls.
The solution to this problem has been to move to an intuitionistic setting, as
in [2, 16, 17].

We suggest that the problem is not with classical reasoning, but with the
hand-off axiom. The key idea is to reformulate the axiom using the interaction
between saying and permission. We now introduce the reformulated version of
the axiom, followed by a discussion of its benefits.

We say that B represents A on del, if A says that B is permitted to say del.
More formally, the statement saysl(A)(PB(saysl(B) del)) is added to A’s policy,
where PB(saysl(B) del) is read as “B is permitted to say del”. The following are
equivalent versions of the axiom of representation:

• If A says that B is permitted to say ϕ, then if B says ϕ, A says ϕ

• saysl(A)(PB(saysl(B)ϕ)) ⇒ (saysl(B) ϕ⇒ saysl(A) ϕ)

The axiom of representation is intended for a particular sense of speak-
ing/saying, i.e., speaking on someone’s behalf. This sense of saying is the usual
one in access control. To simplify matters, we do not explicitly represent the
principal on behalf of whom a statement is being made.

“Speaking for” [2, 3, 16] is a case of representation when one principal rep-
resents another on all statements. If B speaks for A, we wish to conclude
saysl(B) ϕ ⇒ saysl(A) ϕ for all ϕ. “Speaking for” has a compelling definition in
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our approach. We say that B speaks for A if A permits B to say anything (⊥)
on her behalf, i.e., saysl(A) PB(saysl(B) ⊥).

A novelty in our approach is that “speaking for” and hand-off are both ob-
tained as a consequence of the axiom of representation. In [2, 3, 16], “speaking
for” and hand-off are not related, i.e., the former involves an algebra over prin-
cipals or second-order quantification, and the latter is obtained using an axiom
(which implies hand-off). This suggests that the representation axiom is quite
different from the hand-off axiom. It is tempting to relate the representation
axiom to a restricted version of hand-off:

• saysl(A)(saysl(B) ϕ⇒ saysl(A) ϕ) ⇒ (saysl(B) ϕ⇒ saysl(A) ϕ)

However, even for this restricted case, we do not know of a complete se-
mantics for hand-off, which makes it difficult to show that a statement is not
provable (Abadi et al. [3] observe similar difficulties). We believe that the rep-
resentation axiom is a persuasive alternative to hand-off, because it yields a
decidable logic with a complete semantics, and more importantly, it has an
intuitive interpretation.

A restricted version of the axiom of representation has been proposed by
Becker et al. [7], in the context of the authorization language SECPal. In SEC-
Pal, representation is restricted to atomic predicates, and hence, “speaking for”
cannot be accommodated. Moreover, the relationship between permission and
obligation is not explored. Our formalism generalizes SECPal, to accommodate
both “speaking for” and obligation. We now discuss further motivation for our
approach.

2.2. Powers and Nested Constructions

In this section, we consider examples of powers that arise via nested obli-
gations and permissions. We compare and contrast our approach to the counts
as approaches to power [18, 35]. The comparison is intended to illustrate the
interplay between power and saying. We then discuss an example where our
approach offers only a limited analysis.

We begin by discussing our approach to nested permissions. Consider the fol-
lowing statement: “A hospital (H) permits a patient (A) to permit her mother
(B) to access her information”. We will rephrase the permission as follows:
H says that A is permitted to say that B is permitted to access her informa-
tion. Formally, this is expressed as: saysl(H)(PA(saysl(A)(PBaccess))). If A
does indeed permit access to her mother (saysl(A)(PBaccess)), we will conclude
saysl(H)(PBaccess) using the axiom of representation, i.e., H permits access to
B. As a result, nested permissions are related to representation, i.e., “H permits
A to permit B to do ϕ” iff “A represents H in permitting B to do ϕ”.

We now turn to the analysis by Gelati et al. [18]. To simplify presentation,
we describe their approach using the notation that we have already introduced.
In [18], declarative power, which includes representation, is defined formally in
terms of a counts as operator/connective:

(P1) DPHA (ϕ) = CountsAs(saysl(A) ϕ, saysl(H) ϕ)
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DPHA (ϕ) is read as “H grants A the power to declare ϕ on its behalf”. And,
CountsAs(saysl(A) ϕ, saysl(H) ϕ) is read as “A saying ϕ counts as B saying ϕ”.
The logic of counts as [18, 35] has broad applicability, and a detailed exposition
is well beyond the scope of this paper. For present purposes, it suffices to note
that a version of the following is provable:

(P2) ⊢ CountsAs(saysl(A) ϕ, saysl(H) ϕ) ⇒ (saysl(A) ϕ⇒ saysl(H) ϕ)

⊢ φ is read as “φ is provable”, i.e., φ is a theorem of the language. The key
observation here is that power (conveyed by counts as) can result in the creation
of statements, using (P2). However, the converse is not true. Let us return to
the example of nested permissions see why this is important. Using (P1) and
(P2), we can show that:

(P3) ⊢ DPHA (PBaccess) ⇒ (saysl(A)(PBaccess) ⇒ saysl(H)(PBaccess))

And, (P3) plays the role of the representation axiom. As a result, our approach
is quite similar to that of Gelati et al. [18], when there is one level of nesting.
However, differences arise when we consider one more level of nesting.

Suppose H says that A is empowered to empower B to permit C to access
her information. Note that empowerment can be paraphrased as permission
to say in our approach, and the analysis would proceed analogously to the
previous case. Gelati et al. [18] express this empowerment to empower as:
DPHA (DPHB (PCaccess)). Let ϕ = PCaccess. Using (P1) and (P2), we obtain:

(P4) ⊢ DPHA (DPHB (ϕ)) ⇒ (saysl(A)(DPHB (ϕ)) ⇒ saysl(H)(DPHB (ϕ)))

Given DPHA (DPHB (ϕ)), if A exercises this power by empowering B to declare
ϕ, we will conclude, using (P3), that saysl(H)(DPHB (ϕ)), i.e., H says that B is
empowered to declare ϕ. However, the following is not provable:

(P5) 6⊢ saysl(H)(DPHB (ϕ)) ⇒ (saysl(B) ϕ⇒ saysl(H) ϕ)

Thus, B cannot exercise the power in the same way as A, due to the difference
between (P3) and (P5). This assymetry, between primary and recursive powers,
arises because the counts as operator is taken to be the description of power
itself, and it does not arise via saying (or some other action).1 The dependence
of power on saying, in our approach, leads to an analogous treatment of primary
and recursive powers.

Finally, we consider an example of nested obligations to illustrate a scenario
where our approach gives only a limited analysis. We adopt the definition of
obligation as the dual of permission, i.e., PAϕ = ¬OA¬ϕ (OAϕ is read as
ϕ is obligatory for A). Consider the following statement: “A says that B is
required to forbid her child (C) from playing near the road (play)”. As we did

1More precisely, power needs to be linked to an institutional action, which is not effective.
An effective action modality (�) is one which accommodates ⊢ (�ϕ) ⇒ ϕ, and would be
unsuitable for access control.
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with the nested permissions, we paraphrase it as “A says that B should say
that C is forbidden from playing near the road”. Formally, this is expressed
as: saysl(A) OB saysl(B) OC¬play. If B imposes this requirement by saying so
(saysl(B) OC¬play), we will conclude that B has fulfilled her obligation toward
A, i.e., B conforms w.r.t. A. Does this capture the intent of the statement?
Consider an alternate paraphrase of the statement: “A says that B is required
to see to it that C does not play”. And, it may require a stronger action of B,
e.g., physically preventing C from playing near the road. The analysis of such
requirements is beyond the scope of this work. The action modalities in the
logics of power [18, 34, 35, 40] offer a good solution.

2.3. Exceptions and Doesn’t Say

The problem of exceptions to laws has been studied extensively for several
years [5, 44, 51], and is related to the broader area of non-monotonic reason-
ing [41, 46, 47, 49]. In [14], building on Reiter’s Default Logic [49] and Kripke’s
theory of truth [37], we expressed laws using labeled conditional statements of
the form:

(id) ϕ 7→ ψ

Our informal interpretation of such statements was “If ϕ is true, then the reg-
ulator says ψ via the law labeled (id)”, where “id” is an identifier for the law.
This interpretation of rules has the flavor of the counts as connective [18, 35],
i.e., ϕ counts as a statement of ψ from the regulator. Now, we can consider
statements of the form:

(id1) The regulator does not say ψ via the law labeled (id) 7→ ψ′

In other words, “If the regulator does not say ψ via the law labeled (id), then the
regulator says ψ′ via the law labeled (id1)”. Does not say is useful in expressing
exceptions to laws, and the law labeled (id) would serve as an exception to the
law labeled (id1). We discuss examples in Section 3.3.

Exceptions make regulations non-monotonic, in the sense that adding a new
exception would prevent certain conclusions that were drawn before. There
are also well-established reinterpretations of non-monotonic logics as modal
logics, and here, we refer the reader to some classic works on autoepistemic
logic [28, 46]. Given these connections, an important question that arises is
whether the underlying logic for saying should be non-monotonic. The approach
we take in this work is to start with a monotonic logic with saying, obligation,
and permission (Section 3.2), and then integrate it into a non-monotonic frame-
work (Section 3.3). The idea is that the non-monotonic component resolves
exceptions, giving us a consistent set of statements on which to base access
control and conformance decisions. This aspect of our approach was motivated
purely by methodological convenience, and sufficed for the regulations at hand.
A proper non-monotonic treatment of nested modalities is a challenging problem
(see [28]), and we leave an investigation to future work.
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Laws:

1. If B says p, then p
2. p

A

B

Utterances:
Grant or Deny

Violations

Request

AxiomsState

A says p via Law 1

B says p via Law 2

Figure 1: Interaction between the components of the logic

3. A Logic for Access Control and Conformance

In this section, we develop a logic in the form of two interacting components
– (a) the inference component, which involves the choice of appropriate axioms,
and (b) the saying component, which is used to represent policies. Figure 1
shows the interaction between the components of the access control system.
There are two kinds of actions of interest – (1) operational acts, e.g., down-
loading a song, and (2) speech acts. The operational acts are described using a
state, which contains the interpretation of predicates, and the speech acts are
described using laws.

A principal speaks by introducing laws. In Figure 1, the principals A and
B introduce the laws 1 and 2 respectively. The laws are evaluated using the
axioms to produce a set of utterances, i.e., what the principals say via their
laws. A set of laws can be thought of as a logic program, and utterances as
the extensions that result from the program (via a fixed point computation).
Once we have the utterances, there are several decision problems of interest.
The access control problem is to decide whether a request is permitted by the
set of utterances. The conformance problem is to decide whether operational
and speech acts satisfy the obligations imposed by the utterances, and if they
do not, violations are reported.

In Section 3.1, we introduce an example from privacy regulation, which we
will use to illustrate the various definitions. Section 3.2 is an overview of the
inference component. We describe (axiomatically) a logic with two modalities
– saying and obligation. In Section 3.3, we adapt the formalism in [14] for
the saying component. We extend [14] in two ways. First, we prove a non-
interference property which is crucial for the distributed policies that arise in
access control (Section 3.4). Second, we show that conformance, in the presence
of nested obligations and permissions, is decidable (Section 3.5).

3.1. Example

We will use an example from the Health Insurance Portability and Account-
ability Act (HIPAA) (cf. [10]), to illustrate the various definitions. HIPAA
regulates the uses and disclosures of patient health information, and provides a
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natural test bed for investigating both access control and conformance. The fol-
lowing example is intended to illustrate several subtleties involved in reasoning
about rights:

(1) A patient has the right to view his records that are maintained in a
designated record set, except for:

a. Psychotherapy notes.

b. Records compiled for a legal proceeding.

c. ...

There are three (types of) principals associated with this right:

• The regulatory authority behind HIPAA, which enforces the right.

• Patients, who can exercise the right, and

• Principals who maintain records of the patient, and have to conform to
the right.

Section 3.2 is concerned with how to formally express the phrase “has the right”.
In Section 3.3, we deal with the exceptions. Sections 3.4 and Section 3.5 consider
the access control and conformance aspects.

3.2. The Inference Component – Axioms

In this section, we develop a predicate logic with two modalities saying and
obligation. We allow formulas with free variables, but no quantifier over ob-
jects. The quantification over objects is carried out in the process of saying
(Section 3.3), which uses provability in the propositional subset of the language
defined here. We begin by defining the syntax:

Definition 1 (Syntax). Given sets Φ1, ...,Φn (of predicate names), countable
sets of object names O, principal names OP ⊆ O, variables X, variables for
principals XP ⊆ X, identifiers ID, and a function l : OP → 2ID, the language
L(Φ1, ...,Φn, O,OP , X,XP , l, ID), abbreviated as L, is defined as follows:

ϕy ::= α | ϕy ∧ ϕy | ¬ϕy | saysIdy
ψ

ψy ::= ϕy | ψy ∧ ψy | ¬ψy | Oyϕy
ϕ ::= ϕy (for all y ∈ XP ∪OP ) | ϕ ∧ ϕ | ¬ϕ
ψ ::= ψy (for all y ∈ XP ∪OP ) | ψ ∧ ψ | ¬ψ

where, y ∈ XP ∪OP , and α generates atomic predicates of the form p(z1, ..., zj)
with p ∈ Φj and (z1, ..., zj) ∈ (X ∪ O)j . In addition, ∅ ⊂ Idy ⊆ l(y) if y ∈ OP
and Idy = l(y) otherwise (y ∈ XP ). We assume that for all distinct A,B ∈ OP ,
l(A) ∩ l(B) = ∅ and l(A) 6= ∅, i.e., the assigned identifiers are disjoint, and
non-empty.

The set of formulas generated by each BNF rule are referred to as Lϕy
, Lϕ,

Lψy
and Lψ respectively, and L = Lϕ ∪ Lψ.
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Disjunction ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) and implication ϕ ⇒ ψ = ¬ϕ ∨ ψ are
derived connectives.

There is a set of object names O with a distinguished set OP ⊆ O called
principals. Principals include individual persons, such as patients and doctors,
and institutions, such as hospitals and regulatory authorities. We use upper
case letters for principals, e.g., A, B. Other named objects (O − OP ) include
entities with no associated notion of agency, e.g., medical records and songs.
We use lower case letters for these objects, except for the letters {x, y, z} which
are reserved for variables. It is useful to divide the objects in O − OP further
into sorts, but we avoid it to simplify notation. Variables are divided into two
sorts as well, i.e., all variables X , and variables for principals XP . In a slight
abuse of notation, we will use the symbols for variables, i.e., x, y and z, to stand
for a generic element in X ∪O or XP ∪OP .

