
Permission to Speak:

A Logic for Access Control and Conformance✩

Nikhil Dinesha, Aravind Joshia, Insup Leea, Oleg Sokolskya

a Department of Computer Science

University of Pennsylvania

Philadelphia, PA 19104-6389, USA

Abstract

Formal languages for policy have been developed for access control and confor-
mance checking. In this paper, we describe a formalism that combines features
that have been developed for each application. From access control, we adopt
the use of a saying operator. From conformance checking, we adopt the use of
operators for obligation and permission. The operators are combined using an
axiom that permits a principal to speak on behalf of another. The combination
yields benefits to both applications. For access control, we overcome the prob-
lematic interaction with classical reasoning. For conformance, our formalism
accommodates nested obligations and permissions.

The axioms result in a decidable logic, and we characterize its complexity.
We integrate the axioms into a logic programming approach, which lets us use
quantification in policies while preserving decidability of access control decisions.
Conformance checking, in the presence of nested obligations and permissions, is
shown to be decidable. Non-interference is characterized using reachability via
permitted statements.

1. Introduction

Formal languages for policy have been developed for several applications. In
this paper, we consider two applications – (a) access control [1, 2, 3, 4, 5, 6, 7],
and (b) conformance checking [8, 9, 10, 11, 12, 13]. We motivate and develop a
formalism that combines features that have been examined for each application.
The combination yields new features that are useful to both applications. We
begin with a brief comparison of prior work on access control and conformance.

Access control is an important problem in trust management systems. In-
formally, a trust management system involves a set of actors or principals, and

✩This research was supported in part by ONR MURI N00014-07-1-0907, NSF CCF-
0429948, and ARO W911NF-05-1-0158.

Email addresses: nikhild@seas.upenn.edu (Nikhil Dinesh), joshi@seas.upenn.edu
(Aravind Joshi), lee@seas.upenn.edu (Insup Lee), sokolsky@seas.upenn.edu (Oleg
Sokolsky)

Preprint submitted to Elsevier May 6, 2009



a set of controlled or regulated actions, e.g., accessing medical information, or
downloading a song. The goal of such a system is to adminstrate requests to
perform actions. Trust management systemts are commonly decomposed into
two (interacting) components [2]: (a) authentication - determining the source of
a request, and (b) access control - determining whether a request is permitted
according to a policy. [1] cast access control as a problem for logic. We assume
as given an action (p), which is controlled by a principal (A), and a request
to perform p from a principal (B). Access is granted if we can prove that the
policy of A says that B is permitted to perform p. In access control logics, such
as [1, 2, 3, 5, 6], says is treated as a (modal) operator. However, the concept of
permission is not explicitly represented.

In conformance, one is interested in checking whether the operations of or-
ganizations obey a policy. Example policies include business contracts [8, 10],
and health care regulations [9, 11]. Here, we are given a policy and a description
of operations (as a state or trace). An organization (A) is conformant if we can
prove that for all p, if the policy says that A is required or obligated to do p,
then A does p. Conformance is typically assesed using a policy and a state or
trace of the organization’s operations [11, 12]. In formalisms for conformance,
such as [11, 12, 13], there is a distinction between the notions of obligation and
permission. However, the concept of saying is not explicitly represented.

A possible explanation for this difference is the kinds of policies that are
examined for each application. In access control, we commonly have policies
introduced by different principals, and it is important to keep track of what
each principal said via her policy. In conformance , there is usually a single
policy, and we need to check if the organization does what the policy requires
it to do.

In this paper, we describe a formal representation of policy for both access
control and conformance. The conceptual motivation is as follows. A policy is
created via a speech-act of a principal. Policies commonly contain the words
required and permitted. An obvious question is whether the act of speaking
is crucial to an understanding of requirement and permission? We hope to
convince the reader that it is. A more utilitarian motivation is to examine a
class of problems that arise in each application. We propose a formalism that
combines saying and permission to address these problems. Specifically, the
problems and our contributions are as follows:

1. For access control, we propose a new decidable axiomatization which ac-
commodates delegation [1, 7] and “speaking for” [1, 3, 6]. Our approach
overcomes the problematic interactions with classical reasoning, pointed
out by Abadi [2]. “Speaking for” and delegation are obtained as conse-
quences of an axiom that permits a principal to speak on behalf of another.

2. For conformance, the proposed axiomatization is used to reason about
nested obligations and permissions. We obtain a partial solution to the
problems pointed out by Marcus [14]. Conformance, as the satisfaction
of obligations, is shown to be decidable. Previous approaches [11, 12, 13]
exclude nested obligations from the syntax of the logic.

2



In Section 2, we give a detailed motivation for our approach by discussing
three constructs that have been examined separately in the literature – (a)
representation in access control, under which we include delegation [1, 7] and
“speaking for” [1, 2, 6], (b) positive and negative permissions (cf. [15]), and (c)
nested obligations and permissions [14], e.g., “required to forbid”. Our thesis is
that these constructs involve the interaction between saying and permission.

Section 3 develops a logic in the form of two interacting components. The
inference component determines what has been said, and involves the choice of
appropriate axioms, as in [1, 2, 5]. We introduce two axioms to characterize the
interaction between saying and permission. The decidability and complexity
of the resulting logic are established. The saying component is used to create
new utterances, and we adopt a logic programming approach, as in [7, 16,
17]. The modularization lets us integrate the logics of saying with the logic
programming approaches, thereby allowing for restricted forms of quantification
while preserving decidability of access control and conformance. We also prove a
non-interference property which is crucial for the distributed policies that arise
in access control.

In Section 4, we discuss our formalism in the context of related work. We
consider access control examples, and conformance in the presence of nested
obligations and permissions. We also identify some interesting lines for further
research. Section 5 concludes.

2. Permission to Speak

In this section, we motivate the explicit use of saying and permission in a
formal language for policy. Section 2.1 considers the problem of representa-
tion in access control, under which we include delegation [1, 7] and “speaking
for” [1, 2, 6]. In Section 2.2, we discuss two kinds of permission – positive and
negative (cf. [15]). Positive permission is the only kind that is used in access
control. Finally, we examine nested obligations and permissions [14], and their
relationship to the two kinds of permission (Section 2.3).

2.1. Representation in Access Control

While there are a wide variety of access control logics, one commonality that
stands out is a notion of saying [2]. We can express the fact that a principal
makes a statement. We use saysl(A)ϕ to denote that principal A says ϕ in
the set of laws l(A). Informally, a law is understood as a single statement in
the policy of a principal, e.g., a hospital says “Alice is permitted to access her
health information”, in its policy. And, the interpretation of a set of laws is the
conjunction of the individual laws. These intuitions are formalized in Section 3.
Our approach differs from others in that we associate statements to a principal
via a set of laws (saysl(A) ϕ) rather than directly with the principal (saysA ϕ).
This indirection lets us use saying to reason about exceptions to laws, as in [11],
and we will discuss an example in Section 3.2.

All access control logics give a principal the ability to let another principal
make statements on her behalf. We use the term representation to describe such

3



constructs. As an example (from [6]), consider a file access scenario, where an
administrator (A) trusts Bob (B) to decide whether a file is to be deleted (del).
In this scenario, we say that B represents A on del, and we wish to conclude
that if saysl(B)(del), then saysl(A)(del).

A naive approach to representation is to introduce “saysl(B)(del) ⇒ saysl(A)(del)”
into A’s policy (where ⇒ is the implication connective of the underlying logic).
However, such statements create an access control risk, because “saysl(B)(del) ⇒
saysl(A)(del)” could be introduced by B, thereby giving B the ability to decide
whether any file is to be deleted.

To address this security risk, a principal A is only allowed to introduce
statements of the form saysl(A) ψ. Additional machinery (usually an axiom) is
needed to accommodate representation. Abadi [2] discusses several alternatives,
involving variants of the hand-off axiom:

• saysl(A)(φ⇒ saysl(A) ψ) ⇒ (φ⇒ saysl(A) ψ)

B represents A on del is expressed as:

• saysl(A)(saysl(B)(del) ⇒ saysl(A)(del))

The hand-off axiom lets us conclude that saysl(B)(del) ⇒ saysl(A)(del). How-
ever, the hand-off axiom has displeasing consequences in classical logics. For
example, saysl(B) ϕ ⇒ (¬ϕ ⇒ saysl(B) ψ) (for all ψ) is provable [2], i.e., if a
statement by B fails, then B gives access to all the actions that she controls.
The solution to this problem has been to move to an intuitionistic setting, as
in [3, 5, 6].

We suggest that the problem is not with classical reasoning, but with the
hand-off axiom. The key idea is to reformulate the axiom using the interaction
between saying and permission. We now introduce the reformulated version of
the axiom, followed by a discussion of its benefits.

We say that B represents A on del, if A says that B is permitted to say del.
More formally, the statement saysl(A)(PB(saysl(B) del)) is added to A’s policy,
where PB(saysl(B) del) is read as “B is permitted to say del”. The following are
equivalent versions of the axiom of representation:

• If A says that B is permitted to say ϕ, then if B says ϕ, A says ϕ

• saysl(A)(PB(saysl(B)ϕ)) ⇒ (saysl(B) ϕ⇒ saysl(A) ϕ)

The axiom of representation is intended for a particular sense of speak-
ing/saying, i.e., speaking on someone’s behalf. This sense of saying is the usual
one in access control. To simplify matters, we do not explicitly represent the
principal on behalf of whom a statement is being made.

“Speaking for” [1, 3, 6] is a case of representation when one principal rep-
resents another on all statements. If B speaks for A, we wish to conclude
saysl(B) ϕ ⇒ saysl(A) ϕ for all ϕ. “Speaking for” has a compelling definition in
our approach. We say that B speaks for A if A permits B to say anything (⊥)
on her behalf, i.e., saysl(A) PB(saysl(B) ⊥).

