Permission to Speak: A Novel Formal Foundation for Access Control

Oleg Sokolsky
Nikhil Dinesh, Insup Lee, Aravind Joshi
Outline

• Motivation
 – Distributed, multi-authority access control
 – Compliance checking and blame assignment
• Formal representation
 – Delegation and obligation
 – Permission as provability
• Access control and conformance checking
 – System architecture
• Summary
Logic for regulation - requirements

• Expressive enough to capture regulatory documents
• Allow systematic translation of regulation into logic formulas
 – Preserving document structure
 – Sentence-by-sentence translation
• Allow efficient compliance checking
 – Decidability
 – Low complexity for common cases
Motivation and problem statement

• Main problem of access control:
 – Should a request for service be granted?
• In a distributed system with multiple authorities:
 – Which policies need to be consulted?
 – Which policies are violated and who is to blame?
Delegation and obligation

- “saying” is a common operator in access control logics
 - Captures both policy and credential introduction
 - Policies are typically obligations and credentials are typically permissions
 - Obligations and permissions are often implicit and must be deduced by the checker

- Explicit permissions and obligations
 - Deontic operators $P_A\phi, O_A\phi$
L_{PS}: Syntax

- Two-sorted logic enforces alternation of obligations and saying
 \[\phi = \alpha \mid \phi \land \phi \mid \neg \phi \mid says_y \psi \]
 \[\psi = \phi \mid \psi \land \psi \mid \neg \psi \mid O_y \phi \]

- Permission is the dual of obligation: \(P_y \phi = \neg O_y \neg \phi \)
- \(L_{PS} \) is a decidable logic with complete semantics
- Key formal device: axiom of representation
 \[(says_{l(A)}(P_B says_{l(B)} \phi) \land says_{l(B)} \phi) \Rightarrow says_{l(A)} \phi \]
Policies

• Utterance: ground formula of the form \(\text{says}_y \psi \)
• A policy is a collection of sequents
 \[
 (id) \varphi \rightarrow \psi
 \]
 – Preconditions are assertions over world state and proof state (outstanding utterances)
• Evaluation:
 – True preconditions must have true postconditions
 – Postconditions make more preconditions true
 • Create new utterances
Contributions to science

• Uniform treatment of access control and conformance
 – Access control is verification of permissions
 – Conformance is satisfaction of obligations
 – Both are formalized as provability of statements in the logic

• Clarified semantics of deontic modalities
 – Nested permissions and obligations
 – Positive and negative permissions
Nested deontic modalities

• Parents (A) should not let their children (B) play by the road
 – **Multiple possible interpretations:**
 • A should not give B permission to play (positive permission)
 • A should tell B not to play (negative permission)
 • A should physically prevent B from playing
 – Each interpretation make sense in some context

• Alternation with saying solves the problem
 – “require to allow” becomes “require to make a rule…”
 • \(O_A \left(\neg \text{\textit{says}}_{l(A)} P_B \text{\textit{play}_{road}}(B) \right) \)
 • \(O_A \left(\text{\textit{says}}_{l(A)} O_B \neg \text{\textit{play}_{road}}(B) \right) \)
System architecture

- Principals introduce laws
- Logic programming engine computes utterances, ground saying terms
- Request is granted if utterances contain a permission for it
On-going work and new results

• Translation of regulatory documents
 – NLP parser design
 – Hand-annotated sentences
• Improving checking efficiency
 – L_{PS} fragment with poly-time complexity
• Non-interference theorem
 – Which laws need to be considered?
 – Unrelated statements should not affect outcomes
Restricted logic: chain formulas

- Strict alternation between saying and obligation
- No negation

\[\varphi = \bot \mid \alpha \mid \text{says}_{l(y)} \psi \]
\[\psi = \bot \mid \alpha \mid P_y \varphi \mid O_y \varphi \]

- Conjunctions can be accommodated for saying and obligations
 - Conjunction under permissions as well as negation are open problems
- Chain formulas have poly-time decision procedure
Expressive power of chain formulas

- Chain formulas are generalizations of SECPAL expressions
- Prohibitions cannot always be expressed
 - (6) A bloodbank must not ship a donation, if it tests positive for HIV
 - Gives rise to utterances: \(\text{says}_{\{6\}} O_B \neg \text{ship}(d) \)
 - Does not generalize to complex statements, such as “A much not prevent B from doing x”
Non-interference

• Principal C delegates to D access to resources r_1 and r_2, controlled by A and B, resp.:
 - (1) $\text{says}_A P_D \text{access}(D, r_1) ~?$
 - (2) $\text{says}_B P_D \text{access}(D, r_2) ~?$

• Computed utterances:

 (u1) $\text{says}_A P_C \text{access}(C, r_1)$
 (u2) $\text{says}_B P_C \text{access}(D, r_2)$
 (u3) $\text{says}_C P_D \text{access}(D, r_1)$
 (u4) $\text{says}_C P_D \text{access}(D, r_2)$

• For (1), need to check only (u1) [not provable]
• For (2), need to check only (u1), (u3) [provable]
Non-interference theorem

• For a set of utterances and formula $\text{says}_B \varphi$, the set of reachable utterances U^*_B contains

 – If $\text{says}_B \psi \in U$ then $\text{says}_B \psi \in U^*_B$
 – If $\text{says}_C \psi \in U^*_B$ and $\text{says}_A \psi'$ is a subformula of ψ, then $\text{says}_A \psi' \in U^*_B$

• Theorem:

 $\text{says}_B \varphi$ is provable from U if and only if it is provable from U^*_B