Oyϕ is read as “ϕ is obligatory for the principal y”. Permission is defined
as the dual of obligation, i.e., Pyϕ = ¬Oy¬ϕ.

The saying operator is understood as follows. Principals speak by introduc-
ing identified laws, as shown in Figure 1. The function l assigns non-empty and
disjoint sets of identifiers to each principal, and for example, l(A) denotes the
set of identifiers for laws introduced by the principal A ∈ OP . saysIdy

ϕ is read
as “y says ψ via the laws Idy”. In the case where Idy = l(y), saysl(y) ψ is read
as “y says ψ via her laws”, or briefly “y says ψ”.

We give some examples to clarify the notation for identifiers. Given A ∈ OP ,
let l(A) = {1, 2}. The formulas saysl(A) ϕ and says{1,2} ϕ are identical. In many

examples, we will have need only for the notation saysl(A) ϕ.2 Specific identifiers
(e.g., says{1} ϕ) will be used to accommodate exceptions to laws (Section 3.3).
Exceptions are often conveyed by phrases such as “except as specified in Section
120 of HIPAA” [10, 14], and a subset of identifers would correspond to the laws
in “Section 120 of HIPAA”. Given a variable over principals x ∈ XP , we will
only use the notation saysl(x) ϕ. This is useful, for example, to grant powers to
a class of principals, e.g., patients of a hospital.

We now mention a peculiarity of Definition 1. The BNF rules ensure the
alternation of obligation and saying modalities, e.g., Oy saysl(y) Ozϕ ∈ L, but
OyOzϕ 6∈ L. Following von Wright [53], we understand obligations as applying
to actions and their consequences. The language Lϕy

(obtained from the first
BNF rule) is used to describe actions of a principal y – (a) atomic actions, (b)
combinations of actions (using connectives), or (c) saying, which is (a conse-
quence of) a speech act. An obligation is an opinion, which is created via a
speech act, but is not an act by itself. These restrictions are similar in spirit to
the logics of power [18, 34, 35, 40].

The statements in L will be used in the inference component of access control,

2The assumptions about assignment of identifiers are purely (and hopefully) for clarity.
We do not consider obligations, permissions, and statements associated with groups of indi-
viduals in this work, and shared identifiers may be useful here. We believe that these can be
straightforwardly added to the present framework.
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i.e., to determine what has been said. In other words, we will be given a set of
utterances U and a question ψ, and we need to determine whether ψ is provable
from U . We focus on provability for the propositional subset of L, i.e., without
variables. The propositional subset of L has the modalities saysIdA

ϕ and OA(ϕ)
(for all A ∈ O and IdA ⊆ l(A)).

A1 All substitution instances of propositional tautologies.

A2 Q(ϕ⇒ ψ) ⇒ (Q(ϕ) ⇒ Q(ψ)) (for all modalities Q)

A3 saysIdA
ϕ⇒ saysId′

A
ϕ (for all A ∈ OP and IdA ⊆ Id′A ⊆ l(A))

A4 OAϕ⇒ PAϕ (for all A ∈ OP )

A5 saysIdA
(PB saysIdB

ϕ) ⇒ (saysIdB
ϕ ⇒ saysIdA

ϕ) (for all {A,B} ⊆ OP ,
IdA ⊆ l(A), and IdB ⊆ l(B))

A6 saysIdA
(PA saysIdA

ϕ) ⇒ saysIdA
ϕ (for all A ∈ OP , and IdA ⊆ l(A))

R1 From ⊢ ϕ⇒ ψ and ⊢ ϕ, infer ⊢ ψ

R2 From ⊢ ϕ, infer ⊢ Q(ϕ) (for all modalities Q)

Figure 2: Axiomatization of the propositional fragment of L. The set of modalities Q consists
of saysIdA

ϕ and OA(ϕ) (for all A ∈ O and IdA ⊆ l(A)).

We adopt the axiomatization in Figure 2. A1 and R1 give us propositional
reasoning. A2 and R2 are common to both saying and obligation. A3 and A4
are specific to saying and obligation respectively. Finally, A5 and A6 describe
the interaction between the two modalities.

The notion of provability is of crucial interest. We say that ϕ is provable
(denoted ⊢ ϕ), if ϕ is an instance of the axioms A1-A6 or follows from the
axioms using the rules R1 and R2. Given a finite set of formulas ∆, we say
that ϕ is provable from ∆, denoted ∆ ⊢ ϕ, if ⊢ (

∧

∆) ⇒ ϕ.
We mention some provable statements that we will use in the example from

HIPAA (Section 3.2.2):

Proposition 1. The following are provable:

1. ⊢ saysl(A)(OB saysl(B) ϕ) ⇒ (saysl(B) ϕ⇒ saysl(A) ϕ)

2. ⊢ saysl(A)(OA saysl(A) ϕ) ⇒ saysl(A) ϕ

3. ⊢ saysl(A)(PB saysl(B) ⊥) ⇒ (saysl(B) ϕ⇒ says(A) ϕ)

The proofs are easy and we leave the details to the reader. Items 1 and 2
show that versions of axioms A5 and A6 hold for obligation. Item 3 gives us
speaking for, i.e., B speaks for A, as we discussed in Section 2.1.
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The rest of the section is organized as follows. We begin in Section 3.2.1 by
discussing the various axioms in the context of related work. Section 3.2.2 con-
siders the example from HIPAA, and the various subtleties involved in reasoning
about rights. We then present a complete Kripke semantics for the axioms (Sec-
tion 3.2.3), and use it to show that provability is decidable (Section 3.2.4).

3.2.1. Discussion of Axioms

We now discuss the axioms. The axioms A1 and A2, together with the rules
R1 and R2, gives us the modal logic K. The K axiomatization was used by
Abadi et al. [3] as a basis for all (classical) access control logics. From A3, it
follows that if A says ϕ via the laws (IdA), then ϕ also holds w.r.t. a larger set
of laws issued by A (Id′A). In Section 3.3, when evaluating regulations, we will
obtain a statement of the form says{idA} ϕ from each law of A. And, A3 can be
informally understood as a monotonicity condition, i.e., if ϕ is a consequence of
what is said via an individual law, then ϕ is said via all sets of laws that include
it. At a first glance, A3 is at odds with the fact that regulations are non-
monotonic. However, as shown in Figure 1, we are interested in reasoning about
utterances, which are obtained from the laws after all exceptions have been
resolved. If the law changes, then the utterances will have to be recomputed.

The K axiomatization, together with A4, gives us the the modal logic KD.
This axiomatization is common to many systems, giving it the name Standard
Deontic Logic (SDL) (c.f. [33]). We note that SDL is a very simplistic system
of obligation, and several objections can be raised. The most serious objec-
tion is that SDL does not cope with contrary-to-duty (CTD) obligations (see,
e.g., [22, 42, 48]). A CTD obligation is one that arises when another has been
violated. This is useful, for example, in business contracts to describe mitigat-
ing actions [20, 21, 27, 38], e.g., “paying a fine”, upon failure to deliver goods.
We do not address CTD structures in this work, as they are not as prevalent in
privacy regulation as they are in contracts. Governatori and Rotolo [22] propose
that CTDs are not a problem with obligations per se, but can be understood
as a special kind of exception. We agree entirely with their perspective. How-
ever, accommodating these kinds of exceptions involves the introduction of a
preference operator, and we leave this to future work.

As we discussed in Section 2.1, A5 is needed to accommodate notions of
representation in access control. The self-respecting axiom, A6, is read as “If
A permits herself to say ϕ, then A says ϕ”. We discuss the use of A6 in the
example from HIPAA.

3.2.2. Example

We consider the example from HIPAA, introduced in Section 3.1. In this
section, our focus is on the utterances obtained from the laws of the various
principals.

Let H stand for (the regulator who wrote) HIPAA. And, let Alice (A) be
a patient whose records (r) are maintained by an insurance company run by
Bob (B). Let us assume further that A has the right to access her records. The
utterance obtained from H ’s laws would be:

13



(u1) saysl(H) PA saysl(A) OB saysl(B) PAaccess(A, r)

The direct reading of (u1) in English is unwieldy, i.e., we get “H says that A
is permitted to say that B is required to say that A is permitted to access her
records”. A better reading is obtained by eliding all occurrences of says that
appear immediately above an obligation or permission, except for the outermost
one. Applying this ellipsis to (u1), we get: saysl(H) PA...OB ...PAaccess(A, r),
which is read as: “HIPAA says that Alice is permitted to require Bob to permit
her to access her records”. We will use such readings henceforth.

The word right does not have a unique translation into logic. Hohfeld [31]
pointed out that the word right is used in different senses, and depending on the
context, it can entail a permission, claim, or power.3 The formulation in (u1)
corresponds to the power interpretation. As we mentioned in Section 1, our de-
scriptions of powers follows the suggestion of Lindahl [40, Part II] (see also [34]),
in terms of nesting obligations and permissions with an action modality.
How does Alice exercise this right? In our approach, rights are exercised by
the introduction of a law. The specific mechanism for introducing such laws is
application dependent. For example, if Alice sends an email to Bob requiring
him to grant her access, then this may count as Alice exercising her right (see [18,
35]). Alice’s attempt to exercise her right would result in the following utterance:

(u2) saysl(A) OB saysl(B) PAaccess(A, r)

In other words, Alice says that Bob is required to permit her to access her
records.
How does Bob comply with this right? In our approach, this happens via Bob’s
access control policy. Suppose Bob wants to permit a patient to access their
records only if HIPAA requires it. Bob’s policy is represented as follows:

(u3) saysl(B) PH saysl(H) OB saysl(B) PAaccess(A, r)

In other words, Bob permits HIPAA to require him to permit Alice to view her
records. Note that Bob has no regard for Alice’s requirement to see her records,
but only what HIPAA says.

Let ∆ consist of the utterances (u1), (u2), and (u3) above. Since Alice is
attempting to view her records, the access control system tries to prove that
saysl(B) PAaccess(A, r) from ∆. The derivation proceeds as follows:

(d1) ∆ ⊢ saysl(H) OB saysl(B) PAaccess(A, r) (from (u1) and (u2) using A5).

(d2) ∆ ⊢ saysl(B) OB saysl(B) PAaccess(A, r) (from (u3) and (d1) using Propo-
sition 1 item 1)

(d3) ∆ ⊢ saysl(B) PAaccess(A, r) (from (d2) using Proposition 1 item 2)

3Hohfeld [31] describes a claim as the correlative of obligation, i.e., when a claim is invaded
an obligation is violated. For example, a patient has a claim that hospitals notify her of
disclosures of her health information. And, the claim is equivalent to an obligation on the
hospital to notify her.
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Step (d1) is understood as HIPAA enforcing Alice’s right, i.e., HIPAA requires
Bob to permit Alice to view her records. In step (d2), Bob acknowledges
HIPAA’s authority by requiring himself to permit Alice to view her records.
Step (d3) shows the utility of A6, i.e., by forcing Bob to say what he requires
himself to say. Due to (d3), Alice is indeed permitted to view her records!
In Section 3.5, we will show how blame can be assigned to Bob if he fails to
introduce (d3) or something that implies it.

In summary, to reason about a right, we had to use utterances from the
enforcer (HIPAA), the person exercising the right (Alice), and the person com-
plying with it (Bob). The precise manner in which Alice’s utterance is obtained
is left unspecified. In assessing violations of rights, the issue in question is often
whether the right was exercised. For example, Bob may claim that Alice did
not request to see her records. We do not believe that this is a problem for logic,
but it is a problem in implementing a system that allows principals to exercise
their rights. However, we do believe that the logic provides a good intuition for
the inferences involved, given the appropriate utterances.

The reasoning involved in this example is outside the scope of prior access
control logics [1–3, 11, 16, 17, 39], because obligation is not accommodated. We
believe that the reasoning can be accommodated by the counts as frameworks
for power [18, 35], but as discussed in Section 2.2, some reformulation is needed.

3.2.3. Semantics, Soundness, and Completeness

In this section, we provide a Kripke semantics for which the axiomatization
is sound and complete. Semantic completeness is used mainly as a tool, for
example, to show that a statement is not provable. Identifying a compelling
semantics for says is an important open problem in access control logics (see [1]),
and we do not address it in this work.4 We begin by defining models (Kripke
structures):

Definition 2 (Models). Given countable sets of object names O, principal
names OP ⊆ O, Φ1, ...,Φn (where Φj is a set of predicate names of arity j),
identifiers for rules ID, and l : OP → 2ID, a model M(O,OP ,Φ1, ...,Φn, ID, l),
abbreviated as M , is the tuple (S, IΦ1

, ..., IΦn
, δL, δO) where:

• S is a set of states

• IΦj
: Φj×S → 2O

j

is the interpretation of predicates of arity j. Given p ∈
Φj, we will say that p(o1, ..., oj) is true at state s iff (o1, ..., oj) ∈ IΦj

(p, s).

• δL : S × 2ID → 2S. δL(s, Id) corresponds to a description of s according
to the laws labeled with identifiers in Id (taken conjunctively).

4We speculate that a good semantics for says has to come from an application other
than access control and conformance. In these applications, saying arises via policies, which
are expressed using formulas. There does not seem to be a corresponding computational
interpretation.
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• δO : S ×OP → 2S. δO(s,A) corresponds to an idealization of s, for which
the principal A is held responsible.