4



A novelty in our approach is that “speaking for” and hand-off are both ob-
tained as a consequence of the axiom of representation. In [1, 3, 6], “speaking
for” and hand-off are not related, i.e., the former involves an algebra over prin-
cipals or second-order quantification, and the latter is obtained using an axiom
(which implies hand-off). This suggests that the representation axiom is quite
different from the hand-off axiom. It is tempting to relate the representation
axiom to a restricted version of hand-off:

• saysl(A)(saysl(B) ϕ⇒ saysl(A) ϕ) ⇒ (saysl(B) ϕ⇒ saysl(A) ϕ)

However, even for this restricted case, we do not know of a complete se-
mantics for hand-off, which makes it difficult to show that a statement is not
provable (Abadi et al [1] observe similar difficulties). We believe that the rep-
resentation axiom is a persuasive alternative to hand-off, because it yields a
decidable logic with a complete semantics, and more importantly, it has an
intuitive interpretation.

A restricted version of the axiom of representation has been proposed by
Becker et al [18], in the context of the authorization language SECPal. In
SECPal, representation is restricted to atomic predicates, and hence, “speaking
for” cannot be accomodated. Moreover, the relationship between permission and
obligation is not explored. Our formalism generalizes SECPal, to accomodate
both “speaking for” and obligation. We now discuss further motivation for our
approach.

2.2. Positive and Negative Permission

We take, as a starting point, the definition of permission as the dual of
obligation, i.e., PAϕ = ¬OA¬ϕ (OAϕ is read a A is obligated to bring about ϕ).
This definition of permissions has been observed to be inadequate, and theories
have argued for further distinctions (cf. [15]). The most common distinction
is between positive and negative permission. Suppose a hospital (H) permits a
principal (A) to access her health information. Consider the following questions:

1. Does H permit A to access her information?

2. Does H permit A to listen to music?

The answer to Question 1 would be yes. However, matters are not so clear for
Question 2. We follow the analysis of Makinson and van der Torre [19]. In one
sense (positive permission), the answer is “no”, because H has not explicitly
permitted A to listen to music. In another sense (negative permission), the
answer is “yes”, because H has not forbidden A from doing so. Makinson and
van der Torre [19] distinguish between the two senses in the meta-logic, by using
operations on the consequences of a sentence.

In our approach, the two kinds of permission are distinguished by varying
the scope of negation. The permission given by H is represented as: ϕ =
saysl(H)(PAaccess), i.e., H says that A is permitted to access her information.
Question 2 can be formulated in two ways:

5



1. Is ϕ ⇒ saysl(H)(PAmusic) provable? Where, music denotes that A lis-
tens to music. Equivalently, is ϕ ⇒ saysl(H)(¬OA¬music) provable? No.
Listening to music is not positively permitted.

2. Is ϕ ⇒ saysl(H)(OA¬music) not provable? Yes. Listening to music is
negatively permitted.

In Section 3, we use the formalism in [11] to reason about provability and its
negation. The negation of provability is needed to express didn’t say. In other
words, H didn’t say ϕ iff saysl(H)ϕ is not provable from H ’s statements. The
discussion in [15, 19] suggests to us that the relationship between negative per-
mission and didn’t say is known, but to our knowledge, an explicit representation
of saying has not been carried out in a logic of obligation and permission.

2.3. Nested Obligations and Permissions

Marcus [14] pointed out a problem in formalizing nested obligations and per-
missions. We relate it to the distinction between the two senses of permission.
Consider the following statement: “A should not allow her child (B) to play
near the road”. Which sense of permission is appropriate here? Using positive
permission, we get “A should not explicitly permit B to play”, which is inad-
equate. Negative permission is appropriate here – “A should not not require
B not to play”, i.e., “A should require B not to play”. To accomodate such
reasoning, the two kinds of permission need to be distinguished in the syntax
of the logic. Previous approaches to conformance [11, 12, 13] do not provide for
this distinction, and it is no surprise that nested obligations and permissions
are excluded. [9] discusses policies where nesting is used frequently, but again,
a formal characterization is not provided.

We now relate representation and nested permissions, to emphasize that
saying is crucial to the analysis. Consider the following statement: “A hospital
(H) permits a patient (A) to permit her mother (B) to access her information”.
We will rephrase the permission as follows: H says that A is permitted to say
that B is permitted to access her information. Formally, this is represented as
saysl(H)(PA(saysl(A)(PBaccess))). If A does indeed permit access to her mother
(saysl(A)(PBaccess)), we will conclude saysl(H)(PBaccess) using the axiom of
representation, i.e., H permits access to B. As a result, nested permissions
are related to representation, i.e., “H permits A to permit B to do ϕ” iff “A
represents H in permitting B to do ϕ”.

Belnap and Bartha [20] provide a solution to nested obligations and per-
missions in the context of seeing to it that (stit) logic. While stit logics offer a
general solution, the concept of stit is an abstract one (to cover all applications).
We analyze “A should require B not to play” to mean “A should say that B
is required not to play”, and declare B to be non-conforming if she does play.
In stit logic, the sentence is analysed as “A should stit B does not play”, and
it may necessitate a stronger action, e.g., physically preventing B from playing
near the road. However, axiomatizing the implications of stit is a challenging
problem in practice. We focus on the problem of determining what a principal

6



Laws:

1. If B says p, then p
2. p

A

B

Utterances:

Law 1 says p
Law 2 says p

Grant or Deny

Violations

Request

AxiomsState

Figure 1: Interaction between the components of the logic

says that she requires or permits via policy, and discuss how stit-like notions
can be added to our system in Section 4.2.

3. A Logic for Access Control and Conformance

In this section, we develop a logic in the form of two interacting components
– (a) the inference component, which involves the choice of appropriate axioms,
and (b) the saying component, which is used to represent policies. Figure 1
shows the interaction between the components of the access control system.
There are two kinds of actions of interest – (1) operational acts, e.g., down-
loading a song, and (2) speech acts. The operational acts are described using a
state, which contains the interpretation of predicates, and the speech acts are
described using laws.

A principal speaks by introducing laws. In Figure 1, the principals A and
B introduce the laws 1 and 2 respectively. The laws are evaluated using the
axioms to produce a set of utterances, i.e., what the laws say. To determine
what a principal says, we look at what her laws say, e.g., B says p iff “Law 2
says p” is provable from the utterances using the axioms. A set of laws can be
thought of as a logic program, and utterances as the extensions that result from
the program (via a fixed point computation). Once we have the utterances,
there are several decision problems of interest. The access control problem is to
decide whether a request is permitted by the set of utterances. The conformance
problem is to decide whether operational and speech acts satisfy the obligations
imposed by the utterances, and if they do not, violations are reported.

Section 3.1 is an overview of the inference component. We describe (ax-
iomatically) a logic with two modalities – saying and obligation. In Section 3.2,
we adapt a formalism from our prior work [11] for the saying component. We
describe the evaluation of polices, using an example. We extend [11] in two
ways. First, we prove a non-interference property which is crucial for the dis-
tributed policies that arise in access control (Section 3.3). Second, we show that
conformance, in the presence of nested obligations and permissions, is decidable
(Section 3.4).

7



3.1. The Inference Component – Axioms

In this section, we develop a predicate logic with two modalities saying and
obligation. We allow formulas with free variables, but no quantifier over ob-
jects. The quantification over objects is carried out in the process of saying
(Section 3.2), which uses provability in the propositional subset of the language
defined here. We begin by defining the syntax:

Definition 1 (Syntax). Given sets Φ1, ...,Φn (of predicate names), countable
sets of variables X, object names O, a finite set of identifiers ID, and a function
l : O → 2Id, the language L(Φ1, ...,Φn, X,O, l, ID), abbreviated as L, is defined
as follows:

ϕ ::= α | ϕ ∧ ϕ | ¬ϕ | saysId ψ | saysl(y) ψ
ψ ::= ϕ | ψ ∧ ψ | ¬ψ | Oyϕ

where, y ∈ X ∪ O, and α generates atomic predicates of the form p(y1, ..., yj)
with p ∈ Φj and (y1, ..., yj) ∈ (X ∪O)j . We assume that X ∩O = ∅. The set of
formulas generated by each BNF rule are referred to as Lϕ and Lψ respectively,
and L = Lϕ ∪ Lψ.

Disjunction ϕ∨ψ = ¬(¬ϕ∧¬ψ) and implication ϕ⇒ ψ = ¬ϕ∨ψ are derived
connectives. Oyϕ is read as “ϕ is obligated of y”. Permission is defined as the
dual of obligation, i.e., Pyϕ = ¬Oy¬ϕ. The saying operators are understood as
follows. Principals speak by introducing identified laws (Section 3.2), and we
are interested in determining what a set of laws say. saysId ϕ is read as “ϕ is
said in the laws Id”, and saysl(y) ϕ is read as “y says ϕ in the laws l(y)”. l(A)
is the set of laws introduced by the principal A ∈ O.

We now mention a peculiarity of Definition 1. The BNF rules ensure the
alternation of obligation and saying modalities, e.g., Oy saysl(y) Ozϕ ∈ L, but
OyOzϕ 6∈ L. Following von Wright [21], we understand obligations as applying
to actions and their consequences. The language Lϕ (obtained from the first
BNF rule) is used to describe actions – (a) atomic actions, (b) combinations of
actions (using connectives), or (c) saying, which is (a consequence of) a speech
act. An obligation is an opinion, which is created via a speech act, but is not
an act by itself.

The statements in L will be used in the inference component of access control,
i.e., to determine what has been said. In other words, we will be given a set
of utterances U and a question ψ, and we need to determine whether U ⇒ ψ

is provable. We focus on provability for the propositional subset of L, i.e.,
without variables and function applications. The propositional subset of L has
the modalities saysId ϕ (for all Id ⊆ ID), and OA(ϕ) (for all A ∈ O).

We adopt the axiomatization in Figure 2. A1 and R1 give us propositional
reasoning. A2 and R2 are common to both saying and obligation. A3 and A4
are specific to saying and obligation respectively. Finally, A5 and A6 describe
the interaction between the two modalities. We will now discuss the axioms in
the context of related work.

8



A1 All substitution instances of propositional tautologies.

A2 Q(ϕ⇒ ψ) ⇒ (Q(ϕ) ⇒ Q(ψ)) (for all modalities Q)

A3 saysId ϕ⇒ saysId′ ϕ (for all Id ⊆ Id′)

A4 OAϕ⇒ PAϕ (for all A ∈ O)

A5 saysIdA
(PB saysIdB

ϕ) ⇒ (saysIdB
ϕ ⇒ saysIdA

ϕ) (for all {A,B} ⊆ O,
IdA ⊆ l(A), and IdB ⊆ l(B))

A6 saysIdA
(PB saysIdA

ϕ) ⇒ saysIdA
ϕ (for all {A,B} ⊆ O, and IdA ⊆ l(A))

R1 From ⊢ ϕ⇒ ψ and ⊢ ϕ, infer ⊢ ψ

R2 From ⊢ ϕ, infer ⊢ Q(ϕ) (for all modalities Q)

Figure 2: Axiomatization of the propositional fragment of L. The set of modalities Q consists
of saysId ϕ (for all Id ⊆ ID) and OAϕ (for all A ∈ O).

Axioms for Saying: The axioms A1 and A2, together with the rules R1 and
R2, gives us the modal logic K. The K axiomatization was used by Abadi et
al [1] as a basis for all (classical) access control logics. Further motivation comes
from our prior work [11]. In Section 3.2, following [11], we describe policies by
evaluating saysId ϕ using provability. Given a set of formulas U , saysId ϕ is true
w.r.t. U iff

∧

U ⇒ saysId ϕ is provable. The K axiomatization is sound w.r.t.
this definition.

A3 says that if ϕ is said by the statements (Id), then ϕ also holds according
to a larger set of statements (Id′). This axiom is also sound w.r.t. [11]. A3 is
also sound w.r.t. the principal algebra of [1, 6]. The formula “A∨B says ϕ” in
[1, 6] corresponds to saysl(A) ∪ l(B) ϕ here. A complete characterization of the
algebra needs additional axioms, e.g., (saysId1 ϕ ∧ saysId2 ϕ) ⇒ saysId1∩Id2 ϕ
(the converse is provable using A3). We omit these axioms because they are
not sound w.r.t. [11]. From a technical standpoint, the axioms can be easily
accommodated in the system here.

Several other axiomatizations have been proposed in the literature (c.f. [2]).
The K axiomatization is a minimal set, which is common to all (classical) sys-
tems. We discuss the adaptation of our results to other systems of saying in
Section 5.
Obligation and Its Interaction with Saying: The K axiomatization, to-
gether with A4, gives us the the modal logic KD. This axiomatization is com-
mon to many systems, giving it the name Standard Deontic Logic (c.f. [13]).

The main focus of this work is on the interaction between saying and per-
mission. We characterize the interaction with two axioms. The representation
axiom, A5, is read as “If A says that B is permitted to say ϕ, and B says ϕ,

9



then A says ϕ”. We remind the reader that a principal speaks by introducing
identified laws. As we discussed in Section 2.1, A5 is needed to accommodate
notions of representation in access control. The self-respecting axiom, A6, is
read as “If A permits B to say ϕ using A’s laws, then A says ϕ”. A6 ensures
that statements in l(B) do not (inadvertently) interfere with the consequences
of statements in l(A). We dicuss an example in Proposition 1 (items 4 and 5).
Provability: The process of saying (Section 3.2) relies on provability in the
language L. We say that ϕ is provable (denoted ⊢ ϕ), if ϕ is an instance of
the axioms A1-A6 or follows from the axioms using the rules R1 and R2.
In Appendix A, we provide a Kripke semantics for which the axiomatization
is sound and complete (Appendix B). As in [6], semantics is used to show
that a statement is not provable. The following are interesting provable and
non-provable statements:

Proposition 1. The following are provable/not provable:

1. ⊢ saysl(A)(OB saysl(B) ϕ) ⇒ (saysl(B) ϕ⇒ saysl(A) ϕ)

2. ⊢ saysl(A)(PB saysl(B) ⊥) ⇒ (saysl(B) ϕ⇒ says(A) ϕ)

3. 6⊢ saysl(A)(PB saysl(B) p(o1)) ⇒ (saysl(B) ⊥ ⇒ saysl(A) ⊥), if l(B) 6⊆ l(A)

4. ⊢ saysl(A)(p(o1) ∧ PB says∅ ¬p(o1)) ⇒ saysl(A) ⊥

5. ⊢ saysl(A)(p(o1) ∧ PB says∅ ¬p(o1)) ⇒ (saysl(B) ¬p(o1) ⇒ saysl(A) ⊥)

Proof. Items 1 and 2 follow easily from A5, A2 and A4. Item 1 gives repre-
sentation via obligation. Item 2 gives us speaking for, i.e., B speaks for A. Item
3 ensures that if one is conservative about the permissions that are granted,
the principal receiving the permission cannot take advantage. Non-provability
is shown by constructing a model which satisfies the negation.

Items 4 and 5 are consequences of A6. It can be shown that without A6,
item 4 is not provable, but item 5 is still provable. This lets one use the empty
set in a dangerous way. saysl(A)(p(o1)∧PB says∅ ¬p(o1)) does not mention l(B)
explicitly, but taken together with saysl(B) ¬p(o1), we can ascribe anything to
l(A). The question is which formula do we blame for this danger? A6 places
the blame on saysl(A)(p(o1)∧PB says∅ ¬p(o1)), by making item 4 provable.

For subsequent development, we will need the decidability of the provability
question:

Theorem 1 (Decidability). Given ϕ ∈ L which is propositional: ⊢ ϕ is decid-
able

Proof. In Appendix C, decidability is established via the finite model property.
We briefly discuss the complexity (proofs are omitted). The complexity of sat-
isfiability testing is NEXPTIME-complete, i.e., complete for non-deterministic
exponential time. The axioms A5 and A6 introduce dependencies between sib-
ling states in the Kripke structures (C5 and C6 in Appendix A) which leads to
an increase from the usual PSPACE bound. The following modified versions of
A5 and A6 yield a PSPACE-complete logic:

10



A5’ saysIdB
ϕ⇒ saysIdA

((PB saysIdB
ϕ) ⇒ ϕ)

A6’ saysIdA
((PB saysIdA

ϕ) ⇒ ϕ)

We say that ϕ is provable with the new axioms (denoted ⊢1 ϕ)) iff it follows
from the axioms A1-A4 together with A5’ and A6’ and the rules R1 and
R2. It is easy to show that if ⊢ ϕ, then ⊢1 ϕ, i.e., A5 and A6 are derived.
However, the converse is not true. Consider, for example, ϕ = saysIdA

(q ⇒
(PA saysIdA

¬q)) ⇒ saysIdA
¬q. We can show that ⊢1 ϕ and 6⊢ ϕ. The question

of interest is whether the additional validities introduced by ⊢1 are appropriate
for access control. We do not have motivation against it, and the computational
benefits seem worthwhile.

In the following section, we will use provability (and its negation) to describe
the process of saying.

3.2. The Saying Component - Policies

In this section, we describe the representation and evaluation of policies or
regulations. The result of evaluating regulation is a set of utterances, which
forms the basis for access control and conformance. The formalism developed
here is an extension of our prior work [11], and is a generalized form of logic
programming. Logic programs are popular in representing regulatory texts [22,
23, 13], and access control policies [7, 16, 17]. We begin by defining the syntax
of regulations:

Definition 2 (Syntax of Regulation). Given a finite set of identifiers ID, a
body of regulation Reg is a set of statements such that for each id ∈ ID, there
exist ϕ ∈ Lϕ and ψ ∈ Lψ such that: (id) ϕ 7→ ψ ∈ Reg

(id) ϕ 7→ ψ is read as: “the precondition ϕ leads to the postcondition ψ”.
Example: We will describe the evaluation of regulation using an example
from [11], which is from the Food and Drug Administration’s Code of Fed-
eral Regulations (FDA CFR). The CFR governs the operations of American
bloodbanks. Bloodbanks are organizations which collect, test and ultimately
distribute donations of blood to their end recepients. Given a description of a
bloodbank’s operations as an abstract state, we will check if these operations
conform to the CFR. Consider the following statements, which are based on
CFR 610.40:

(1) Except as specified in (2), every donation of blood or blood component
must be tested for evidence of infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of
infection due to Hepatitis B.

Statement (1) conveys an obligation to test donations of blood or blood com-
ponent for Hepatitis B, and (2) conveys a permission not to test a donation of
source plasma (a blood component) for Hepatitis B. To assess an organization’s
conformance to (1) and (2), it suffices to check whether “All non-source plasma

11



donations are tested for Hepatitis B”. In other words, (1) and (2) imply the
following obligation:

(3) Every non-source plasma donation must be tested for Hepatitis B.