For the axioms A3-A6 we need the following constraints C3-C6 (resply). For
all s ∈ S:

C3 δL(s, IdA) ⊇ δL(s, Id′
A) for all A ∈ OP and IdA ⊆ Id′A ⊆ l(A)

C4 δO(s,A) 6= ∅ for all A ∈ OP

C5 For all {A,B} ⊆ OP , IdA ⊆ l(A), IdB ⊆ l(B), and s′ ∈ δL(s, IdA):

1. s′ ∈ δL(s, IdB), or

2. There exists s1 ∈ δL(s, IdA) such that for all s2 ∈ δO(s1, B), s′ ∈
δL(s2, IdB)

C6 For all A ∈ OP , IdA ⊆ l(A), and s′ ∈ δL(s, IdA):

There exists s1 ∈ δL(s, IdA) such that for all s2 ∈ δO(s1, A), s′ ∈ δL(s2, IdA)

C5 and C6 can be understood in the context of soundness (Lemma 1).
Given the object names O, OP ⊆ O, predicate names (Φ1, ...,Φn), identifiers
ID, and the function l, the space of models is denoted by M(O,OP Φ1, ..., Φn,
ID, l), abbreviated as M. We can now define satisfaction and validity, and we
restrict attention to the propositional fragment of L:

Definition 3 (Semantics). Given a model M = (S, IΦ1
, ..., IΦn

, δL, δO), s ∈ S

and a propositional ϕ ∈ L, the relation (M, s) |= ϕ is defined inductively as
follows:

• (M, s) |= p(o1, ..., oj) iff (o1, ..., oj) ∈ IΦj
(p, s).

• The semantics of conjunction and negation is defined in the usual way.

• (M, s) |= saysIdA
ϕ iff (M, s′) |= ϕ, for all s′ ∈ δL(s, IdA).

• (M, s |= OAϕ iff (M, s′) |= ϕ, for all s′ ∈ δO(s′, A).

We can now define validity:

• ϕ is valid in a model M (M |= ϕ) iff for all s ∈ S, (M, s) |= ϕ

• ϕ is valid (|= ϕ) iff for all M ∈ M, M |= ϕ

Theorem 1 (Soundness and Completeness). Given a propositional ϕ ∈ L, ⊢ ϕ
iff |= ϕ

Lemma 1 (Soundness). Given a propositional ϕ ∈ L, if ⊢ ϕ, then |= ϕ
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Proof. We need to show that the axioms are valid, and that the rules preserve
validity. It is well-known that the axioms A1 and A2 are valid, and that R1
and R2 preserve validity in all Kripke structures. The validity of A3 and A4
can easily be shown using C3 and C4. We discuss the case for A5.

Suppose A5 is not valid. There exists M , s, ϕ, A, B, IdA and IdB such
that:

• (M, s) |= saysIdA
(PB saysIdB

ϕ)

• (M, s) |= saysIdB
ϕ, and

• (M, s) 6|= saysIdA
ϕ

Since (M, s) 6|= saysIdA
ϕ, there exists s′ ∈ δL(s, IdA) such that (M, s′) 6|= ϕ.

Since C5 holds, there are two cases to consider:

1. If s′ ∈ δL(s, IdB), then (M, s) 6|= saysIdB
ϕ giving us a contradiction.

2. If there exists s1 ∈ δL(s, IdA) such that for all s2 ∈ δO(s1, B), s′ ∈
δL(s2, IdB), then:

• (M, s1) |= OB¬ saysIdB
ϕ

• (M, s) 6|= saysIdA
(¬OB¬ saysIdB

ϕ)

Hence, (M, s) 6|= saysIdA
(PB saysIdB

ϕ) (since PBϕ = ¬OB¬ϕ), giving us
a contradiction.

Hence, A5 is valid. The proof for A6 is similar.

Lemma 2 (Completeness). Given a propositional ϕ ∈ L, if |= ϕ, then ⊢ ϕ

The rest of this section gives the proof. We will use a canonical model
argument (c.f. [29]). We show the contrapositive, i.e., if 6⊢ ϕ, then 6|= ϕ. In
other words, if 6⊢ ϕ then there exist M and s such that (M, s) |= ¬ϕ. We begin
with some terminology.

We say that ϕ is consistent if ¬ϕ is not provable (6⊢ ¬ϕ). A finite set of
formulas {ϕ1, ..., ϕn} is consistent if ϕ1 ∧ ...∧ϕn is consistent. An infinite set of
formulas is consistent if every finite subset is consistent. A set of formulas ∆ is
maximal consistent if for all ϕ ∈ L− ∆, ∆ ∪ {ϕ} is inconsistent. The following
are properties of maximal consistent sets:

Proposition 2. Given a maximal consistent set ∆:

1. For all ϕ ∈ L, exactly one of ϕ ∈ ∆ or ¬ϕ ∈ ∆

2. If ⊢ ϕ⇒ ψ and ϕ ∈ ∆, then ψ ∈ ∆

3. If ⊢ ϕ, then ϕ ∈ ∆ and Qϕ ∈ ∆ (for all modalities Q)

The proof is straightforward. We now define the canonical model, in which
every consistent formula is true at some state:

Definition 4 (Canonical Model). The canonical model M = (S, IΦ1
, ..., IΦn

, δL, δO)
is such that:
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• S is the set of all maximal consistent sets

• (o1, ..., oj) ∈ IΦj
(p,∆) iff p(o1, ..., oj) ∈ ∆

• ∆′ ∈ δL(∆, IdA) iff for all ϕ, if saysIdA
ϕ ∈ ∆, then ϕ ∈ ∆′

• ∆′ ∈ δO(∆, A) iff for all ϕ, if OAϕ ∈ ∆, then ϕ ∈ ∆′

We now show that the canonical model satisfies the frame constraints:

Proposition 3. The canonical model satisfies the frame constraints C3-C6

Proof. The proof that C3 and C4 hold are left to the reader. We discuss the
case for C5. Given the canonical model M = (S, IΦ1

, ..., IΦn
, δL, δO), ∆ ∈ S,

and suppose for the purpose of contradiction that there exists ∆′ ∈ δL(∆, IdA)
such that:

• ∆′ 6∈ δL(∆, IdB). By construction, there exists saysIdB
ψ ∈ ∆ such that

¬ψ ∈ ∆′.

• For all ∆1 ∈ δL(∆, IdA), there exists ∆2 ∈ δO(∆1, B), ∆′ 6∈ δL(∆2, IdB).
By Proposition 4 (below), there exists saysIdA

PB saysIdB
ϕ ∈ ∆ such that

¬ϕ ∈ ∆′.

Using Proposition 2, saysIdB
(ϕ∨ψ) ∈ ∆ and saysIdA

PB saysIdB
(ϕ∨ψ) ∈ ∆.

So, saysIdA
(ϕ∨ψ) ∈ ∆, and hence ϕ∨ψ ∈ ∆′. That is ϕ ∈ ∆′ or ψ ∈ ∆′, which

contradicts the fact that ¬ϕ ∈ ∆′ and ¬ψ ∈ ∆′. The proof of C6 is similar.

Proposition 4. Given the canonical model M = (S, IΦ1
, ..., IΦn

, δL, δO), for all
∆ ∈ S, {A,B} ⊆ OP , IdA ⊆ l(A), IdB ⊆ l(B), and ∆′ ∈ δL(∆, IdA):

• If for all ∆1 ∈ δL(∆, IdA), there exists ∆2 ∈ δO(∆1, B), ∆′ 6∈ δL(∆2, IdB),
then there exists saysIdA

PB saysIdB
ϕ ∈ ∆ and ¬ϕ ∈ ∆′

Proof. Fix ∆, A, B, IdA, IdB and ∆′ ∈ δL(∆, IdA). We proceed by contradic-
tion. Suppose for all ϕ ∈ L, if saysIdA

PB saysIdB
ϕ ∈ ∆, then ϕ ∈ ∆′. Let F

be the smallest set such that:

• If saysIdA
ϕ ∈ ∆, then ϕ ∈ F , and

• If ¬ψ ∈ ∆′, then OB¬ saysIdB
ψ ∈ F .

We claim that F is consistent.5 Suppose not:

5Note that if there exists ϕ such that ∆ ⊢ saysIdA
ϕ and ∆ ⊢ saysIdA

¬ϕ, then
δL(∆, IdA) = ∅, and C5 and C6 are vacuously satisfied. In Proposition 4 (and Proposition 6
in Section 3.2.4), the contradiction applies only to cases where there exists ∆′ ∈ δL(∆, IdA),
and hence, no such ϕ exists.
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(1) There exists {ϕ1, ..., ϕn,OB¬ saysIdB
ψ1, ...,OB¬ saysIdB

ψm} ⊆ F such
that:

⊢ ¬(ϕ1 ∧ ... ∧ ϕn ∧ OB¬ saysIdB
ψ1 ∧ ... ∧ OB¬ saysIdB

ψm)

(2) ⊢ ϕ1 ∧ ... ∧ ϕn ⇒ PB saysIdB
(ψ1 ∨ ... ∨ ψm) (from (1) using A1, A4, R1

and R2)

(3) ⊢ saysIdA
(ϕ1 ∧ ... ∧ ϕn ⇒ PB saysIdB

(ψ1 ∨ ... ∨ ψm)) ∈ ∆ (from (2) using
R2)

(4) By construction, saysIdA
ϕi ∈ ∆ for all 1 ≤ i ≤ n. So, using A2 and (3),

we can derive that saysIdA
PB saysIdB

(ψ1 ∨ ... ∨ ψm) ∈ ∆. As a result,
ψ1 ∨ ... ∨ ψm ∈ ∆′, and there exists ψi ∈ ∆′ where 1 ≤ i ≤ m.

(5) By construction, ¬ψi ∈ ∆′ for all 1 ≤ i ≤ m, which together with (4)
contradicts the consistency of ∆′.

We can extend F into a maximal consistent set ∆1 such that ∆1 ∈ δL(∆, IdA).
PB saysIdB

ϕ ∈ ∆1 iff ϕ ∈ ∆′. So, for all ∆2 ∈ δO(∆1, B), if saysIdB
ϕ ∈ ∆2,

then ϕ ∈ ∆′. This suffices to conclude that ∆′ ∈ δL(∆2, IdB) for all ∆2 ∈
δO(∆1, B), giving us a contradiction.

The completeness proof is now finished in the usual way (see, for exam-
ple, [29]). Given the canonical model M and a state ∆, it is easy to show
that for all ϕ ∈ L, (M,∆) |= ϕ iff ϕ ∈ ∆. Furthermore, given a consistent ϕ,
we can construct a maximal consistent set ∆ such that ϕ ∈ ∆. As a result,
for every consistent ϕ, there exists a state ∆ in the canonical model such that
(M,∆) |= ϕ. Hence, if 6⊢ ϕ, then 6|= ϕ. We observe that compactness follows as
a corollary of the existence of the canonical model:

Corollary 1 (Compactness). An infinite set of formulas is satisfiable iff every
finite subset is satisfiable.

Given an infinite set of formulas ∆, if every finite subset is satisfiable, then
by soundness, every finite subset of ∆ is consistent. And, by definition, ∆ is
consistent. We can extend ∆ into a maximal consistent set, corresponding to a
state in the canonical model.

3.2.4. Decidability

In this section, we adapt the completeness proof to show the bounded-model
property, i.e., if φ is satisfiable, then it is satisfiable in a model of bounded size
(exponential in the size of φ). We begin by defining the set of subformulas:

Definition 5 (Subformulas). Given a propositional φ ∈ L, the set of subformu-
las sub(φ) is the smallest set such that:

1. φ ∈ sub(φ)

2. If ϕ ∈ sub(φ), then ¬ϕ ∈ sub(φ) (¬¬ϕ is identified with ϕ)

3. If ϕ ∧ ψ ∈ sub(φ), then ϕ ∈ sub(φ) and ψ ∈ sub(φ)
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4. If OAψ ∈ sub(φ) or saysIdA
ψ ∈ sub(φ), then ψ ∈ sub(φ)

5. If saysIdA
ψ1 ∈ sub(φ) and saysId′

A
ψ2 ∈ sub(φ) such that IdA ⊆ l(A) and

Id′A ⊆ l(A), then saysIdA∪Id′
A
ψ1 ∈ sub(φ)

6. If saysIdA
(
∨

∆1) ∈ sub(φ) and saysIdB
(
∨

∆2) ∈ sub(φ), then
saysIdA

(
∨

∆2) ∈ sub(φ) and saysIdA
(
∨

(∆1 ∪ ∆2)) ∈ sub(φ)

7. If saysIdA
ψ1 ∈ sub(φ) and IdA ⊆ l(A), then PA saysIdA

ψ1 ∈ sub(φ)

The last three clauses in Definition 5 are used to ensure that C5 and C6
hold. Note that in Clause 5, we consider disjunction over sets of formulas ∆1 and
∆2. Formulas which are not disjunctions are understood as disjunctions over
singleton sets, e.g., ϕ ∧ ψ =

∨

{ϕ ∧ ψ}. To obtain the analog of Proposition 3,
we need to ensure that formulas appearing within the scope of says are closed
under disjunction. We use sets of formulas to ensure that only finitely many
disjunctions are introduced, i.e., a disjunct need not be repeated. Due to Clauses
5 and 6, the number of subformulas is exponential in the size of φ. It is possible
to eliminate both these clauses, by filtering the model that we construct here.
But, this further filtration is not needed for the results proved in this work.
Clause 7 is key to obtaining the analog of Proposition 4.

Given φ ∈ L, we will consider maximal consistent sets w.r.t. sub(φ). A
set ∆ ⊆ sub(φ) is said to be maximal consistent iff ∆ is consistent and for all
ψ ∈ sub(φ)−∆, ∆∪{ψ} is inconsistent. We write ∆ ⊢ ϕ to denote ⊢

∧

∆ ⇒ ϕ.
The definition of the canonical model needs a few changes:

Definition 6 (Canonical Model of φ). The canonical model of φ, denoted Mφ =
(S, IΦ1

, ..., IΦn
, δL, δO), is such that:

• S is the set of all maximal consistent sets w.r.t. sub(φ)

• (o1, ..., oj) ∈ IΦj
(p,∆) iff p(o1, ..., oj) ∈ ∆

• ∆′ ∈ δL(∆, IdA) iff for all ψ ∈ sub(φ) and Id′A ⊆ IdA, if saysId′
A
ψ ∈ ∆,

then ψ ∈ ∆′

• ∆′ ∈ δO(∆, A) iff for all ψ ∈ sub(φ), if OAψ ∈ ∆, then ψ ∈ ∆′.

We will show that the canonical model of φ satisfies the frame constraints.
We adapt Propositions 3 and 4 to obtain Propositions 5 and 6 resply.