Sentences in regulation can have several exceptions, and manually creating
derived obligations is difficult.In [11], we developed a logic in which sentences
refer to others, thereby letting us represent statements (1) and (2), and recov-
ering the derived obligation during evaluation. We note that the presence of
obligation makes this example different from those that are typically consid-
ered in access control. However, we use it to facilitate comparison with [11],
and to motivate the definition of conformance. We will consider access control
examples in Section 4.1.
Representing Regulations and Organizations:The statements (1) and (2)
are represented as follows:

• (1) bb(u) ∧ d(x, u) ∧ ¬ says{2}(¬Outest(x, u)) 7→ Outest(x, u), and

• (2) bb(z) ∧ d(y, z) ∧ sp(y) 7→ ¬Oztest(y, z)

The predicates are understood as follows. bb(u) is true iff u is a bloodbank,
d(x, u) is true iff x is a donation collected by u, sp(y) is true iff y consists of
source plasma, and test(x, u) is true iff x is tested for Hepatitis B by u. In the
obligation, the subformula says{2}(¬Outest(x, u)) is understood as “u is not
obligated to test x according to statement (2)”.

Regulatory statements are evaluated w.r.t. states (representing and organi-
zation) and assignments. If the precondition of a statement is true, the post-
condition is uttered (under substitution).

Objs Predicates Utterances
A bb(A), d(o1, A), d(o2, A)
o1 sp(o1), test(o1, A) says{2}(¬OAtest(o1, A))

o2 ¬sp(o2), ¬test(o2, A) says{1}(OAtest(o2, A))

Table 1: A state and its utterances

Table 1 shows a state of a bloodbank augmented with utterances. There are
three objects – A is a bloodbank, o1 is a donation of source plasma, and o2 is a
non-source plasma donation. Note that A does not conform with the regulation,
since o2 is not tested (we will define conformance at the end of this section).
We begin by defining states and assignments:

Definition 3 (States and Assignments). Given countable sets O of object names,
and predicate names Φ1, ... ,Φn, a state S(O,Φ1, ...,Φn), abbreviated S, is the

tuple (IΦ1
, ... , IΦn

) where IΦj
: Φj → 2O

j

is the interpretation of predicates
of arity j. Given p ∈ Φj, we will say that p(o1, ..., oj) is true at state iff
(o1, ..., oj) ∈ IΦj

(p).
Given a set of variables X, an assignment is a function v : X → O. The set

of all assignments is denoted by V (X,O), abbreviated V .

12



Given v ∈ V and ϕ ∈ L, v(ϕ) is the formula obtained by replacing all
variables x occuring in ϕ with v(x), and laws l(x) with l(v(x)). We assume that
all variables are free. Note that v(ϕ) is a propositional formula in L.
Evaluating the Example:We now describe the evaluation of our example
statements. Given the state S (in Table 1), first we consider the permission:

• (2) bb(z) ∧ d(y, z) ∧ sp(y) 7→ ¬Oztest(y, z)

• If the precondition bb(z) ∧ d(y, z) ∧ sp(y) is true w.r.t. an assignment
v ∈ V , then the postcondition v(says{2}(¬Oztest(y, z))) is uttered.

• Otherwise, there is no utterance.

Since the precondition of statement (2) is true for the assignment of z to A
and y to o1, we have the utterance says{2}(¬OAtest(o1, A)). However, since o2
is not a donation of source plasma, there is no correponding utterance.

Now consider the formula ϕ = says{2}(¬Outest(x, u)) in the precondition of
(1). This is evaluated as follows. First, we evaluate the permission (as describe
above) at S w.r.t. all assignments. Let U be the set of utterances obtained.
Then, ϕ is true at S w.r.t. an assignment v iff U ⊢ v(ϕ). We say that U
entails v(ϕ) (denoted U ⊢ v(ϕ)) iff there is a finite subset U ′ ⊆ U such that
⊢

∧

U ′ ⇒ v(ϕ). We note that the propositional fragment of L is compact, and
so provability and finite provability are identical.

Returning to Table 1:

• says{2}(¬OAtest(o1, A)) is uttered, and

• {says{2}(¬OAtest(o1, A))} ⊢ says{2} ¬OAtest(o1, A), since ϕ ⇒ ϕ is a
propositional tautology. So says{2} ¬Outest(x, u) is true at S w.r.t the
assignment v, when v(u) = A and v(x) = o1.

Statement (1) is evaluated by uttering v(says{1} Outest(x)) if the precondi-
tion holds. In Table 1, this results in the utterance says{1}(OAtest(o2, A)). The
utterance lets a law which depends on (1) draw the correct inference.
Formal Definitions of Evaluation: The evaluation is formalized using the
Kripke-Kleene-Fitting semantics for logic programs (c.f. [11]). We briefly review
the definitions, and refer the reader to [11] for a detailed discussion. The seman-
tic evaluation outlined above works only when there are no cyclic dependencies,
since an order of evaluation needs to be defined. To handle cycles, a three-valued
interpretation is needed, where the third (middle) value stands for ungrounded.
Initially, all statements are ungrounded, and there are no utterances. At each
step we assign truth values and utterances, using truth values and utterances
from the previous step, until we reach a fixed point. The values are denoted by
B3 = {⊤,⊥, ?}. We now define utterances (called annotations in [11]):

Definition 4 (Utterances). Given a state S, assignment v ∈ V , and regulation
Reg, an utterance is a statement v(says{id} ψ, S) such that id ∈ ID and (id) ϕ 7→
ψ ∈ Reg. The set of all utterances is denoted by U(S, V,Reg), abbreviated U .

13



To evaluate statements, we use two sets of utterances U and U ′ such that
U ⊆ U ′. Informally, U is the set of utterances obtained from laws with true
preconditions, while U ′ is set of utterances from laws with true or ungrounded
preconditions. The truth of saysId ϕ is determined using U , and falsity is deter-
mined using U ′. We now define the function tv which assigns truth values to
preconditions:

Definition 5 (Evaluating Preconditions). Given utterances U and U ′ such that
U ⊆ U ′, the function tv(U,U ′) : Lϕ × S × V → B3 is defined as follows:

Predicates are evaluated to true or false. Conjunction and negation are han-
dled using the Kleene semantics.

tv(U,U ′)(saysId ψ, S, v) =







⊤ if U ⊢ v(saysId ψ)
⊥ if U ′ 6⊢ v(saysId ψ)
? otherwise

In the spirit of Jorgensen and input-output logic (cf. [24]), we do not assign
truth values to obligations and permissions. An obligation or permission can
only be uttered at a state. In other words, we can evaluate whether “ϕ is
obligated by a set of laws”, but “ϕ is obligated” has no truth value.

We now define consistency for the pair of utterances (U,U ′), used in Defi-
nition 5. We need to ensure that U (resply. U ′) corresponds to laws with true
(resply. true or ungrounded) preconditions:

Definition 6 (Consistent Utterances). Given a body of regulation Reg and a
state S, the utterence pair (U,U ′) is consistent iff for all (id) ϕ 7→ ψ ∈ Reg and
v ∈ V :

If v(says{id} ψ, S) ∈ U , tv(U,U ′)(ϕ, S, v) = ⊤
If v(says{id} ψ, S) 6∈ U ′, tv(U,U ′)(ϕ, S, v) = ⊥
In addition, we require that U ⊆ U ′.

Given a consistent evaluation (U1, U
′
1), evaluating the regulation gives us

a way to define a new utterance pair (U2, U
′
2). U2 (resply. U ′

2) corresponds
to the laws whose preconditions become true (resply. do not become false) by
evaluating w.r.t. (U1, U

′
1). In [11], we show that U1 ⊆ U2 and U ′

1 ⊇ U ′
2, i.e.,

more statements become grounded (true or false). We are interested in fixed
point utterance pairs:

Definition 7 (Fixed Point). Given a body of regulation Reg, and state S, the
consistent utterance pair (U,U ′) is a fixed point iff for all (id) ϕ 7→ ψ ∈ Reg

and v ∈ V :
If tv(U,U ′)(ϕ, S, v) = ⊤, v(says{id} ψ) ∈ U

If tv(U,U ′)(ϕ, S, v) = ⊥, v(says{id} ψ) 6∈ U ′

We say that (U1, U
′
1) ≤ (U2, U

′
2) if U1 ⊆ U2 and U ′

1 ⊇ U ′
2. We now review

some results from [11]. The partially ordered set of consistent utterances has a
least fixed point and one or more maximal fixed points. Distinct fixed points

14



arise if there are circular references. The converse is not necessarily true, i.e.,
there may be circular references and a unique fixed point. There is a smallest
element in the set of consistent utterances (U0, U

′
0) such that U0 = ∅ and U ′

0

contains all utterances. The least fixed point can be obtained iteratively using
(U0, U

′
0). All the examples in this paper have a unique (least) fixed point. We

note that if (U,U ′) is the unique fixed point, then U = U ′ and all statements
are evaluated to true or false.

A state S together with a consistent utterance pair (U,U ′) forms the basis
for all decision problems. Given S, (U,U ′) and a propositional ϕ ∈ L, we say
that ϕ is valid at S w.r.t. (U,U ′) (denoted S |=(U,U ′) ϕ) iff tv(U,U ′)(ϕ, S, v) = ⊤
for all v ∈ V . We use this notion of validity at a state to formalize access control
and conformance decisions, in Sections 3.3 and 3.4 respectively.

3.3. Non-interference in Access Control

An access control decision is made when a principal A requests the perfor-
mance of action p which is controlled by B. Given a state S and fixed point
(U,U ′) resulting from the evaluation of policy, the decision problem is whether
S |=(U,U ′) saysl(B) PA(p), i.e., does B say that A is permitted to perform p.

A problem with this definition is that the policies in access control are usually
distributed. It is unreasonable to expect (U,U ′) to reside on a single system.
Given that we wish to evaluate saysl(B) PA(p), the question is whether a smaller
set of utterances suffice to answer this question. In other words, the evaluation
should be carried out locally by B or a designated evaluator for B, as in [25].