Proposition 5. The canonical model of φ satisfies the frame constraints C3-C6

Proof. The proof that C3 and C4 hold are left to the reader. We discuss
the case for C5. Given Mφ = (S, IΦ1

, ..., IΦn
, δL, δO), consider some ∆ ∈ S. If

δL(∆, IdA) = ∅, then C5 is vacuously satisfied. Otherwise, let ∆′ ∈ δL(∆, IdA).
There are two cases to consider.

First, we have the boundary case, where there is no subformula saysId′
A
ϕ′ ∈

sub(φ) such that Id′A ⊆ IdA. By defintion, δL(∆, IdA) = S. Consider the set
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F ⊆ sub(φ) such that ψ ∈ F iff ψ is of the form OB¬ saysIdB
ϕ and ¬ϕ ∈ ∆′.

We claim that F is consistent. Since ∆′ is consistent, we can construct a model
M ′ with states S′, and s′ ∈ S′ such that (M ′, s′) |=

∧

∆′. Without loss of
generality, we can assume that there exists s′′ ∈ S′ such that δO(s′′, A) = {s′′}
and δL(s′′, IdB) = S′ for all B ∈ OP and IdB ⊆ l(B). Note that states, such as
s′′, trivially satisfy the frame constraints, and can be added to any model. It
is easy to see that (M ′, s′′) |=

∧

F , and by soundness, F is consistent. We can
extend F into a maximal consistent set ∆1 such that for all ∆2 ∈ δO(∆1, B),
we have ∆′ ∈ δL(∆2, IdB). Since δL(∆, IdA) = S, we have ∆1 ∈ δL(∆, IdA),
and C5 is satisfied.

For the second case we proceed as follows. Let Id∗A be the largest subset
of IdA such that there is a subformula saysId∗

A
ϕ′ ∈ sub(φ). The existence of

a largest subset is guaranteed by Clause 5 in Definition 5. Fix IdB ⊆ l(B). If
there is no subformula saysId′

B
ψ′ ∈ sub(φ) with Id′B ⊆ IdB , then δL(∆, IdA) ⊆

δL(∆, IdB) = S, and C5 is satisfied. Otherwise, let Id∗B be the largest subset
of IdB such that there is a subformula saysId∗

B
ψ′ ∈ sub(φ). We proceed by

contradiction analogous to the completeness proof:

• ∆′ 6∈ δL(∆, IdB). By construction, there exists ψ ∈ sub(φ) such that
saysId′

B
ψ ∈ ∆ for some Id′B ⊆ l(B) and ¬ψ ∈ ∆′. And, using A3,

∆ ⊢ saysId∗
B
ψ.

• For all ∆1 ∈ δL(∆, IdA), there exists ∆2 ∈ δO(∆1, B), ∆′ 6∈ δL(∆2, IdB).
By Proposition 6 (below), there exists ϕ ∈ sub(φ) such that saysId∗

B
ϕ ∈

sub(φ), ∆ ⊢ saysId∗
A
PB saysId∗

B
ϕ and ¬ϕ ∈ ∆′.

Since ∆ ⊢ saysId∗
B
(ϕ ∨ ψ) and ∆ ⊢ saysId∗

A
PB saysId∗

B
(ϕ ∨ ψ), we have ∆ ⊢

saysId∗
A
(ϕ∨ψ). Using Clause 6 in Definition 5, there exists saysId∗

A
ϕ1 ∈ sub(φ)

such that ⊢ ϕ1 ⇔ (ϕ ∨ ψ). As a result, saysId∗
A
ϕ1 ∈ ∆, and hence ϕ1 ∈ ∆′.

Since ⊢ ϕ1 ⇔ (ϕ ∨ ψ), we have ϕ ∈ ∆′ or ψ ∈ ∆′, which contradicts the fact
that ¬ϕ ∈ ∆′ and ¬ψ ∈ ∆′. The proof of C6 is similar.

Proposition 6. Given φ ∈ L, IdA ⊆ l(A) and IdB ⊆ l(B) such that there are
largest subsets Id∗A ⊆ IdA and Id∗B ⊆ IdB with formulas saysId∗

A
ϕ′ ∈ sub(φ)

and saysId∗
B
ψ′ ∈ sub(φ), let Mφ = (S, IΦ1

, ..., IΦn
, δL, δO) be the canonical model

of φ. Then, for all ∆ ∈ S and ∆′ ∈ δL(∆, IdA):

• If for all ∆1 ∈ δL(∆, IdA), there exists ∆2 ∈ δO(∆1, B) such that ∆′ 6∈
δL(∆2, IdB), then there exists ϕ ∈ sub(φ) such that saysId∗

B
ϕ ∈ sub(φ),

∆ ⊢ saysId∗
A
PB saysId∗

B
ϕ and ¬ϕ ∈ ∆′

Proof. Fix ∆ and ∆′ ∈ δL(∆, IdA). We proceed by contradiction. Suppose
for all ϕ ∈ sub(φ) with saysId∗

B
ϕ ∈ sub(φ), if ∆ ⊢ saysIdA

PB saysIdB
ϕ, then

¬ϕ 6∈ ∆′. Let F be the smallest set such that:

• If saysId′
A
ϕ ∈ ∆ for some Id′A ⊆ IdA, then ϕ ∈ F

21



• If ¬ψ ∈ ∆′ and OB¬ saysId∗
B
ψ ∈ sub(φ), then OB¬ saysId∗

B
ψ ∈ F .

We claim that F is consistent (see Footnote 5). Suppose not:

(1) There exists {ϕ1, ..., ϕn,OB¬ saysId∗
B
ψ1, ...,OB¬ saysId∗

B
ψm} ⊆ F such

that: ⊢ ¬(ϕ1 ∧ ... ∧ ϕn ∧ OB¬ saysId∗
B
ψ1 ∧ ... ∧OB¬ saysId∗

B
ψm)

(2) ⊢ ϕ1 ∧ ... ∧ ϕn ⇒ PB saysId∗
B
(ψ1 ∨ ... ∨ ψm) (from (1) using A1, A4, R1

and R2)

(3) ⊢ saysId∗
A
(ϕ1 ∧ ... ∧ ϕn ⇒ PB saysId∗

B
(ψ1 ∨ ... ∨ ψm)) ∈ ∆ (from (2) using

R2)

(4) By construction, ∆ ⊢ saysId∗
A
ϕi for all 1 ≤ i ≤ n. So, using A2 and (3),

we can derive that ∆ ⊢ saysId∗
A
PB saysId∗

B
(ψ1 ∨ ... ∨ ψm). Using Clause

6 in Definition 5, there exists ψ′ ∈ sub(φ) such that saysId∗
B
ψ′ ∈ sub(φ)

and ⊢ ψ′ ⇔ (ψ1∨ ...∨ψm). It follows that ∆ ⊢ saysId∗
A
PB saysId∗

B
ψ′, and

by assumption, ¬ψ′ 6∈ ∆′, i.e., ∆′ ⊢ ψ′. As a result, ∆′ ⊢ ψ1 ∨ ... ∨ ψm,
and there exists 1 ≤ i ≤ m such that ψi ∈ ∆′ (since ψi ∈ sub(φ)).

(5) By construction, ¬ψi ∈ ∆′ for all 1 ≤ i ≤ m, which together with (4)
gives us a contradiction.

We can extend F into a maximal consistent set ∆1 such that ∆1 ∈ δL(∆, IdA).
Consider ∆2 ∈ δO(∆1, B). We claim that for all Id′B ⊆ IdB, if saysId′

B
ϕ ∈ ∆2,

then ϕ ∈ ∆′. Suppose not. There exists saysId′
B
ϕ ∈ ∆2 such that ¬ϕ ∈ ∆′.

Using Clauses 5 and 6 in Definition 5, it follows that saysId∗
B
ϕ ∈ sub(φ), and

using A3, saysId∗
B
ϕ ∈ ∆2. Since saysId∗

B
ϕ ∈ sub(φ), by Clause 7 in Defini-

tion 5, OB¬ saysId∗
B
ϕ ∈ sub(φ). By construction, OB¬ saysId∗

B
ϕ ∈ ∆1, and so,

¬ saysId∗
B
ϕ ∈ ∆2, contradicting the consistency of ∆2. This suffices to conclude

that ∆′ ∈ δL(∆2, IdB) for all ∆2 ∈ δO(∆1, B), giving us a contradiction.

A standard argument (see, for example, [29]) can be used to show that for
all ϕ ∈ sub(φ), (Mφ,∆) |= ϕ iff ϕ ∈ ∆. We can now establish decidability:

Theorem 2 (Decidability). Given a propositional ϕ ∈ L, checking whether ⊢ ϕ
is decidable

Proof. Decidability is established via the bounded model property:

φ is satisfiable in Mφ iff φ is satisfiable

One direction is trivial, i.e., if φ is satisfiable in Mφ, then φ is satisfiable (by
definition). For the other direction, we can use a standard filtration argument,
to show that Mφ can be obtained from the canonical model (Definition 4).

We set aside the issue of complexity, and more importantly, the identification
of tractable fragments to future work. The techniques discussed here would be
most relevant to such an investigation. In the following section, we will use
provability (and its negation) to describe the process of saying.
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3.3. The Saying Component - Policies

In this section, we describe the representation and evaluation of policies or
regulations. The result of evaluating regulation is a set of utterances, which
forms the basis for access control and conformance. The formalism developed
here is an extension of [14], and is a generalized form of logic programming.
Logic programs are popular in representing regulatory texts [23, 43, 52], and
access control policies [9, 12, 39]. We begin by defining the syntax of regulations:

Definition 7 (Syntax of Regulation). Given countable sets of identifiers ID,
principal names OP , and a function l : OP → 2ID, a law is a statement of the
form (id) ϕ 7→ ψ, where ϕ ∈ Lϕ, ψ ∈ Lψ, and there exists A ∈ OP such that
id ∈ l(A). The set of all possible laws is denoted by Laws(OP , l, L), abbreviated
Laws.

A body of regulation Reg ⊆ Laws is a finite set such that for all id ∈ ID,
there exists at most one pair (ϕ, ψ) ∈ Lϕ × Lψ such that (id) ϕ 7→ ψ ∈ Reg

(id) ϕ 7→ ψ is read as: “If ϕ is true, then A says ψ via the law (id)”,
where id ∈ l(A). To evaluate laws, we need a way to evaluate preconditions
(ϕ ∈ Lϕ). There are two kinds of atoms in Lϕ – predicates and formulas of the
form saysIdy

ϕ. The predicates are evaluated against a state, and formulas of
the form saysIdy

ϕ are evaluated provability (as defined in Section 3.2) from a
set of utterances. We begin by defining states:

Definition 8 (States and Assignments). Given countable sets O of object names,
principal names OP ⊆ O, and predicate names Φ1, ... ,Φn, a state s(O, OP ,

Φ1, ...,Φn), abbreviated s, is the tuple (IΦ1
, ... , IΦn

) where IΦj
: Φj → 2O

j

is the interpretation of predicates of arity j. Given p ∈ Φj, we will say that
p(o1, ..., oj) is true at state s iff (o1, ..., oj) ∈ IΦj

(p). The set of all states is
denoted by S.

Given a set of variables X, and principal variables XP , an assignment is a
function v : X → O, such that for all x ∈ XP , we have v(x) ∈ OP . The set of
all assignments is denoted by V (X,XP , O,OP ), abbreviated V .

A state s ∈ S is a description of operations, and gives us information, for
example, about the accesses to records that actually happened. The definition
of utterances relies on propositionalizing formulas:

Definition 9 (Propositionalization). Given φ ∈ L and an assignment v ∈ V ,
the propositionalization of ϕ w.r.t. v, denoted v(φ), is defined inductively as
follows:

• v(p(y1, ..., yn)) = p(o1, ..., on), where oi = v(yi) if yi ∈ X and oi = yi
otherwise (yi ∈ O).

• v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ), and v(¬ϕ) = ¬v(ϕ)

• v(Oyϕ) = OA(v(ϕ)), where A = v(y) if y ∈ XP and A = y otherwise.
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• v(saysIdy
ϕ) = saysIdA

(v(ϕ)), where IdA = l(v(y)) if y ∈ XP and IdA =
Idy otherwise.

We can now define utterances:

Definition 10 (Utterances). Given a body of regulation Reg, and an assignment
v ∈ V , an utterance is a statement v(says{id} ψ) such that id ∈ ID and (id) ϕ 7→
ψ ∈ Reg. The set of all utterances is denoted by U(Reg, V ).

To build intuition for the definitions, we first present a simplified version,
which can accommodate some (but not all) kinds of regulations. We will then
identify the difficult cases, and generalize the definition. Let us assume as given
a state s, a body of regulation Reg and an assignment v ∈ V . We wish to
determine whether the precondition of a law (ϕ ∈ Lϕ) is “true” w.r.t. s, Reg
and v. Consider the relation (s,Reg, v) |=1 ϕ defined inductively as follows:

P1 (s,Reg, v) |=1 p(y1, ..., yj) iff (o1, ..., oj) ∈ IΦj
(p), where oi = v(yi) if

yi ∈ X and oi = yi otherwise.

P2 Conjunction and negation are handled in the usual way

P3 (s,Reg, v) |=1 saysIdy
ψ′ iff there exists a set U ⊆ U(Reg, V ) such that:

P3.1 For all φ ∈ U , there exists (id) ϕ 7→ ψ ∈ Reg and v′ ∈ V such that
(s,Reg, v′) |=1 ϕ and φ = v′(says{id} ψ), and

P3.2 U ⊢ v(saysIdy
ψ′)

P3 is understood as follows. (s,Reg, v) |=1 saysIdy
ψ′ iff there is a set of

utterances U such that all formulas in U come from laws with true preconditions
(P3.1), and v(saysIdy

ψ′) is provable from U (P3.2). We remind the reader that
provability is defined in the propositional subset of the language L (Section 3.2).
We now give an example to illustrate this definition:

Proposition 7. Given a principal A ∈ OP with l(A) = {id1, id2}, and a body
regulation Reg consisting of only the following statements:

(id1) p(x) 7→ ¬q(x)

(id2) ¬ says{id1} ¬q(y) 7→ q(y)

Then for all s ∈ S and v ∈ V , we have:

1. (s,Reg, v) |=1 (¬p(x)) ⇔ says{id2} q(x)

2. (s,Reg, v) 6|=1 saysl(A) ⊥

Proof. The laws correspond to a standard pattern in default reasoning. The
law (id1) is understood as an exception, and read as “If p(x) holds, then A says
¬q(x) via law (id1)”. The law (id2) is the default, and read as “If A does not
say ¬q(x) via law (id1), then A says q(x) via law (id2)”.