[5, 3] advocate the use of non-interference properties to obtain such results,
and to demonstrate that the logic protects the rights of each principal. In our
case, the access control decision is of the form S |=(U,U ′) saysId ψ, and this holds
iff U ⊢ saysId ψ. The goal is to identify a subset of utterances (U∗ ⊆ U), such
that U ⊢ saysId ψ iff U∗ ⊢ saysId ψ. We begin by defining this subset:

Definition 8 (Reachable Utterances). Given a set of utterances U and a for-
mula saysId ψ, U∗

Id is the smallest set such that:

• If id ∈ Id and says{id} ϕ ∈ U , says{id} ϕ ∈ U∗
Id

• If says{id} ϕ ∈ U∗
Id and saysId′ ψ

′ is a subformula of ϕ, then U∗
Id′ ⊆ U∗

Id

If we think of formulas saysId ψ as pointing to utterances in U (labeled Id),
then U∗

Id is the set of utterances that are reachable. We believe that it is
reasonable to restrict to the set of reachable utterances. Given the question
saysl(B) ψ, U∗

l(B) is determined by B and the principals that she delegates to.
We can now show the following:

Theorem 2 (Non-interference). Given a set of utterances U , for all saysId ψ ∈
L:

U ⊢ saysId ψ iff U∗
Id ⊢ saysId ψ

15



Proof. The proof relies on properties of the canonical Kripke structure (Ap-
pendix D). As an example, consider U = {saysl(A)(PB saysl(B) ϕ), saysl(B) ψ}.
To decide whether U ⊢ saysl(B)(PA saysl(A) ψ

′) it suffices to consider U∗
l(B) =

{says{B} ψ}, provided that ψ does not refer to l(A). In other words, the utter-
ances in l(A) can affect the inferences from l(B) iff l(B) refers to l(A), and l(A)
referring to l(B) is irrelevant while inferring saysl(B) φ.

We note that the distinction between the inference component and the saying
component allows us to restrict attention to inferences of the form U ⊢ saysId ϕ,
where U only has formulas of the form saysId′ ψ. If the set U could contain ar-
bitrary formulas, non-interference would have a more complex characterization,
as in [5]. For example, if we allowed formulas of the form ¬ saysId′ ψ in U , then
any principal can render U inconsistent.

3.4. Conformance

We now turn to the definition of conformance. While the definition of con-
formace has some variation between formalisms [11, 12, 13], all of them require
a principal to satisfy the obligations that are imposed on her. [12] gives the
option of defining a mitigating action such as “paying a fine” if an obligation is
not satisfied. Such mitigating actions are easily accommodated here, e.g., using
disjunction. We define conformance as a relation between a principal and a set
of laws:

Definition 9 (Conformance). Given a state S with a set of objects O, and a
body of regulation Reg with identifiers ID, we say that A ∈ O conforms to the
laws Id ⊆ ID w.r.t. the fixed point (U,U ′) iff for all propositional ϕ ∈ L:

If S |=(U,U ′) saysIdOAϕ, then S |=(U,U ′) ϕ

In other words, conformance is the satisfaction of all obligations. Returning
to our example in Table 1, we consider the conformance of the bloodbank (A)
to the laws {1, 2}. At the unique fixed point (U,U ′), U = U ′ consisting of
the utterances in Table 1. Furthermore, S |=(U,U ′) says{1,2}OAtest(o2, A), but
S 6|=(U,U ′) test(o2, A). As a result, A does not conform to the laws {1, 2}. We
will examine the definition of conformance in the presence of nested obligations
and permissions in Section 4.2.

We briefly discuss the proof of decidability of conformance:

Theorem 3 (Decidability of Conformance). Given a state S, a fixed point
(U,U ′), identifiers Id ⊆ ID and a principal A ∈ O, there is a procedure to
decide whether A conforms to Id.

Proof. First, we observe that S |=(U,U ′) saysIdOAϕ iff U ⊢ saysIdOAϕ (by
definition). So, it suffices to check that for all ϕ, if U ⊢ saysIdOAϕ, then
S |=(U,U ′) ϕ

The key idea is to show that there is a formula ψ(U,A,Id) such that: (a)
U ⊢ saysIdOAψ(U,A,Id), and (b) for all ϕ ∈ L such that U ⊢ saysIdOAϕ, we

16



have ⊢ ψ(U,A,Id) ⇒ ϕ. The proof relies on the finite (canonical) model property
(Appendix D).

It is easy to see from the definition of evaluation that for all φ, if ⊢ φ, then
S |=(U,U ′) φ. In other words, the axioms of L are sound w.r.t. the evaluation of
regulations. As a result, it suffices to check if S |=(U,U ′) ψ(U,A,Id).

We now turn to a discussion of examples, in the context of related work.

4. Discussion

In this section, we discuss how various constructs from the literature are
expressed in our framework. In Section 4.1, we discuss access control examples.
Section 4.2 discusses conformance in the presence of nested obligations and per-
missions [14]. We then discuss other relationships to prior work, in Section 4.3.

4.1. Access Control

We discuss two access control examples in this section. The first example
highlights an important restriction of the policies in Section 3.2, i.e., a policy lets
us conclude what has been said, but not what actually happens. The second
example illustrates how the delegation operator of [7] can be defined in our
framework.
Example 1: We begin with an example from [6]. Consider a file-access scenario
with an administrating principal (A), a user (B), a file (file1), and the following
policy:

1. If A says that file1 should be deleted, then this must be the case.

2. A trusts B to decided whether file1 should be deleted.

3. B wants to delete file1.

We introduce a new principal F for the file system. The following are the
utterances (U) obtained at the fixed point:

1. saysl(F ) PA saysl(A) OF (delfile1)

2. saysl(A) PB saysl(B) OF (delfile1)

3. saysl(B) OF (delfile1)

The first utterance is read as follows: The file system F says that A is permitted
to require it (F ) to delete file1. The second utterance is the delegation from
A to B, and the third utterance is B’s wish to delete file1. Using A5, we will
conclude that U ⊢ saysl(F ) OF (delfile1). In other words, we conclude that the
system requires itself to delete file1.

Our analysis differs in an important way from [6]. We do not conclude that
file1 is actually deleted, i.e., U 6⊢ delfile1. In fact, we can show that there is no
policy (as defined in Section 3.2) that lets us make this conclusion. delfile1 is true
at a state where F conforms to l(F ), as per Defintion 9. In some cases, it may be
warranted to assume/axiomatize self-conformance, i.e., (saysl(F ) OF (ϕ)) ⇒ ϕ.
However, conflicting self-imposed requirements would make U inconsistent.

17



Example 2: The delegation operator of [7] has a compelling definition in our
framework. The syntax (in [7]) for delegation is “x delegates (ϕ)d to y”, where
d is the depth of delegation. We define the schema ps(ϕ, x, d), where x is used
to generate variable names, and d ∈ N :

• ps(ϕ, x, 1) = Px1
saysl(x1) ϕ

• ps(ϕ, x, d) = Pxd
saysl(xd)(ϕ ∧ ps(ϕ, x, d− 1)), for d > 1

The statement “A delegates (delfile1)2 to B” is interpreted as follows: A says
delfile1 if B says it or anyone that B trusts says it. Suppose, in addition, that B
delegates (delfile1)1 to C, and C says delfile1. We express this with the following
rules:

• (1) (x2 = B) 7→ ps(delfile1, x, 2)

• (2) (y1 = C) 7→ ps(delfile1, y, 1)

• (3) ⊤ 7→ delfile1

We assume that 1 ∈ l(A), 2 ∈ l(B) and 3 ∈ l(C). At the fixed point, we will
have U ⊢ saysl(A) delfile1, i.e., A says delfile1. Further redelegations by C (by
modifying statement 3) will not be attributed to A.

In [7], a representation statement is used to grant permission to speak without
consuming delegation depth. If C represents B on delfile1, then C should be
permitted to at most one redelegation. Statement 2 is modified as follows:

• (2) (y2 = C) 7→ ps(delfile1, y, 2)

With this modification, a delegation by C will be attributed to A. The reader
may have noticed the similarity between statement 1 and the modified version of
statement 2. In our approach, delegation is just a special kind of representation.
A delegates (ϕ)d to B iff B represents A on “delegating (ϕ)d−1 to anyone”. If C
represents B on “delegating (ϕ)d−1 to anyone”, then she represents A as well.

As [7] points out, in the presence of representation, delegation depth does
not have much meaning. For example, A may not wish to trust C to the same
extent as B. There are a few options to address this issue by modifying the
representation axiom. One way is to keep tract of the delegation depth in
the axiom, as in [18]. Yet another way is to keep track of the principal on
belhalf of whom a statement in made. We avoid these modifications, to simplify
presentation.

4.2. Nested Obligations and Permissions

We discuss two examples of conformance in the presence of nested obligations
and permissions. The first example illustrates how several fine-grained notions
of conformance can be captured. The second example points out an important
practical difficulty.
Example 1: We consider an example (based on one in [14]):

18



(4) The owners of parking lots ought to forbid parking near the entrance.

What does it mean to conform to (4)? We analyze this sentence as follows:
“The owners of parking lots ought to (introduce laws that) forbid parking near
the entrance.”. In other words, (4) is an obligation to introduce a prohibition.
If the owner introduces such a law, then the person parking is viewed as non-
conformant, but it is the owner that needs to conform to (4). We can represent
(4) in logic as follows:

• (4) own(x) ∧ p(y) 7→ Ox saysl(x) Oy¬pk(y, x)

Here own(x) is true iff x is the owner of a parking lot, p(y) is true iff y is a
person, and pk(y, x) is true iff y parks near the entrance of the lot owned by x.
l(x) refers to the laws that are introduced by x.