The proofs of both items rely on a property of utterances that satisfy P3.1.
Given a state s, let Us be the set of utterances such that for all v ∈ V :
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• If (s,Reg, v) |= p(x), then v(says{id1} ¬q(x)) ∈ Us

• Otherwise, v(says{id2} ¬q(x)) ∈ Us

It is easy to show that U1 satisfies P3.1 iff U1 ⊆ Us.
Item 1: Suppose (s,Reg, v) |=1 ¬p(x) for some v ∈ V . Then, v(says{id2} q(x)) ∈
Us. Hence, Us ⊢ v(says{id2} q(x)) (satisfying P3.2), and hence (s,Reg, v) |=1

v(says{id2} q(x)). The converse is similarly verified.
Item 2: Suppose (s,Reg, v) |=1 saysl(A) ⊥. It follows that there exists U1

satisfying P3.1 such that U1 ⊢ saysl(A) ⊥. However, it is easily seen that Us 6⊢
saysl(A) ⊥, and since U1 ⊆ Us, by propositional reasoning, U1 6⊢ saysl(A) ⊥,
giving us a contradiction.

We note that there is nothing intrinsic about the formalism that prevents
conflicts in a principal’s laws. It is easy to construct a regulation Reg such that
for all s ∈ S and v ∈ V , we have (s,Reg, v) |=1 saysl(A) ⊥. One has to explicitly
prevent conflicts via the use of default rules, e.g., (id2) in the example above.
It is also possible to modify P3 so that utterances with conflicts are not used,
which would be in line with the approach of defeasible logic [20, 26, 47]. But,
we do not explore this option in this work.

Next, we illustrate the sense in which regulations are non-monotonic:

Proposition 8. There exist regulations Reg and Reg′ such that Reg ⊂ Reg′,
and a state s ∈ S, an assignment v ∈ V and a formula ϕ ∈ Lϕ such that:

(s,Reg, v) |=1 ϕ and (s,Reg′, v) 6|=1 ϕ

Proof. We will give an example similar to the default rules discussed above. The
key idea is to make use of a formula saysl(A) ψ, where l(A) has some identifiers
without corresponding laws in Reg. Let l(A) = {id1, id2, id3}, and Reg consists
of only the following two laws:

(id1) ¬ saysl(A) ¬q(x) 7→ q(x)

(id2) p(x) 7→ ¬q(x)

We construct Reg′ by adding a law, which conveys an exception, to Reg:

(id3) r(x) 7→ ¬q(x)

Given s ∈ S and v ∈ V such that (s,Reg, v) |=1 r(x) ∧ ¬p(x) (the exception in
(id3) applies, but the exception in (id2) does not), it follows that (s,Reg, v) |=1

saysl(A) q(x) and (s,Reg′, v) 6|=1 saysl(A) q(x)

As we mentioned, |=1 is not well-defined for all kinds of regulations:

Proposition 9. There is no relation |=1 that satisfies the properties P1-P3

Proof. Given A ∈ OP and l(A) = {id}, consider a regulation Reg that consists
of only the following statement:

(id) ¬ says{id} p(x) 7→ p(x)
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In other words, “If A does not say p(x) via law (id), then A says p(x) via law
(id)”. The self-referential nature of this sentence, together with negation, is the
source of the problem. We begin by observing that for all v ∈ V and U ⊆ U ,
U ⊢ v(says{id} p(x)) iff v(says{id} p(x)) ∈ U .

Suppose (s,Reg, v) |=1 says{id} p(x). By P3.2, there exists a set U such
that U ⊢ v(says{id} p(x)), and so, v(says{id} p(x)) ∈ U . As a result, by P3.1,
(s,Reg, v) |=1 ¬ says{id} p(x), giving us a contradiction.

Suppose (s,Reg, v) 6|=1 says{id} p(x). Then, (s,Reg, v) |= ¬ says{id} p(x).
The set U = {v(says{id} p(x))} satisfies P3.1 and P3.2. So, (s,Reg, v) |=1

says{id} p(x), giving us a contradiction.

To handle such circular statements, we use a technique from Kripke’s theory
of truth [37], which also forms the basis for the Kripke-Kleene-Fitting semantics
of logic programs [15]. There are two pieces of machinery needed. First, we move
to a three-valued logic, where the third (middle) value stands for ungrounded.
The values are denoted by B3 = {⊤, ?,⊥}. Second, we modify P3 to use a pair
of sets of utterances (U,U ′) such that U ⊆ U ′. Informally, U will be the set
of utterances obtained from laws with true preconditions, while U ′ will be set
of utterances from laws with true or ungrounded preconditions (by modifying
P3.1). The truth of saysIdy

ϕ will determined using U , and falsity is determined
using U ′ (by modifying P3.2). We note that it is not possible to define the three-
valued interpretation in a manner isomorphic to P1-P3. This is because P3
implicitly assumes the existence of a unique fixed point, and this assumption no
longer holds in the three-valued setting. We move the choice of (U,U ′) and P3.1
to a separate definition (Definition 12), and consider P1, P2, and a modified
version of P3.2 together for a fixed (U,U ′) (Definition 11).

We begin by defining a function tv which assigns truth values to precondi-
tions:

Definition 11 (Evaluating Preconditions). Given a body of regulation Reg
and a pair utterance sets (U,U ′) such that U ⊆ U ′ ⊆ U(Reg, V ), the function
tv(U,U ′) : Lϕ × S × V → B3 is defined as follows:

Predicates are evaluated to true or false. Conjunction and negation are han-
dled using the Kleene semantics.

tv(U,U ′)(saysIdy
ψ, s, v) =







⊤ if U ⊢ v(saysIdy
ψ)

⊥ if U ′ 6⊢ v(saysIdy
ψ)

? otherwise

Note that if U = U ′, then tv(U,U ′)(saysIdy
ψ, s, v) ∈ {⊤,⊥}, and is identical

to P3.2. The third value arises only if U ( U ′. We now define consistency
for the pair of utterances (U,U ′), used in Definition 11. We need to ensure
that U (resply. U ′) corresponds to laws with true (resply. true or ungrounded)
preconditions:

Definition 12 (Consistent Utterances). Given a regulation Reg and a state
s ∈ S, the utterance pair (U,U ′) is consistent iff for all φ ∈ U(Reg, V ) :
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• If φ ∈ U , then there exists (id) ϕ 7→ ψ ∈ Reg and v ∈ V such that
v(says{id} ψ) = φ and tv(U,U ′)(ϕ, s, v) = ⊤.

• If φ 6∈ U ′, then for all (id) ϕ 7→ ψ ∈ Reg and v ∈ V such that v(says{id} ψ) =
φ, we have tv(U,U ′)(ϕ, s, v) = ⊥.

CsU(Reg,V ) = {(U,U ′)| (U,U ′) ∈ 2U(Reg,V ) × 2U(Reg,V ) and (U,U ′) is consistent}
is the set of all consistent utterance pairs w.r.t. Reg, V and s.

It is immediate from the definition that for all (U,U ′) ∈ CSU(Reg,V ), we

have U ⊆ U ′. Consider the self-referential example (from Proposition 9) –
(id) ¬ says{id} p(x) 7→ p(x). For this example, any pair (U,U ′) such that
v(says{id} p(x)) ∈ U or v(says{id} p(x)) 6∈ U ′ is not consistent, as that would
mean assigning a value from {⊤,⊥} to the says{id} p(x). Consistency ensures
that tv(U,U ′)(says{id} p(x), s, v) = ? for all s ∈ S, v ∈ V and consistent pairs
(U,U ′). A partial order is defined over the space of consistent utterance pairs:

Definition 13 (Partial Order). Given the utterance pairs (U1, U
′
1) and (U2, U

′
2),

we say that (U1, U
′
1) ≤ (U2, U

′
2) iff U1 ⊆ U2 and U ′

1 ⊇ U ′
2.

The pair (CsU(Reg,V ),≤) is a partially ordered set (poset).

We are now ready to define the function whose fixed points we will be inter-
ested in.

Definition 14 (Inflationary function). Given a poset (CsU(Reg,V ),≤), the func-

tion IsU(Reg,V ) : CsU(Reg,V ) → CsU(Reg,V ) is defined as follows. IsU(Reg,V )(U1, U
′
1)

is the pair (U2, U
′
2) ∈ CsU(Reg,V ) such that for all φ ∈ U(Reg, V ):

• φ ∈ U2 iff there exists (id) ϕ 7→ ψ ∈ Reg and v ∈ V such that v(says{id} ψ) =
φ and tv(U1,U

′

1
)(ϕ, s, v) = ⊤.

• φ 6∈ U ′
2 iff for all (id) ϕ 7→ ψ ∈ Reg and v ∈ V such that v(says{id} ψ) = φ,

we have tv(U1,U
′

1
)(ϕ, s, v) = ⊥.

The existence of fixed points relies on some properties of ISU(Reg,V ), i.e., being
inflationary and monotonic:

Proposition 10. Given a poset (CsU(Reg,V ),≤), abbreviated (CU ,≤), the func-
tion IsU(Reg,V ), abbreviated IU , is:

1. Inflationary - For all (U1, U
′
1) ∈ CU , (U1, U

′
1) ≤ IU (U1, U

′
1)

2. Well-defined - For all (U1, U
′
1) ∈ CU , IU (U1, U

′
1) ∈ CU

3. Monotonic - For all {(U1, U
′
1), (U2, U

′
2)} ∈ CSU , if (U1, U

′
1) ≤ (U2, U

′
2), then

IU (U1, U
′
1) ≤ IU (U2, U

′
2)

Proof. Item 1: Let (U2, U
′
2) = IU (U1, U

′
1). We are given that (U1, U

′
1) is con-

sistent. Hence, for all φ ∈ U :
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• If φ ∈ U1, then by Definition 12, there exists (id) ϕ 7→ ψ ∈ Reg and
v ∈ V such that v(says{id} ψ) = φ and tv(U,U ′)(ϕ, s, v) = ⊤. Therefore,
by Definition 14, φ ∈ U2. We can conclude that U1 ⊆ U2.

• If φ 6∈ U2, then by Definition 12, for all (id) ϕ 7→ ψ ∈ Reg and v ∈ V

such that v(says{id} ψ) = φ, we have tv(U,U ′)(ϕ, s, v) = ⊥. Therefore, by
Definition 14, φ 6∈ U2. We can conclude that U1 ⊇ U2.

Hence, by Definition 13, (U1, U
′
1) ≤ (U2, U

′
2)

Interlude: For the second and third items, we need the following observations.
Given U1 ⊆ U ′

1 ⊆ U and U2 ⊆ U ′
2 ⊆ U , if (U1, U

′
1) ≤ (U2, U

′
2), then for all

ϕ ∈ Lϕ and v ∈ V (X,O):

(D1) If tv(U1,U
′

1
)(ϕ, s, v) = ⊤, then tv(U2,U

′

2
)(ϕ, s, v) = ⊤

(D2) If tv(U1,U
′

1
)(ϕ, s, v) = ⊥, then tv(U2,U

′

2
)(ϕ, s, v) = ⊥

These are established easily by induction over the structure of ϕ. Note that the
claims are for all pairs of utterances, and not just the consistent ones.
Item 2: Let (U2, U

′
2) = IU (U1, U

′
1). From Item 1, it follows that (U1, U

′
1) ≤

(U2, U
′
2). Suppose, for the purpose of contradiction, that (U2, U

′
2) is not consis-

tent. Then, by Definition 12, there exists φ ∈ U such that:

• φ ∈ U2 and for all (id) ϕ 7→ ψ ∈ Reg and v ∈ V such that v(says{id} ψ) =
φ, we have tv(U2,U

′

2
)(ϕ, s, v) 6= ⊤, and by (D1), tv(U1,U

′

1
)(ϕ, s, v) 6= ⊤.

Therefore, by Definition 14, φ 6∈ U2, giving us a contradiction.

• The second case (where φ 6∈ U ′
2) is contradicted similarly using (D2).

The proof of Item 3 is along similar lines.

The existence of fixed points is established using Zorn’s lemma (cf. [50]),
which applies to chain-complete posets. Given a poset (CsU(Reg,V ),≤), a set C′ ⊆

CsU(Reg,V ) is called a chain (totally ordered set) if for all (U1, U
′
1), (U2, U

′
2) ∈ C′,

we have (U1, U
′
1) ≤ (U2, U

′
2) or (U2, U

′
2) ≤ (U1, U

′
1). A poset is chain-complete

if every chain has a supremum. We now show that (CsU(Reg,V ),≤) is a chain-
complete poset:

Proposition 11. (CsU(Reg,V ),≤) is a chain-complete poset.

Proof. Given a chain C′ ⊆ CsU(Reg,V ), consider the pair (Us, U
′
s) defined as fol-

lows:
Us =

⋃

(U,U ′)∈C′

U U ′
s =

⋂

(U,U ′)∈C′

U ′

It is immediate from the construction that ∀(U,U ′) ∈ C′ : (U,U ′) ≤ (Us, U
′
s). It

is also easy to see that if (Us, U
′
s) is consistent, then it is the supremum of C′.

Thus, it suffices to show that (Us, U
′
s) is consistent, and this can be established

by an argument similar to the proof of Proposition 10.
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Theorem 3. Given a poset of consistent utterance pairs (CsU(Reg,V ),≤) and a
function IsU(Reg,V ) : CsU(Reg,V ) → CsU(Reg,V ) which is inflationary and mono-
tonic, IsU(Reg,V ) has a least fixed point and a maximal fixed point.

The proof is obtained as a corollary to Zorn’s Lemma (cf. [50]), and we
refer the reader to [14] for the argument.6 To obtain the least fixed point, we
consider the pair (U0, U

′
0) ∈ CsU(Reg,V ), where U0 = ∅ and U ′

0 = U(Reg, V ). Let

(Ui, U
′
i) = IsU(Reg,V )(Ui−1, U

′
i−1) for i ≥ 1. It is easy to see that if |U(Reg, V )|

is finite (i.e., the number of objects O is finite), then there exists n ∈ N such
that (Un, U

′
n) is the least fixed point, i.e., (Un, U

′
n) = (Un+i, U

′
n+i) for all i ∈ N .