Let us assume a state S = (IΦ1
, ..., IΦn

) in which A is the owner of a parking
lot, and B parks near the entrances of A’s lot. The true predications are:
{own(A), p(B), pk(B,A)}. In addition, A is assigned the identifier 5, i.e.,
l(A) = {5}. We will now consider two scenarios – (a) A does not introduce any
laws, and (b) A introduces a law forbidding parking near the entrance. We are
interested in the conformance (Definition 9) of the owner A and the driver B.
Scenario 1: Suppose that A does not introduce any laws:

• The fixed point is: U = U ′ = {says{4} OA says{5} OB¬pk(B,A)}

• U ⊢ says{4} OA says{5} OB¬pk(B,A), but S 6|=(U,U ′) says{5} OB¬pk(B,A).

• Hence A does not conform to {4}.

However, it can be shown that B conforms to {4}.
Scenario 2: Now suppose that A introduces the law:

(5) p(y) 7→ Oy¬pk(y,A)

The fixed point utterance pair is:
U = U ′ = {says{4} OA says{5} OB¬pk(B,A), says{5} OB¬pk(B,A)}
It can be shown that A conforms to {4}. What about B? It is clear

that B does not conform to {5}, but what about {4}? Observe that U ⊢
says{4} OB¬pk(B,A) (using the transfer axiom A5), but S 6|=(U,U ′) ¬pk(B,A).
Hence, B does not conform to {4}. In other words, the statement (4) conveys
an obligation to A and if A conforms, the embedded obligation is conveyed to
B. As we noted in Section 2.1, we are formalizing the notion of speaking on
someone’s behalf, i.e., the obligation (5) issued by A is understood as being on
behalf of the issuer of (4). Some applications may need a distinction between
the different senses of saying.
Example 2: As we mentioned, our approach provides only a partial analysis
of nested modalities. Consider the following example:

(6) You are required to allow a patient to see his records.

19



By our analysis, (6) is an obligation on the hospital to provide a permis-
sion. Suppose that a hospital introduces such a permission in its policy. Has
it conformed to (6)? The problem arises in distinguishing between claimed per-
mission, and actual permission. A hospital claims that it permits a patient to
see his records, by making an appropriate rule. On the other hand, a hospital
actually permits a patient to see his records, by taking an action, e.g., sending
the records via mail.

We suggest that a formalization of actual permission needs notions of bring-
ing about or seeing to it that (e.g., [20, 26]). If a principal A says that she
permits an action p, we need to check if she prevents p either by some other
action or non-action. We can capture such notions by introducing laws that
require facilitation. For example, (id) saysl(A) PB(p) 7→ OA(ϕ), where ϕ is
understood as a prerequisite for p, which is in the control of A. Thus, actual
permission can be determined during conformance checking. However, listing
the prerequistes for all the actions is quite difficult in practice, and notions of
control and responsibility could lead to a more elegant solution.

4.3. Related Work

We have discussed several relationships to prior work, in Sections 2, 4.1,
and 4.2. In this section, we discuss other relationships, to identify interesting
lines for further research.

Logic programming has been popular in access control [7, 16, 17]. The for-
malism that we adopted (Section 3.2) provides a way to integrate the logic
programming approaches with the logics of saying [1, 2, 3, 5, 6], i.e., by eval-
uating saying using provability. The negation of provability gives a good in-
terepretation to didn’t say, thereby establishing a connection between saying
and non-monotonic reasoning. Non-monotonic reasoning plays a useful role in
formalizing exceptions to laws [11, 13]. In addition, the distributed proving
techniques in [25] are directly applicable here.

However, the provability tests U ⊢ saysl(A) ψ can be expensive, if U is large.
Logic programs restrict the heads of rules to be atomic (as in [7, 16, 17]). This
restriction to atomic formulas lets one decide provability in polynomial time.
An important question is whether similar restrictions can be applied here to
get polytime fragments. Disjunction is the main culprit in the exponential
worst-case complexities here (Section 3.1). Even if we exclude disjunction syn-
tactically, the representation axiom is defined using implication, and introduces
disjunction indirectly. This leads to the following question: Is there a fragment
of the logic that accommodates representation, and yields a polytime decision
procedure?

Due to the problematic interactions between hand-off and classical logic
(Section 2.1), intuitionistic approaches have been developed [3, 5, 6]. While
we have focussed on the classical setting here, the representation axiom can
be adapted to the intuitionistic setting. However, as [5] points out, a notion
of constructivism is also desirable in an intuitionistic logic. Constructivism re-
quires the meaning of an operator to be independent of others, and as a result,

20



axioms which describe interaction between operators (such as the representa-
tion axiom) are excluded. While constructivism is important in programming
languages (see [5, 3]), interaction axioms have also proved useful. For example,
[27] discusses 48 systems of knowledge and time. This leads to our next ques-
tion: Is there a more constructive form of the representation axiom, that yields
a useful programming language?

Finally, notions of time have been used in conformance checking [12, 28, 10].
The policies are used to synthesize monitors that are used to detect violations at
runtime [12, 28]. Since the saying component (Section 3.2) uses the formalism
in [11, 28], notions of linear time can be easily added here, and the monitor
synthesis in [28] can be used directly. Once notions of time are available, we can
place constraints on how a policy changes. This leads to our final question: Are
there useful interactions between saying and time, to characterize how a policy
is updated?

5. Conclusions

We have motivated and described a logic for access control and conformance.
The focus was on the interaction between saying and permission, as needed for
these applications. We proposed two axioms to characterize their interaction
(Section 3.1), and showed how these axioms could be incorporated into a logic
programming approach (Section 3.2).

A combined analysis of saying and permission yielded benefits to both appli-
cations. For access control, we find a way to avoid the problematic interaction
between hand-off and classical reasoning. Our axioms yield a decidable logic
with a complete semantics (Section 3.1), and we hope that they have intuitive
appeal to the reader. For conformance, we are able to accommodate nested obli-
gations and permissions. We showed, in Section 3.4, that conformance checking
remains decidable.

We believe that the joint study of access control and conformance is a rich
area for research. In Section 4.3, we identified several avenues for further in-
quiry.

References

[1] M. Abadi, M. Burrows, B. Lampson, G. Plotkin, A calculus for access con-
trol in distributed systems, ACM Transactions on Programming Languages
and Systems 15 (4) (1993) 706–734.

[2] M. Abadi, Logic in access control, in: Proceedings of the Symposium on
Logic in Computer Science, 2003.

[3] M. Abadi, Access control in a core calculus of dependency, Electronic notes
in Theoretical Computer Science 172 (2007) 5–31.

21



[4] A. Cirillo, R. Jagadeesan, C. Pitcher, J. Riely, Do as I SaY! Programmatic
access control with explicit identities, in: 20th IEEE Computer Security
Foundations Symposium, 2007.

[5] D. Garg, F. Pfenning, Non-interference in constructive authorization logic,
in: 19th IEEE Computer Security Foundations Workshop, 2006.

[6] D. Garg, M. Abadi, A modal deconstruction of access control logics, in:
Proceedings of the 11th International Conference on Foundations of Soft-
ware Science and Computation Structures (FoSSaCS), 2008.

[7] N. Li, B. N. Grosof, J. Feigenbaum, Delegation logic: a logic-based ap-
proach to distributed authorization, ACM Transactions on Information and
System Security 6 (1) (2003) 128–171.

[8] A. Abrahams, Developing and executing electronic commerce applications
with occurrences, Ph.D. thesis, Univeristy of Cambridge (2002).

[9] T. D. Breaux, M. W. Vail, A. I. Anton, Towards regulatory compliance:
Extracting rights and obligations to align requirements with regulations,
in: Proceedings of the 14th IEEE International Requirements Engineering
Conference, 2006.

[10] C. Giblin, A. Liu, S. Muller, B. Pfitzmann, X. Zhou, Regulations Expressed
as Logical Models (REALM), in: M.-F. Moens, P. Spyns (Eds.), Legal
Knowledge and Information Systems, 2005.

[11] N. Dinesh, A. Joshi, I. Lee, O. Sokolsky, Reasoning about conditions and
exceptions to laws in regulatory conformance checking, in: Proceedings of
the Conference on Deontic Logic in Computer Science, 2008.

[12] M. Kyas, C. Prisacariu, G. Schneider, Run-time monitoring of electronic
contracts, in: 6th International Symposium on Automated Technology for
Verification and Analysis (ATVA’08), 2008.

[13] G. Governatori, A. Rotolo, Bio logical agents: Norms, beliefs, intentions
in defeasible logic, Autonomous Agents and Multi-Agent Systems 17 (1)
(2008) 36–69.

[14] R. B. Marcus, Iterated deontic modalities, Mind 75 (300).

[15] G. Boella, L. van der Torre, Permissions and obligations in hierarchical
normative systems, in: Proceedings of the 9th international conference on
AI and law, 2003.

[16] J. Crampton, G. Loizou, G. O. Shea, A logic of access control, The Com-
puter Journal 44 (1) (2001) 137–149.

[17] E. Bertino, B. Catania, E. Ferrari, P. Perlasca, A logical framework for
reasoning about access control models, ACM Transactions on Information
Systems Security 6 (1) (2003) 71–127.

22



[18] M. Y. Becker, C. Fournet, A. D. Gordon, Design and semantics of a decen-
tralized authorization language, in: Computer Security Foundations Sym-
posium, 2007.

[19] D. Makinson, L. van der Torre, Permissions from an input/output perspec-
tive, Journal of Philosophical Logic 32 (4).

[20] N. D. Belnap, P. Bartha, Marcus and the Problem of Nested Deontic Modal-
ities, in: W. Sinnot-Armstrong, D. Raffman, N. Asher (Eds.), Morality and
Belief: Festschrift in Honour of Ruth Barcan Marcus, 1995.

[21] G. H. von Wright, Deontic logic, Mind 60 (1951) 1–15.

[22] M. Sergot, F.Sadri, R. Kowalski, F.Kriwaczek, P.Hammond, H. Cory, The
british nationality act as a logic program, Communications of the ACM
29 (5) (1986) 370–86.