We also note that in the case of finite domains, |CsU(Reg,V )| is finite, and so,

the maximal fixed points can be enumerated (in theory). To make the approach
practical, restrictions are needed. In [13], we explored an assumption that lets us
compile out occurrences of says in the preconditions of laws, leading to efficient
checking for states with a large number of objects. These methods need to be
extended to accommodate reasoning that arises via representation (axioms A5
and A6), and we leave an investigation to future work.

A state s together with a consistent utterance pair forms the basis for all
decision problems. We define a notion of validity at a state, which we will use
to formalize access control and conformance decisions (in Sections 3.4 and 3.5
resply.):

Definition 15 (Validity at a State). Given a state s, a body of regulation Reg,
a consistent utterance pair (U,U ′) ∈ CsU(Reg,V ) and a propositional ϕ ∈ Lϕ, we

say that ϕ is valid at s w.r.t. Reg and (U,U ′), denoted (s,Reg) |=(U,U ′) ϕ, iff
tv(U,U ′)(ϕ, s, v) = ⊤ for all v ∈ V .

The choice of which utterance pair to use depends on the application. If
there is a unique (least) fixed point, then it is the appropriate choice. However,
matters are not so clear when there are multiple fixed points. We conclude this
section with a discussion of examples to build intuition about the definitions of
access control and conformance.

3.3.1. Examples

We discuss two examples. First, we consider the statements from HIPAA
(presented in Section 3.1 and also discussed Section 3.2.2). A unique fixed point
will be obtained for these statements. Second, we consider an example involving
multiple fixed points.
Example 1: Consider the statements from HIPPA in Section 3.1. Let H ∈ OP
stand for the regulatory authority behind HIPPA, and l(H) = {1, 1a, 1b}. As
we discussed in Section 3.2.2, the phrase has the right is analysed as a power.
We use the following abbreviation:

hasRight(x, z, ϕ) = Px saysl(x) Oz saysl(z) Pxϕ

6Kripke [37] describes Theorem 3 as being well-known to logicians. However, we have not
found a standard reference for this proof.
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The HIPAA rule is formalized as follows:

(1) pat(x) ∧ rec(y, x, z) ∧ ¬ says{1a,1b} e(y) 7→ hasRight(x, z, access(x, y))

(1a) psyNotes(y1) 7→ e(y1)

(1b) compForLegal(y2) 7→ e(y2)

The law (1) is read as follows: “If x is a patient (pat(x)), and y is a record
of x maintained by z (rec(y, x, z)), and HIPPA does not say that there is an
exception applying to y (¬ says{1a,1b} e(y)), then HIPAA says that x has the
right to access her records via the law (1)”.

The law (1a) is read as follows: “If y1 is a record of psychotherapy notes
(psyNotes(y1)), then HIPAA says that an exception applies to y1 via the law
(1a)”. And, the law (1b) is read as follows: “If y2 is a record compiled for legal
proceedings (compForLegal(y2)), then HIPAA says that an exception applies to
y2 via the law (1b)”.

We set aside the important problem of defining these predicates further,
i.e., the definitional aspects of the law [33]. For example, HIPPA provides
rules describing who counts as a patient, and the interpretation of pat(x) is
dependent on these rules. In addition, the predicate e(y) could be interpreted
as a permission to the maintainer of y not to grant access.7 Such extensions are
easily accommodated.

Suppose Alice (A) wants to view her records (r) which are maintained by
Bob (B). Alice introduces the following rule:

(2) Bob must show me my records.

As discussed in Section 3.2.2, the manner in which this rule arises is left un-
specified. For example, Alice may send an e-mail to Bob, requiring to see her
records. Alice’s law is formalized as follows. Let A ∈ OP stand for Alice, and
B ∈ OP stand for Bob. In addition, l(A) = {2}. Law (2) is formally expressed
as:

(2) ⊤ 7→ OB saysl(B) PBaccess(A, r)

Bob complies with this request via his access control policy. Suppose Bob’s
policy consists of the following rule:

(3) HIPAA is permitted to require me to permit a patient to access her
records.

Let l(B) = {3}. Law (3) is formally expressed as:

(3) pat(x3) ∧ rec(y3, x3, B) 7→ PH saysl(H) OB saysl(B) Px3
access(x3, y3)

7Our understanding of the HIPAA rule is that (1a) and (1b) are only meant to cancel
the right provided by (1), and do not entail any explicit permission to the maintainer of the
records.

30



Table 1 shows a state together with the fixed point utterances obtained
from l(H), l(A), and l(B). Here, r is a record about Alice maintained by Bob
(rec(r, A,B)), which has been compiled for legal proceedings (compForLegal(r)).
The precondition of HIPAA’s law (1b) is true, and we obtain the utterance
says{1b} e(r). As a result, the precondition of (1) is false, and no right is granted
to Alice. The preconditions of Alice’s and Bob’s laws ((2) and (3) resply.) are
true, and the corresponding utterances are obtained.

Objs Predicates Fixed Point Utterances
H pat(A), rec(r, A,B) says{1b} e(r)

A, r ¬psyNotes(r) says{2} OB saysl(B) PBaccess(A, r)

B compForLegal(r) says{3} PH saysl(H) OB saysl(B) PAaccess(A, r)

Table 1: A state and fixed point utterances for the HIPAA example.

Let us consider the questions of access control and conformance informally,
given the state and fixed point in Table 1. Is Alice permitted to access her
record? No, because HIPAA does not require Bob to permit her to access it. Is
Bob conformant? On one hand, HIPAA doesn’t require anything of Bob, so yes.
On the other hand, Alice says that Bob is required to permit her to access her
records, and he does not comply with this request. Thus, conformance is better
seen as a relation between two principals w.r.t. a set of laws. In Section 3.5, we
will say that B conforms to A w.r.t. the laws l(A) iff B satisfies the obligations
imposed by those laws.
Example 2: We now discuss an example involving multiple fixed points, based
on the well-known Nixon-diamond problem in Default Logic [49]. Consider the
following laws:

(4) Except as otherwise specified, quakers must be pacifists.

(5) Except as otherwise specified, republicans must not be pacifists.

The laws are formally expressed as:

(4) q(x) ∧ ¬ says{5} ¬Oxp(x) 7→ Oxp(x)

(5) r(x) ∧ ¬ says{4} ¬Ox¬p(x) 7→ Ox¬p(x)

Law (4) is read as “If x is a quaker (q(x)), and the regulator does not say
that x is not required to be a pacifist (p(x)) via law (5), then the regulator says
that x must be a pacifist via law (4)”. Law (5) is read similarly, and r(x) is
read as: “x is a republican”.

Table 2 gives an example of a state, where a principal (N) for Nixon is
a quaker (q(N)), a republican (r(N)), but not a pacifist (¬p(N)). The least
fixed point is given by (U,U ′), where U = ∅ and U ′ consists of all utterances.
The preconditions of both laws are ungrounded. This corresponds to skeptical
reasoning in non-monotonic logic.

Two maximal fixed points are obtained. In the first fixed point in Table 2,
denoted (U1, U

′
1), we have U1 = U ′

1 = {says{4} ONp(N)}. The precondition
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of law (4) (resply., law (5)) is true (resply., false). In the second fixed point
in Table 2, denoted (U2, U

′
2), we have U2 = U ′

2 = {says{5} ON¬p(N)}. The
precondition of law (5) (resply., law (4)) is true (resply., false). The maximal
fixed points correspond to credulous reasoning in non-monotonic logic.

Objs Predicates Fixed Point 1 Fixed Point 2
N q(N), r(N), ¬p(N) says{4} ONp(N) says{5} ON¬p(N)

Table 2: A state and distinct maximal fixed points obtained from the Nixon-diamond example

Let us consider the question of conformance informally. Given the state in
Table 2, does the principal N conform to the regulation? The answer depends
on which fixed point we consider. If we consider the first fixed point, then the
answer is no, because N is not a pacifist. If we consider the second fixed point,
then the answer is yes, for the same reason. We note that if N wasn’t both a
quaker and a republican, a unique fixed point is obtained.

While the Nixon-diamond construction arises in the area of knowledge repre-
sentation, the question of interest is whether there are regulations where multiple
fixed points are needed. We have not encountered such examples.8

3.4. Non-interference in Access Control

An access control decision is made when a principal A requests the perfor-
mance of action p which is controlled by B. Given a state s, regulation Reg and
fixed point (U,U ′) resulting from the evaluation of policy, the decision problem
is whether (s,Reg) |=(U,U ′) saysl(B) PA(p), i.e., does B say that A is permitted
to perform p.

A problem with this definition is that the policies in access control are usually
distributed. It is unreasonable to expect (U,U ′) to reside on a single system.
Given that we wish to evaluate saysl(B) PA(p), the question is whether a smaller
set of utterances suffice to answer this question. In other words, the evaluation
should be carried out locally by B or a designated evaluator for B, as in [6].

Non-interference properties are used to obtain such results, and to demon-
strate that the logic protects the rights of each principal [2, 17]. In our case, the
access control decision is of the form (s,Reg) |=(U,U ′) saysIdB

ψ, and this holds
iff U ⊢ saysIdB

ψ. The goal is to identify a subset of utterances (U∗ ⊆ U), such
that U ⊢ saysIdB

ψ iff U∗ ⊢ saysIdB
ψ.

Let us consider an example to build some intuition. Suppose we have four
principals A, B, C, and D, with l(A) = {id1}, l(B) = {id2}, l(C) = {id3}, and
l(D) = {id4}. Suppose C is a patient, and A and B maintain records about
C. A only permits C to access her records, while B permits C to permit her
mother (D) to access her records. Let U consist of the following utterances:

8It is tempting to analyse conflicting obligations that can arise in contrary-to-duty (CTD)
structures (c.f. [48]) using multiple fixed points. However, we do not believe that this is the
right approach. The analysis of CTD structures is left to future work
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(u1) saysl(A) PCaccess(C, r)

(u2) saysl(B) PC saysl(C) PDaccess(D, r1)

(u3) saysl(C) PDaccess(D, r1)

Now, supposeD wants to access C’s records that are maintained by A. It is easy
to see that U 6⊢ saysl(A) PDaccess(D, r). But, do we need all of the utterances
in U to make this determination? Intuitively, no, because the only utterance
from A is (u1) and there is no representation conveyed via (u1). So, (u1) alone
should suffice to make this determination. In this case, we say that (u2) and
(u3) do not interfere with the access control decision.

Next, suppose D wants to access C’s records that are maintained by B. It
follows that U ⊢ saysl(B) PDaccess(D, r1), and so D is indeed granted access.
Here, (u2) is certainly relevant, and since it gives the power of representation
to C, (u3) is also relevant. However, no mention of A is made by (u2) or (u3),
and so, (u1) does not interfere with the access control decision.

We begin by defining the subset of utterances that are relevant to an access
control decision:

Definition 16 (Reachable Utterances). Given a set of utterances U and a
formula saysIdB

ψ, U∗
IdB

is the smallest set such that:

• If idB ∈ IdB and says{idB} ϕ ∈ U , says{idB} ϕ ∈ U∗
IdB

• If says{idB} ϕ ∈ U∗
IdB

and saysIdA
ψ′ is a subformula of ϕ, then U∗

IdA
⊆

U∗
IdB

If we think of formulas saysIdB
ψ as pointing to utterances in U (labeled IdB),

then U∗
IdB

is the set of utterances that are pointed to directly (the first clause), or
pointed to by subformulas of utterances that are pointed to (the second clause).
In these terms, the computation of the set U∗

IdB
corresponds to a reachability

computation on a graph, and hence, we call it the set of reachable utterances.
We believe that it is reasonable to restrict to the reachable utterances, because
given the question saysl(B) ψ, U∗

l(B) is determined by B and the principals to
whom she grants the power of representation. We can now show the following:

Theorem 4 (Non-interference). Given a set of utterances U , for all saysIdB
ψ ∈

L, we have U ⊢ saysIdB
ψ iff U∗

IdB
⊢ saysIdB

ψ

Proof. One direction follows easily using propositional reasoning, i.e., if U∗
IdB

⊢
saysIdB

ψ, then U ⊢ saysIdB
ψ, since U∗

IdB
⊆ U .

For the other direction, we proceed by contradiction. Suppose U ⊢ saysIdB
ψ,

and U∗
IdB

6⊢ saysIdB
ψ. So, φ = U∗

IdB
∧ ¬ saysIdB

ψ is satisfiable. Let M =
(S, IΦ1

, ..., IΦn
, δL, δO) be a model of φ. Hence:

• There exists sφ ∈ S such that (M, sφ) |= φ for some sφ ∈ S, and

• There exists s¬ψ ∈ δL(s, IdB) such that (M, s¬ψ) |= ¬ψ
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We will construct a new model M ′ with a state s∗ such that (M ′, s∗) |=
∧

U

and (M ′, s∗) |= ¬ saysIdB
ψ. This would contradict the assumption that U ⊢

saysIdB
ψ. The main difficulty with the construction is that ψ may have a

subformula saysIdC
ψ′ such that there is a statement says{idC} ϕ ∈ U−U∗

Id with
idC ∈ IdC . Thus, changing the truth of says{idC} ϕ could result in a change in
the truth of saysIdC

ψ′. Handling this case makes the construction involved.
We construct a new model M ′ = (S′, I ′Φ1

, ..., I ′Φn
, δ′L, δ

′
O) as follows:

The states S′: For each state s ∈ S, we assign a new state, denoted c(s), which
is to be understood as a copy of s. We assume that c(s) 6∈ S and c(s) = c(s′)
iff s = s′. Given S1 ⊆ S, c(S1) denotes the set of states such that c(s) ∈ c(S1)
iff s ∈ S1. In addition, we add two special states s∗ (at which the contradiction
will be obtained) and sW (which provides witnesses as needed for C5 and C6).
S′ = S ∪ c(S) ∪ {s∗, sW }
Interpretation of Predicates: I ′Φ1

, ..., I ′Φn
is the same as IΦ1

, ..., IΦn
with the

copies of states having the same assignment as the states in S. No predications
hold at s∗ and sW .
Accessibility Relation δ′O: δ′O respects δO for s ∈ S. δ′O(c(s), A) = c(δO(s,A)),
for all A ∈ OP and c(s) ∈ c(S). In addition, δO(s∗, A) = {s∗}, and δO(sW , A) =
{sW }, for all A ∈ OP .
Accessibility Relation δ′L: This is the main part of the construction. δ′L
respects δL for s ∈ S. For all A ∈ OP and IdA ⊆ l(A), δ′L(sW , IdA) = S′. We
now describe the construction for the other states, starting with some notation.

Given IdA ⊆ l(A), let Id∗A be the set such that for all idA ∈ IdA, idA ∈ Id∗A
iff idA ∈ IdB or there exists a subformula saysId′

A
ϕ ∈ U∗

IdB
such that idA ∈ Id′A.

The state s∗- For all A ∈ OP and IdA ⊆ l(A), we have the following cases:

• If Id∗A 6= IdA, then δ′L(s∗, IdA) = ∅

• Otherwise, δ′L(s∗, IdA) = δL(sφ, IdA) ∪ c(δL(sφ, IdA)).

The first clause ensures that (M ′, s∗) |= says{idA} ϕ for all says{idA} ϕ ∈
U − U∗

IdB
, since {idA}∗ = ∅. The second clause adds both the states that are

accessible from sφ and their copies. The accessibility relations associated with
a copy (c(s¬ψ)) will be modified in order to preserve C5.
The copies – For all C ∈ OP , IdC ⊆ l(C), and c(s) ∈ c(S):

• If c(s) 6∈ δ′O(c(s¬ψ), C) or Id∗A = IdA, then δ′L(c(s), IdC) = c(δL(s, IdC)).

• Otherwise, δ′L(c(s), IdC) = δL(sφ, IdC) ∪ c(δL(sφ, IdC)) ∪ c(δL(s, IdC)) ∪
{sW }.

Note that the second clause does not affect the truth of any subformula in
U∗
IdB

, and it ensures that there are witnesses as needed for C5 for the cases

where δ′L(c(sφ), IdA) = ∅.
Frame Constraints: We need to verify that the frame constraints hold in M ′.
The only difficulty is in showing that C5 holds at the copies and s∗. Fix A, C,
IdA and IdC . Given c(s) ∈ c(S), there are two cases:
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• c(s) 6∈ δ′O(c(s¬ψ), A) or Id∗A = IdA. By construction, δ′L(c(s), IdA) =
c(δL(s, IdA)). Consider c(s′) ∈ δ′L(c(s), IdA). Since C5 holds at s in M :

– s′ ∈ δL(s, IdC), in which case c(s′) ∈ δ′L(c(s), IdC), or

– There exists s1 ∈ δL(s, IdA) such that for all s2 ∈ δO(s1, C), we have
s′ ∈ δL(s2, IdC). By construction, for all c(s2) ∈ δ′O(c(s1), C), we
have c(s′) ∈ c(δL(s2, IdC)) ⊆ δ′L(c(s2), IdC).

• Otherwise, by construction, sW ∈ δL(c(s), IdA), and δ′O(sW , C) = {sW }.
Since δ′L(c(s), IdA) ⊆ δ′L(sW , IdC) = S′, C5 is trivially satisfied.

Next we consider the state s∗ for which there are three cases:

1. Id∗A 6= IdA. δ′L(s∗, IdA) = ∅ and C5 is vacuously satisfied.

2. Id∗A = IdA and Id∗C 6= IdC . For each c(s) ∈ δ′O(c(s¬ψ), C), we have
δ′L(s∗, IdA) ⊆ δ′L(c(s), IdC), thereby satisfying C5.

3. Id∗A = IdA and Id∗C = IdC . In this case, C5 is satisfied because C5 holds
in M and the copies of states are isomorphic.

Establishing the contradiction: The following are established easily by in-
duction:

(P1) For all s ∈ S and ϕ ∈ L, (M, s) |= ϕ iff (M ′, s) |= ϕ

(P2) For all s ∈ S and ϕ ∈ L such that for all subformulas saysIdA
ϕ′ of ϕ,

Id∗A = IdA, (M, s) |= ϕ iff (M ′, c(s)) |= ϕ.

We can now reason as follows:

1. (M ′, s∗) |=
∧

U∗
IdB

, since for all says{idA} ϕ ∈ U∗
IdB

and s′ ∈ δ′L(s∗, {idA}),

the following condition holds. Either s′ ∈ δ′L(sφ, {idA}), in which case
(M ′, s) |= ϕ (using (P1)), or s′ ∈ δ′L(c(sφ), {idA}), in which case (M ′, s′) |=
ϕ (using (P2)).

2. (M ′, s∗) |= says{idA} ϕ, for all says{idA} ϕ ∈ U − U∗
IdB

(by construction,
since {idA}∗ 6= {idA} and δ′L(s∗, {idA}) = ∅)

3. Hence, (M ′, s∗) |=
∧

U

4. (M ′, s∗) |= ¬ saysIdB
ψ, since s¬ψ ∈ δL(s∗, IdB), and (M ′, s¬ψ) |= ¬ψ

(using (P1))

The last two items contradict the assumption that U ⊢ saysIdB
ψ.

We note that the distinction between the inference component and the saying
component allows us to restrict attention to inferences of the form U ⊢ saysIdB

ϕ,
where U only has formulas of the form saysIdA

ψ. If the set U could contain ar-
bitrary formulas, non-interference would have a more complex characterization,
as in [17]. For example, if we allowed formulas of the form ¬ saysIdA

ψ in U ,
then any principal can render U inconsistent.
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3.5. Conformance

We now turn to the definition of conformance. While the definition of confor-
mance has some variation between the various formalisms [4, 14, 19–21, 27, 38],
all of them require a principal to satisfy the obligations that are imposed on
her. In the context of contracts, several works [20, 21, 27, 38] accommodate
reasoning about mitigating actions such as “paying a fine” if an obligation is
not satisfied. The analysis of such mitigating actions is left to future work.

We define conformance as a relation between a principal and another prin-
cipal w.r.t. a set of laws:

Definition 17 (Conformance). Given a state s with a set of objects O, a body
of regulation Reg, and {A,B} ⊆ OP , we say that A conforms to B w.r.t. the
laws IdB ⊆ l(B) and a fixed point (U,U ′) with U = U ′ iff for all propositional
ϕ ∈ LϕA

:
If (s,Reg) |=(U,U ′) saysIdB

OAϕ, then (s,Reg) |=(U,U ′) ϕ

In other words, conformance is the satisfaction of all obligations. The syn-
tactic restrictions in Definition 1 justify the restriction to ϕ ∈ LϕA

, as these are
the only formulas that can appear within the scope of OA. The restriction to
fixed points (U,U ′), where U = U ′, ensures that all formulas are either true or
false. Definition 17 is not appropriate when U 6= U ′, since classically provable
formulas, e.g. ϕ ∨ ¬ϕ, may be ungrounded. In such cases, the principal would
be found (trivially) non-conformant. One way to accomodate these cases is to
modify Definition 17 so that if (s,Reg) |=(U,U ′) saysIdB

OAϕ, we require only
that ϕ be true or ungrounded. With this modification, our proof of decidability
carries over to the case where U 6= U ′.

Let us apply Definition 17 to our example from HIPAA in Table 1 (Sec-
tion 3.3). As we discussed, we are interested in the conformance of Bob (B). Bob
does not conform to Alice (A) w.r.t. the law l(A) = {2}, because (s,Reg) |=(U,U ′)

saysl(A) OB saysl(B) PAaccess(A, r) and (s,Reg) 6|=(U,U ′) saysl(B) PAaccess(A, r).
However, it can be shown that Bob conforms to HIPAA (H), w.r.t. the laws
{1, 1a, 1b} = l(H). We will discuss additional examples in Section 4.2.

We now discuss the proof of decidability of conformance. Given a state s and
a fixed point (U,U ′), there are potentially infinitely many formulas ϕ ∈ LϕA

such
that (s,Reg) |=(U,U ′) saysIdB

OAϕ. For example, if there is some ϕ such that
(s,Reg) |=(U,U ′) saysIdB

OAϕ, then for all ϕ′ ∈ LϕA
, we have (s,Reg) |=(U,U ′)

saysIdB
OA(ϕ∨ϕ′). We will prove that it suffices to restrict attention to a single

formula, which may be understood as a prime implicant of all the obligations
imposed on A via the laws IdB .

The proof relies on properties of the canonical model of a formula (Defini-
tion 6). We begin with some notation. Given φ ∈ L, let Mφ = (S, IΦ1

, ..., IΦn
,

δL, δO) be the canonical model of φ. Recall that each state ∆ ∈ S is a max-
imal consistent set of subformulas of φ, i.e., ∆ ⊆ sub(φ). Given ∆ ∈ S and
IdB ⊆ l(B), ∆IdB

is the set such that ϕ ∈ ∆IdB
iff there exists Id′B ⊆ IdB such

that saysId′
B
ϕ ∈ ∆. Similarly, given ∆ ∈ S and A ∈ OP , ∆A is the set such

that ϕ ∈ ∆A iff OAϕ ∈ ∆.
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We now establish some properties of maximal consistent sets that are useful
in the proof.

Proposition 12. Given φ ∈ L, let Mφ = (S, IΦ1
, ..., IΦn

, δL, δO) be the canoni-
cal model of φ. The following hold for all ϕ ∈ LϕA

, ψ ∈ Lψ and ∆ ∈ S:

1. If for all ∆′ ∈ δ′L(∆, A), ∆′ ⊢ ϕ, then ∆ ⊢ OAϕ

2. If for all ∆′ ∈ δL(∆, IdB), ∆′ ⊢ ψ, then ∆ ⊢ saysIdB
ψ

3. If ∆ ⊢ saysIdB
OAϕ, then for all ∆′ ∈ δL(∆, IdB), ∆′

A ⊢ ϕ

Proof. For the first two items, we will need the following observation. Given
Γ ⊆ sub(φ), let SΓ ⊆ S be the set such that ∆ ∈ SΓ iff Γ ⊆ ∆. Then, for all
ϕ ∈ L:

(∗) Γ ⊢ ϕ iff for all ∆ ∈ SΓ, ∆ ⊢ ϕ.

This follows using propositional reasoning, since S is the set of all maximal
consistent sets w.r.t. sub(ϕ), and SΓ is the set of all maximal consistent sets
containing Γ.
Item 1: Consider ϕ ∈ LϕA

such that for all ∆′ ∈ δ′L(∆, A), ∆′ ⊢ ϕ. By
construction, δL(∆, A) = S∆A

, and by (∗), ∆A ⊢ ϕ. Using R2, ⊢ OA(
∧

∆A ⇒
ϕ). Since ∆ ⊢ OA(

∧

∆A), using A2, ∆ ⊢ OAϕ. The proof of item 2 is similar.
Item 3: We proceed by contradiction. Suppose there exists ϕ ∈ LϕA

and
∆ ∈ S such that ∆ ⊢ saysIdB

OAϕ, and ∆′
A 6⊢ ϕ for some ∆′ ∈ δL(∆, IdB).

So, there exists a model M ′ = (S′, I ′Φ1
, ..., I ′Φn

, δ′L, δ
′
O) and s¬ϕ ∈ S′ such that

(M ′, s¬ϕ) |=
∧

∆′
A and (M ′, s¬ϕ) |= ¬ϕ. We construct a new model M ′′ =

(S′′, I ′′Φ1
, ..., I ′′Φn

, δ′′L, δ
′′
O) combining Mφ and M ′ as follows:

• S′′ = S ∪ S′. We assume that S and S′ are disjoint.

• The interpretation of predicates respects those in Mφ and M ′

• δ′′L respects the accessibility relations δL and δ′L

• δ′′O respects the accessibility relations δO and δ′O, except that:

δ′′O(∆′, A) = δO(∆′, A) ∪ {s¬ϕ}

The satisfaction of the constraints C3-C6 is immediate from the construc-
tion, as the only modification is to δ′′O(∆′, A). The following are established
easily by induction:

(1) For all s ∈ S′, (M ′′, s) |= ψ iff (M ′, s) |= ψ

(2) For all ∆ ∈ S and ψ ∈ sub(
∧

U), (M ′′,∆) |= ψ iff ψ ∈ ∆

We can now reason as follows:

(3) (M ′′,∆) |=
∧

∆ (using (2))

(4) (M ′′, s¬ϕ) 6|= ϕ (using (1))
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(5) (M ′′,∆′) 6|= OAϕ (from (4) since s¬ϕ ∈ δ′′O(∆′, A))

(6) (M ′′,∆) 6|= saysIdB
OAϕ (from (5) since ∆′ ∈ δ′′L(∆, IdB))

(7) ∆ 6⊢ saysIdB
OAϕ (from (3) and (6), by soundness)

Item (7) contradicts the assumption that ∆ ⊢ saysIdB
OAϕ.

We are now ready to show that conformance checking is decidable:

Theorem 5 (Decidability of Conformance). Given a state S, a body of reg-
ulation Reg, a fixed point (U,U ′) where U = U ′ and |U | is finite, principals
{A,B} ⊆ OP , and identifiers IdB ⊆ l(B), there is a procedure to decide whether
A conforms to B w.r.t. the laws IdB .

Proof. First, we observe that for all ϕ ∈ LϕA
, (s,Reg) |=(U,U ′) saysIdB

OAϕ iff
U ⊢ saysIdB

OAϕ (by definition). So, it suffices to check that for all ϕ ∈ LϕA
, if

U ⊢ saysIdB
OAϕ, then (s,Reg) |=(U,U ′) ϕ

The key idea is to show that there is a formula ϕU ∈ LϕA
such that:

(P1) U ⊢ saysIdB
OAϕU , and

(P2) For all ϕ ∈ LϕA
such that U ⊢ saysIdB

OAϕ, we have ⊢ ϕU ⇒ ϕ.