[23] L. T. McCarty, A language for legal discourse - i. basic features, in: Pro-
ceedings of ICAIL, 1989.

[24] D. Makinson, L. van der Torre, Input/output logics, Journal of Philosoph-
ical Logic 29 (2000) 383–408.

[25] L. Bauer, S. Garriss, M. K. Reiter, Distributed proving in access control
systems, in: 20th IEEE Computer Security Foundation Symposium, 2007.

[26] J. F. Horty, N. D. Belnap, The Deliberative Stit: A Study of Action, Omis-
sion, Ability, and Obligation, Journal of Philosophical Logic 29 (1995) 109–
136.

[27] J. Y. Halpern, R. van der Meyden, M. Y. Vardi, Complete axiomatiza-
tions for reasoning about knowledge and time, SIAM Journal of Computing
33 (3) (2004) 674–703.

[28] N. Dinesh, A. Joshi, I. Lee, O. Sokolsky, Checking traces for regulatory
conformance, in: Proceedings of the Workshop on Runtime Verification,
2008.

[29] J. Y. Halpern, Y. Moses, A guide to completeness and complexity for modal
logics of knowledge and belief, Artif. Intell. 54 (3) (1992) 319–379.

A. Semantics

We begin by defining models (Kripke structures):

Definition 10 (Models). Given countable sets O of object names, Φ1, ...,Φn
(where Φj is a set of predicate names of arity j), function names F , and identi-
fiers for rules ID, a model M(O,Φ1, ...,Φn, ID), abbreviated as M , is the tuple
(S, IΦ1

, ..., IΦn
, δL, δO) where:

23



• S is a set of states

• IΦj
: Φj×S → 2O

j

is the interpretation of predicates of arity j. Given p ∈
Φj, we will say that p(o1, ..., oj) is true at state s iff (o1, ..., oj) ∈ IΦj

(p, s).

• δL : S × 2ID → 2S. δL(s, Id) corresponds to a description of s according
to the laws labeled with identifiers in Id (taken conjunctively).

• δO : S × O → 2S. δO(s,A) corresponds to an idealization of s, for which
the principal A is held responsible.

For the axioms A3-A6 we need the following constraints C3-C6 (resply). For
all s ∈ S:

C3 δL(s, Id) ⊇ δL(s, Id′) for all Id ⊆ Id′

C4 δO(s,A) 6= ∅ for all A ∈ O

C5 For all {A,B} ⊆ O, IdA ⊆ l(A), IdB ⊆ l(B), and s′ ∈ δL(s, IdA):

1. s′ ∈ δL(s, IdB), or

2. There exists s1 ∈ δL(s, IdA) such that for all s2 ∈ δO(s1, B), s′ ∈
δL(s2, IdB)

C6 For all {A,B} ⊆ O, IdA ⊆ l(A), and s′ ∈ δL(s, IdA):

There exists s1 ∈ δL(s, IdA) such that for all s2 ∈ δO(s1, B), s′ ∈ δL(s2, IdB)

C5 and C6 can be understood in the context of soundness (Lemma 1). Given
the object names O, predicate names (Φ1, ...,Φn) and identifiers ID, the space
of models is denoted by M(O, Φ1, ..., Φn, ID), abbreviated as M. We can now
define satisfaction and validity, and we restrict attention to the propositional
fragment of L:

Definition 11 (Semantics). Given a model M = (S, IΦ1
, ..., IΦn

, δL, δO), s ∈ S

and a propositional ϕ ∈ L, the relation (M, s) |= ϕ is defined inductively as
follows:

• (M, s) |= p(o1, ..., oj) iff (o1, ..., oj) ∈ IΦj
(p, s).

• The semantics of conjunction and negation is defined in the usual way.

• (M, s) |= saysId ϕ iff (M, s′) |= ϕ, for all s′ ∈ δL(s, Id).

• (M, s |= OAϕ iff (M, s′) |= ϕ, for all s′ ∈ δO(s′, A).

We can now define validity:

• ϕ is valid in a model M (M |= ϕ) iff for all s ∈ S, (M, s) |= ϕ

• ϕ is valid (|= ϕ) iff for all M ∈ M, M |= ϕ

24



B. Soundness and Completeness

Theorem 4 (Soundness and Completeness). Given a propositional ϕ ∈ L, ⊢ ϕ
iff |= ϕ

Lemma 1 (Soundness). Given a propositional ϕ ∈ L, if ⊢ ϕ, then |= ϕ

Proof. We need to show that the axioms are valid, and that the rules preserve
validity. It is well-known that the axioms A1 and A2 are valid, and that R1
and R2 preserve validity in all Kripke structures. The validity of A3 and A4
can easily be shown using C3 and C4. We discuss the case for A5.

Suppose A5 is not valid. There exists M , s, ϕ, A, B, IdA and IdB such
that:

• (M, s) |= saysIdA
(PB saysIdB

ϕ)

• (M, s) |= saysIdB
ϕ, and

• (M, s) 6|= saysIdA
ϕ

Since (M, s) 6|= saysIdA
ϕ, there exists s′ ∈ δL(s, IdA) such that (M, s′) 6|= ϕ.

Since C5 holds, there are two cases to consider:

1. If s′ ∈ δL(s, IdB), then (M, s) 6|= saysIdB
ϕ giving us a contradiction.

2. If there exists s1 ∈ δL(s, IdA) such that for all s2 ∈ δO(s1, B), s′ ∈
δL(s2, IdB), then:

• (M, s1) |= OB¬ saysIdB
ϕ

• (M, s) 6|= saysIdA
(¬OB¬ saysIdB

ϕ)

Hence, (M, s) 6|= saysIdA
(PB saysIdB

ϕ) (since PBϕ = ¬OB¬ϕ), giving us
a contradiction.

Hence, A5 is valid. The proof for A6 is similar.

Lemma 2 (Completeness). Given a propositional ϕ ∈ L, if |= ϕ, then ⊢ ϕ

The rest of this section gives the proof. We will use a canonical model
argument (c.f. [29]). We show the contrapositive, i.e., if 6⊢ ϕ, then 6|= ϕ. In
other words, if 6⊢ ϕ then there exist M and s such that (M, s) |= ¬ϕ. We begin
with some terminology.

We say that ϕ is consistent if ¬ϕ is not provable (6⊢ ¬ϕ). A finite set of
formulas {ϕ1, ..., ϕn} is consistent if ϕ1 ∧ ...∧ϕn is consistent. An infinite set of
formulas is consistent if every finite subset is consistent. A set of formulas ∆ is
maximal consistent if for all ϕ ∈ L− ∆, ∆ ∪ {ϕ} is inconsistent. The following
are properties of maximal consistent sets:

Proposition 2. Given a maximal consistent set ∆:

1. For all ϕ ∈ L, exactly one of ϕ ∈ ∆ or ¬ϕ ∈ ∆

2. If ⊢ ϕ⇒ ψ and ϕ ∈ ∆, then ψ ∈ ∆

25



3. If ⊢ ϕ, then ϕ ∈ ∆ and Qϕ ∈ ∆ (for all modalities Q)

The proof is straightforward. We now define the canonical model, in which
every consistent formula is true at some state:

Definition 12 (Canonical Model). The canonical model M = (S, IΦ1
, ..., IΦn

, δL, δO)
is such that:

• S is the set of all maximal consistent sets

• (o1, ..., oj) ∈ IΦj
(p,∆) iff p(o1, ..., oj) ∈ ∆

• ∆′ ∈ δL(∆, Id) iff for all ϕ, if saysId ϕ ∈ ∆, then ϕ ∈ ∆′

• ∆′ ∈ δO(∆, B) iff for all ϕ, if OBϕ ∈ ∆, then ϕ ∈ ∆′

We now show that the canonical model satisfies the frame constraints:

Proposition 3. The canonical model satisfies the frame constraints C3-C6

Proof. The proof that C3 and C4 hold are left to the reader. We discuss the
case for C5. Given the canonical model M = (S, IΦ1

, ..., IΦn
, δL, δO), ∆ ∈ S,

and suppose for the purpose of contradiction that there exists ∆′ ∈ δL(∆, IdA)
such that:

• ∆′ 6∈ δL(∆, IdB). By Proposition 4 item 1 (below), there exists saysIdB
ψ ∈

∆ such that ¬ψ ∈ ∆′.

• For all ∆1 ∈ δL(∆, IdA), there exists ∆2 ∈ δO(∆1, B), ∆′ 6∈ δL(∆2, IdB).
By Proposition 4 item 2 (below), there exists saysIdA

PB saysIdB
ϕ ∈ ∆

such that ¬ϕ ∈ ∆′.

Using Proposition 2, saysIdB
(ϕ∨ψ) ∈ ∆ and saysIdA

PB saysIdB
(ϕ∨ψ) ∈ ∆.

So, saysIdA
(ϕ∨ψ) ∈ ∆, and hence ϕ∨ψ ∈ ∆′. That is ϕ ∈ ∆′ or ψ ∈ ∆′, which

contradicts the fact that ¬ϕ ∈ ∆′ and ¬ψ ∈ ∆′. The proof of C6 is similar.

Proposition 4. Given the canonical model M = (S, IΦ1
, ..., IΦn

, δL, δO), for all
∆ ∈ S {A,B} ⊆ O, IdA ⊆ l(A), and IdB ⊆ l(B), if ∆′ ∈ δL(∆, IdA):

1. If ∆′ 6∈ δL(∆, IdB), then there exists saysIdB
ψ ∈ ∆ such that ¬ψ ∈ ∆′

2. If for all ∆1 ∈ δL(∆, IdA), there exists ∆2 ∈ δO(∆1, B), ∆′ 6∈ δL(∆2, IdB),
then there exists saysIdA

PB saysIdB
ϕ ∈ ∆ and ¬ϕ ∈ ∆′

Proof. The first item is immediate from the definition of the canonical model.
For the second item, we proceed by contradiction. Suppose for all ϕ ∈ L, if
saysIdA

PB saysIdB
ϕ ∈ ∆, then ϕ ∈ ∆′. Let F be the smallest set such that:

• If saysIdA
ϕ ∈ ∆, then ϕ ∈ F , and

• If ¬ψ ∈ ∆′, then OB¬ saysIdB
ψ ∈ F .