Assuming that such a ϕU exists, we can show the following:

• A conforms to B w.r.t. IdB iff (s,Reg) |=(U,U ′) ϕU

IfA conforms toB w.r.t. IdB , since U ⊢ saysIdB
OAϕU , we have (s,Reg) |=(U,U ′)

ϕU . For the other direction, we need the observation that for all φ ∈ LϕA
, if

⊢ φ, then (s,Reg) |=(U,U ′) φ. Note that this claim does not hold when U 6= U ′.
When U = U ′, the claim is easily verified by showing that the axioms A1-A3,
A5, and A6 are valid at s w.r.t. (U,U ′), and that the rules R1 and R2 pre-
served validity. Instances of axiom schema A4 are not in LϕA

. Now suppose
that (s,Reg) |=(U,U ′) ϕU . For all ϕ ∈ LϕA

such that U ⊢ saysIdB
OAϕ, we

have (s,Reg) |=(U,U ′) ϕU ⇒ ϕ (using (P2)), and since (s,Reg) |=(U,U ′) ϕU ,
(s,Reg) |=(U,U ′) ϕ. Thus, if (s,Reg) |=(U,U ′) ϕU , then A conforms to B w.r.t.
IdB. Since checking whether (s,Reg) |=(U,U ′) ϕU is decidable, conformance
checking is decidable, provided that such a ϕU exists.

We now turn to the construction of ϕU . Let MU = (S, IΦ1
, ..., IΦn

, δL, δO)
be the canonical model for

∧

U . Let SU = {∆1|∆1 ∈ S and U ⊆ ∆1}. We will
now define a formula ϕ∆ for each ∆ ∈ SU , and define ϕU as their disjunction:

ϕ∆ =
∨

∆′∈δL(∆,IdB)

∧

∆′
A ϕU =

∨

∆∈SU

ϕ∆

We claim the following for all ∆ ∈ S:

(P3) ∆ ⊢ saysIdB
OAϕ∆

(P4) For all ϕ ∈ L, if ∆ ⊢ saysIdB
OAϕ, then ⊢ ϕ∆ ⇒ ϕ
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Proof of (P3): Using propositional reasoning, for all ∆′ ∈ δL(∆, IdB) and
∆′′ ∈ δO(∆′, A), ∆′′ ⊢ ϕ∆. Hence, for all ∆′ ∈ δL(∆, IdB), by Proposi-
tion 12 Item 1, we have ∆′ ⊢ OAϕ∆. And using, Proposition 12 Item 2,
∆ ⊢ saysIdB

OAϕ∆.
Proof of (P4): Suppose ∆ ⊢ saysIdB

OAϕ. By Proposition 12 Item 3, for all
∆′ ∈ δL(∆, IdB), ∆′

A ⊢ ϕ. And, using propositional reasoning, ⊢ ϕ∆ ⇒ ϕ

Proof of (P1): Using (P3), for all ∆ ∈ SU , we have ∆ ⊢ saysIdB
OAϕ∆.

And, by propositional reasoning, U ⊢ saysIdB
OAϕ∆ (since SU is the set of all

maximal consistent sets containing U).
Proof of (P2): Using (P4), for all ϕ ∈ L, if U ⊢ saysIdB

OAϕ, then ∆ ⊢
saysIdB

OAϕ for all ∆ ∈ SU . Hence, ⊢ ϕ∆ ⇒ ϕ for all ∆ ∈ SU , and by
propositional reasoning, ⊢ ϕU ⇒ ϕ.

4. Discussion

In this section, we discuss how various constructs from the literature are
expressed in our framework. In Section 4.1, we discuss access control examples.
Section 4.2 discusses conformance in the presence of nested obligations and
permissions. We then discuss other relationships to prior work, in Section 4.3.

4.1. Access Control

We discuss two access control examples in this section. The first example
highlights an important restriction of the policies in Section 3.3, i.e., a policy
lets us conclude what has been said, but not what actually happens. The second
example illustrates how the delegation operator of Li et al. [39] can be defined
in our framework.
Example 1: We begin with an example from Garg and Abadi [16]. Consider
a file-access scenario with an administrating principal (A), a user (B), a file
(file1), and the following policy:

1. If A says that file1 should be deleted, then this must be the case.

2. A trusts B to decide whether file1 should be deleted.

3. B wants to delete file1.

We introduce a new principal F for the file system. The following are the
utterances (U) obtained at the fixed point:

1. saysl(F ) PA saysl(A) OF (delfile1)

2. saysl(A) PB saysl(B) OF (delfile1)

3. saysl(B) OF (delfile1)

The first utterance is read as follows: The file system F says that A is permitted
to require it (F ) to delete file1. The second utterance is the delegation from
A to B, and the third utterance is B’s wish to delete file1. Using A5, we will
conclude that U ⊢ saysl(F ) OF (delfile1). In other words, we conclude that the
system requires itself to delete file1.
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Our analysis differs in an important way from Garg and Abadi [16]. We do
not conclude that file1 is actually deleted, i.e., U 6⊢ delfile1. In fact, we can show
that there is no policy (as defined in Section 3.3) that lets us make this conclu-
sion. delfile1 is true at a state where F conforms to l(F ), as per Definition 17. In
some cases, it may be warranted to assume/axiomatize self-conformance, i.e.,
(saysl(F ) OF (ϕ)) ⇒ ϕ. However, conflicting self-imposed requirements would
make U inconsistent.
Example 2: The delegation operator of Li et al. [39] has a compelling definition
in our framework. The syntax (in Li et al. [39]) for delegation is “x delegates
(ϕ)d to y”, where d is the depth of delegation. We define the schema ps(ϕ, x, d),
where x is used to generate variable names, and d ∈ N :

• ps(ϕ, x, 1) = Px1
saysl(x1) ϕ

• ps(ϕ, x, d) = Pxd
saysl(xd)(ϕ ∧ ps(ϕ, x, d− 1)), for d > 1

The statement “A delegates (delfile1)2 to B” is interpreted as follows: A says
delfile1 if B says it or anyone that B trusts says it. Suppose, in addition, that B
delegates (delfile1)1 to C, and C says delfile1. We express this with the following
rules:

• (1) (x2 = B) 7→ ps(delfile1, x, 2)

• (2) (y1 = C) 7→ ps(delfile1, y, 1)

• (3) ⊤ 7→ delfile1

We assume that 1 ∈ l(A), 2 ∈ l(B) and 3 ∈ l(C). At the fixed point, we will
have U ⊢ saysl(A) delfile1, i.e., A says delfile1. Further re-delegations by C (by
modifying statement 3) will not be attributed to A.

In the logic of Li et al. [39], a representation statement is used to grant
permission to speak without consuming delegation depth. If C represents B on
delfile1, then C should be permitted to at most one re-delegation. Statement 2
is modified as follows:

• (2) (y2 = C) 7→ ps(delfile1, y, 2)

With this modification, a delegation by C will be attributed to A. The reader
may have noticed the similarity between statement 1 and the modified version of
statement 2. In our approach, delegation is just a special kind of representation.
A delegates (ϕ)d to B iff B represents A on “delegating (ϕ)d−1 to anyone”. If C
represents B on “delegating (ϕ)d−1 to anyone”, then she represents A as well.

As Li et al. [39] point out, in the presence of representation, delegation depth
does not have much meaning. For example, A may not wish to trust C to the
same extent as B. There are a few options to address this issue by modifying the
representation axiom. One way is to keep track of the delegation depth in the
axiom, as in the SECPal language [7]. Yet another way is to keep track of the
principal on behalf of whom a statement in made. We avoid these modifications,
to simplify presentation.
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4.2. Nested Obligations and Permissions

We discuss two examples of conformance in the presence of nested obligations
and permissions. The first example illustrates how several fine-grained notions of
conformance can be captured, and is intended to supplement the example from
HIPAA in Section 3. The second example points out an important practical
difficulty.
Example 1: Consider the following law:

(6) The owners of parking lots ought to forbid parking near the entrance.

What does it mean to conform to (6)? We analyze this sentence as follows:
“The owners of parking lots ought to (introduce laws that) forbid parking near
the entrance.”. In other words, (6) is an obligation to introduce a prohibition.
If the owner introduces such a law, then the person parking is viewed as non-
conformant, but it is the owner that needs to conform to (6). We can represent
(6) in logic as follows:

(6) own(x) ∧ p(y) 7→ Ox saysl(x) Oy¬pk(y, x)

Here own(x) is true iff x is the owner of a parking lot, p(y) is true iff y is a
person, and pk(y, x) is true iff y parks near the entrance of the lot owned by x.
l(x) refers to the laws that are introduced by x.

Let us assume a state s = (IΦ1
, ..., IΦn

) in which A is the owner of a parking
lot, and B parks near the entrances of A’s lot. The true predications are:
{own(A), p(B), pk(B,A)}. In addition, A is assigned the identifier 7, i.e.,
l(A) = {7}. We will now consider two scenarios – (a) A does not introduce any
laws, and (b) A introduces a law forbidding parking near the entrance. We are
interested in the conformance (Definition 17) of the owner A and the driver B.
Scenario 1: Suppose that A does not introduce any laws. The fixed point
utterance pair is:

U = U ′ = {says{6} OA says{7} OB¬pk(B,A)}

In this case, A does not conform to {6} because:

• U ⊢ says{6} OA says{7} OB¬pk(B,A), but

• (s,Reg) 6|=(U,U ′) says{7} OB¬pk(B,A)

However, it can be shown that B conforms to {6}.
Scenario 2: Now suppose that A introduces the law:

(7) p(y) 7→ Oy¬pk(y,A)

The fixed point utterance pair is:

U = U ′ = {says{6} OA says{7} OB¬pk(B,A), says{7} OB¬pk(B,A)}

It can be shown that A conforms to {6}. What about B? It is clear that B does
not conform to {7}, but what about {6}? Observe that U ⊢ says{6} OB¬pk(B,A)
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(using the representation axiom A5), but (s,Reg) 6|=(U,U ′) ¬pk(B,A). Hence,
B does not conform to {6}. In other words, the statement (6) conveys an obli-
gation to A and if A conforms, the embedded obligation is conveyed to B. As
we noted in Section 2.1, we are formalizing the notion of speaking on someone’s
behalf, i.e., the obligation (7) issued by A is understood as being on behalf of the
issuer of (6). Some applications may need a distinction between the different
senses of saying.
Example 2: Consider the following example:

(8) You are required to allow a patient to see his records.

By our analysis, (8) is an obligation on the hospital to provide a permis-
sion. Suppose that a hospital introduces such a permission in its policy. Has
it conformed to (8)? The problem arises in distinguishing between claimed per-
mission, and actual permission. A hospital claims that it permits a patient to
see his records, by making an appropriate rule. On the other hand, a hospital
actually permits a patient to see his records, by taking an action, e.g., sending
the records via mail.

We suggest that a formalization of actual permission needs notions of bring-
ing about or seeing to it that (e.g., [8, 32]). If a principal A says that she permits
an action p, we need to check if she prevents p either by some other action or
non-action. We leave an investigation of this issue to future work.

4.3. Related Work

We have discussed several relationships to prior work, in Sections 2, 4.1,
and 4.2. In this section, we discuss other relationships, to identify interesting
lines for further research.

Logic programming has been popular in access control [9, 12, 39]. The for-
malism that we adopted (Section 3.3) provides a way to integrate the logic
programming approaches with the logics of saying [1–3, 16, 17], i.e., by evalu-
ating saying using provability. The negation of provability gives a good inter-
pretation to didn’t say, thereby establishing a connection between saying and
non-monotonic reasoning. Non-monotonic reasoning plays a useful role in for-
malizing exceptions to laws [5, 44, 51]. With regard to the introduction of
modalities in utterances, our approach follows in the spirit of [23, 26], where
defeasible logic is extended to include modalities. It is of interest to obtain a
formal characterization of the relationships.

The non-interference theorem (Section 3.4) can be used to obtain relevant
utterances for access control in a distributed setting. The techniques for dis-
tributed proofs, developed by Bauer et al. [6], are directly applicable here. How-
ever, the provability tests U ⊢ saysl(A) ψ can be expensive, if U is large. Logic
programs restrict the heads of rules to be atomic (as in [9, 12, 39]). This re-
striction to atomic formulas lets one decide provability in polynomial time. An
important question is whether similar restrictions can be applied here to get
polytime fragments. Disjunction is the main culprit, and leads to exponential
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worst-case complexities. Even if we exclude disjunction syntactically, the rep-
resentation axiom can lead to constraints involving disjunction, as we saw in
Propositions 3 and 5. This leads to the following question: Is there a fragment
of the logic that accommodates representation, and yields a polytime decision
procedure?

Due to the problematic interactions between hand-off and classical logic
(Section 2.1), intuitionistic approaches have been developed [2, 16, 17]. While
we have focused on the classical setting here, the representation axiom can
be adapted to the intuitionistic setting. However, as Garg and Pfenning [17]
point out, a notion of constructivism is also desirable in an intuitionistic logic.
Constructivism requires the meaning of an operator to be independent of others,
and as a result, axioms which describe interaction between operators (such as
the representation axiom) are excluded. While constructivism is important
in programming languages (see [2, 17]), interaction axioms have also proved
useful. For example, Halpern et al. [30] discuss 48 systems of knowledge and
time. This leads to our next question: Is there a more constructive form of the
representation axiom, that yields a useful programming language?

Finally, notions of time have been used in conformance checking [13, 19, 38].
The policies are used to synthesize monitors that are used to detect violations at
runtime [13, 38]. Since the saying component (Section 3.3) uses the formalism
in [13, 14], notions of linear time can be easily added here, and the monitor
synthesis in [13] can be used directly. Once notions of time are available, we
can place constraints on how a policy changes [24, 25]. This leads to our final
question: Are there useful interactions between saying and time, to characterize
how a policy is updated?

5. Conclusions

We have motivated and described a logic for access control and conformance.
The focus was on the interaction between saying and permission, as needed for
these applications. We proposed two axioms to characterize their interaction
(Section 3.2), and showed how these axioms could be incorporated into a logic
programming approach (Section 3.3).

A combined analysis of saying and permission yielded benefits to both appli-
cations. For access control, we find a way to avoid the problematic interaction
between hand-off and classical reasoning. Our axioms yield a decidable logic
with a complete semantics (Section 3.2), and we hope that they have intuitive
appeal to the reader. For conformance, we obtained a characterization of le-
gal power by nesting saying with obligation and permission. We showed, in
Section 3.5, that conformance checking remains decidable.

We believe that the joint study of access control and conformance is a rich
area for research. In Section 4.3, we identified avenues for further inquiry.
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