26



We claim that F is consistent. Suppose not:

• There exists {ϕ1, ..., ϕn, ψ1, ..., ψm} such that ⊢ ¬(ϕ1∧...∧ϕn∧OB¬ saysIdB
ψ1∧

... ∧ OB¬ saysIdB
ψm)

• It follows that ⊢ ϕ1 ∧ ... ∧ ϕn ⇒ PB saysIdB
(ψ1 ∨ ... ∨ ψm)

• Using R2, it follows that saysIdA
(ϕ1 ∧ ... ∧ ϕn ⇒ PB saysIdB

(ψ1 ∨ ... ∨
ψm)) ∈ ∆

• And using A2, saysIdA
PB saysIdB

(ψ1 ∨ ... ∨ ψm) ∈ ∆. As a result, ψ1 ∨
... ∨ ψm ∈ ∆′, and there exists ψi ∈ ∆′ where 1 ≤ i ≤ m.

• By construction, ¬ψi ∈ ∆′ for all 1 ≤ i ≤ m, which gives us a contradic-
tion.

We can extend F into a maximal consistent set ∆1 such that ∆1 ∈ δL(∆, IdA).
PB saysIdB

ϕ ∈ ∆1 iff ϕ ∈ ∆′. So, for all ∆2 ∈ δO(∆1, B), if saysIdB
ϕ ∈ ∆2,

then ϕ ∈ ∆′. This suffices to conclude that ∆′ ∈ δL(∆2, IdB) for all ∆2 ∈
δO(∆1, B), giving us a contradiction.

The completeness proof is now finished in the usual way. Given the canonical
model M and a state ∆, it is easy to show that for all ϕ ∈ L, (M,∆) |= ϕ iff
ϕ ∈ ∆. Furthermore given a consistent ϕ, we can construct a maximal consistent
set ∆ such that ϕ ∈ ∆. As a result, for every consistent ϕ, there exists a state
∆ in the canonical model such that (M,∆) |= ϕ. Hence, if 6⊢ ϕ, then 6|= ϕ.

C. Decidability

In this section, we adapt the completeness proof to show the bounded-model
property, i.e., if φ is satisfiable, then it is satisfiable in a model of bounded size
(exponential in the size of φ). We assume the existence of an object A∗ ∈ O

such that there is no subformula OA∗ϕ in φ. Given ϕ, the set of subformulas
sub(ϕ) is the set such that:

• ⊤ ∈ sub(φ) and PA∗⊤ ∈ sub(φ)

• If ϕ ∈ sub(φ), then ¬ϕ ∈ sub(φ) (¬¬ϕ is identified with ϕ)

• If φ ∧ ψ ∈ sub(φ), then φ ∈ sub(φ) and ψ ∈ sub(ϕ)

• If OBψ ∈ sub(φ) or saysId ψ ∈ sub(φ), then ψ ∈ sub(ϕ)

• If saysId ψ ∈ sub(φ), then says∅ ψ ∈ sub(φ)

• If {saysIdB
ψ1,OBψ2} ⊆ sub(φ) and IdB ⊆ l(B), then PB saysIdB

ψ1 ∈
sub(φ)

27



Given φ, we will consider maximal consistent sets w.r.t. sub(φ). A set
∆ ⊆ sub(φ) is said to be maximal consistent iff ∆ is consistent and for all
ψ ∈ sub(φ)−∆, ∆∪{ψ} is inconsistent. We write ∆ ⊢ ϕ to denote ⊢

∧

∆ ⇒ ϕ.
The definition of the canonical model needs a few changes:

Definition 13 (Canonical Model of φ). The canonical model of φ, denoted
Mφ = (S, IΦ1

, ..., IΦn
, δL, δO), is such that:

• S is the set of all maximal consistent sets w.r.t. sub(φ)

• (o1, ..., oj) ∈ IΦj
(p,∆) iff p(o1, ..., oj) ∈ ∆

• ∆′ ∈ δL(∆, Id) iff for all ψ ∈ sub(φ) and Id′ ⊆ Id, if saysId′ ψ ∈ ∆, then
ψ ∈ ∆′

• ∆′ ∈ δO(∆, B) iff for all ψ ∈ sub(ϕ), if OBψ ∈ ∆, then ψ ∈ ∆′. We
assume that for all B ∈ O, if there is no ψ ∈ L such that OBψ ∈ sub(φ),
then B = A∗.

The proofs of Propositions 3 and 4 can be adapted to show that the frame
constraints C3-C6 hold in the canonical model of ϕ. We can now show the
following:

Theorem 5 (Bounded-model property). φ is satisfiable in Mφ iff φ is satisfiable

Proof. One direction is trivial, i.e., if φ is satisfiable in Mφ, then φ is satis-
fiable (by definition). For the other direction, we can use a standard filtration
argument, to show that Mφ can be obtained from the canonical model (Defini-
tion 12).

D. Non-interference and Conformance

Proof (Proof of Theorem 2). Suppose U ⊢ saysId ψ, and for the purposes
of contradiction, U∗

Id 6⊢ saysId ψ. So, φ = U∗
Id ∧ ¬ saysId ψ is satisfiable. Given

Id1 ⊆ ID, let Id∗1 be the set such that id ∈ Id∗1 iff id ∈ Id or there exists
says{id} ϕ ∈ U∗

Id. Let Mφ = (S, IΦ1
, ..., IΦn

, δL, δO) be the canonical model
of φ. Hence, (Mφ,∆φ) |= φ for some ∆φ ∈ S. We construct a new model
M ′ = (S′, I ′Φ1

, ..., I ′Φn
, δ′L, δ

′
O) as follows. M ′ is identical to Mφ except for a new

state s∗ ∈ S′ at which the interpretation of predicates and δ′O is identical to ∆φ

and:

• For all Id1 ⊆ Id, if Id1 = Id∗1, δ
′
L(s∗, Id1) = δL(∆φ, Id1). Otherwise,

δ′L(s∗, Id1) = ∅

We need to verify that the accessibility constraints hold in M ′. The only
difficulty is in showing that C5 holds at s∗ in M ′. Fix A, B, IdA, IdB , and
∆′ ∈ δ′L(s∗, IdA). The only difficult case is when IdA = Id∗A and IdB 6= Id∗B.
In this case, Clause (1) of C5 (Definition 10) is violated and we need to show
that Clause (2) holds . C6 comes to the rescue:

28



1. δL(∆, IdB) = δL(∆, ∅), for all ∆ ∈ S (by construction of Mφ)

2. Since ∆′ ∈ δ′L(s∗, IdA), ∆′ ∈ δL(∆φ, IdB) (by construction of M ′)

3. Using C6 in Mφ, there exists ∆1 ∈ δL(∆φ, IdA) such that for all ∆2 ∈
δO(∆1, B), ∆′ ∈ δL(∆2, IdA).

4. For each ∆2 ∈ δO(∆1, B), it follows using C3 that ∆′ ∈ δL(∆2, ∅), and
using item 1, ∆′ ∈ δL(∆2, IdB)

5. ∆1 ∈ δ′L(s∗, IdA) (by construction of M ′)

The existence of such a ∆1 for each ∆′ ∈ δ′L(s∗, IdA) suffices to enforce C5.
It is easy to show that (M ′, s∗) |= U ∧ ¬ saysId ψ, contradicting the fact that
U ⊢ saysId ψ. The other direction follows easily using propositional reasoning,
i.e., if U∗

Id ⊢ saysId ψ, then U ⊢ saysId ψ, since U∗
Id ⊆ U .

Proof (Proof of Theorem 3). Given U , Id andA, there is a formula ψ(U,Id,A)

such that (1) U ⊢ saysIdOAψ(U,Id,o), and (2) for all ϕ ∈ L such that U ⊢
saysIdOAϕ, we have ⊢ ψ(∆,Id,A) ⇒ ϕ.

Let MU = (S, IΦ1
, ..., IΦn

, δL, δO) be the canonical model for U . Let SU =
{∆1|∆1 ∈ S and U ⊆ ∆1}. Observe that for all ∆1 ∈ SU , (M,∆1) |=

∧

U .
As a result, for all ∆1 ∈ SU and ϕ ∈ L, if U ⊢ saysIdOAϕ, then (M,∆1) |=
saysIdOAϕ.

We will now construct a formula ψ(∆1,Id,A) for each ∆1 ∈ S∆, and define the
desired formula as their disjunction. Given ∆1 ∈ S∆ and ∆′ ∈ δL(∆1, Id), let
Γ(∆′,A) = {ψ|OAψ ∈ ∆′}. Observe that for all ϕ ∈ L such that ∆ ⊢ saysIdOAϕ,
we have Γ(∆′,A) ⊢ ϕ. Let ψ(∆1,Id,A) =

∨

∆′∈δL(∆1,Id)

∧

Γ(∆′,A). By propositional
reasoning, ∆1 ⊢ saysIdOAψ(∆1,Id,A), and ⊢ ψ(∆1,Id,A) ⇒ ϕ.

As we mentioned before, we define ψ(U,Id,A) =
∨

∆1∈S∆
ψ(∆1,Id,A). The

desired properties follow using propositional reasoning, i.e., if ∆1 ⊢ φ for all
∆1 ∈ SU , then U ⊢ φ.

29


