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Engineering

e |P spam blacklists

— Reactively compiled from major email providers

— Single IPs can be listed, de-listed, re-listed
— De-listing policy?

e Blacklist/spam properties
— High re-listing rates

— Spam |Ps are spatially
clustered [5-12]

— Just 20 ASes account for
42% of all spam [7]

Spam sent




, Preventative Spatio-
. PrESTA Temporal Aggregation

JHel:IHVN e Traditional punishment mechanisms are reactive

e Consistent behaviors (temporal) and spatial clustering

ASSUM-
PTIONS:

e User feedback and spatial grouping functions

e An extended list of principals -- thought to be bad now
e The preventative identification of malicious users




PreSTA Model &
Reputation Fundamentals



 Reputation systems:
— EBay, EigenTrust [1], Subjective Logic [2]

— Use cases: P2P networks, access-control, anti-spam [3]
— Enum. feedbacks; distributed calculation (transitivity)

e Recommendations: Voting, product suggestions
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 PreSTA-style reputation:
: — No positive feedback -- time-decay to heal.
— Centralized and trusted feedback provider
— Quantify binary observations into reputations
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Single-entity
calculation
and rep.
values are
status quo
(temporal)
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e Why spatial reputation:
AMERICA ) | e Exploit homophily

e Qvercome the cold-
start problem (Sybil [4])

\
Entity Broad Broader
Behavior Behavior Behavior
ST ALEe 7 IR e Grouping functions define

E'j * @ group membership

e Multiple groups/dims.
—[ Comblnatlon

e Geo-based/abstract
[ Reputation Value for AUS ]
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PURPOSE: Detect vandalism edits to Wikipedia

¢ VVandal editors are probably repeat offenders
TEMPORAL ProbabiyTep
e Frequently vandalized articles may be future targets |
~
e Group editors by countr eographical space
SPATIAL p editors by country (geographical space)
e Group articles by category (topical space)
F
-
HAADTN@® @ ¢ Gleamed from administrative “undo” function
W
\
SUCCESS e Live tool -- STiki [20] -- 25,000 vandalisms undone
W,




Applying PreSTA
to spam mitigation

Spatio-temporal
props. of spam email
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Applying PreSTA
to spam mitigation

Implementing the model



e The IANA and RIR granularity are AS \
too broad to be of relevant use _ | 1000'S| IPs

e What AS(es) are broadcasting IP?
e An IP may have 0O, 1, or 2+ homes

e What is /24 (256 IP) membership?
e Estimation of subnet

e Static IP addresses
e Due to DHCP; multiple inhabitants
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e Subscribe to Spamhaus [13] provider

FEEDBACK e Process dif f between versions into DB

e Use RouteViews [14] data to map IP->AS

e 5 months: 31 mil. UPenn mail headers
e Proofpoint [15] for ground truth




Applying PreSTA
to spam mitigation

Results
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Temporal
(single IP)
example.

Offender
sent 150
spam emails
and likely
monitored

0 ¢
9/9/09 - 10/3/09 :: IP-204.xxx.9.154 History own BL
status [16].

| BL SPAM(y1) mese  REP(y2| s

IP-level Reputation

% of Spams Received




Temporal
and spatial
example (AS
granularity).

Spam
campaign
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4,500 IP
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AS-Level Repulalion

AS-12743 n
05 AS-23860 v
iS-E#EEz .
g Sa0004 +

0€/01/09 07/01/09 08/01/09 09/01/09



60

i i ASN Rep. =
Block Rep.
20 r IP Rep. . 1
. Al (SVM) @
o | i
EE_ml 40
k]
Eﬁ 3@‘ i
52 |
‘a§ 20 i M ' A -
5 l\ < a . .
10 F ‘i ? , ﬁw \vp
0

08/19/03 09/11/09 10/24/09 10/28/09 11/20/09 12/13/09
Start Date of Classification (4-day blocks)



False Positive %

Performance =

1 -(26%,05%) Cr—— )

{

,.~"'C|aséification
switched for
large AS.

40 50



e Intended Purpose

— NLP is superior, but computationally expensive
— Initial and lightweight filter

e Scalability

— Heavy caching

— All AS-level reputations are cached offline
— 43% cache hit rate for IPS, 57% for blocks

— Handles 500,000+ emails/hour (commodity)
— One month’s BL history =1 GB



 Avoid FEEDBACK in the first place

e Temporal evasion? Nothing but patience
e Spatial evasion

— Move around (reduces IP utility; increases cost)

— Prefix-hijacking. Fortunately, mostly seen from
bogon space [7]. Assign to a special “bad AS”

 Don’t let individuals control group size (sizing
attack) and maintain persistent IDs (Sybil [4])



 Formalization of a predictive spatio-temporal
reputation model (PreSTA)

— A dynamic access-control solution for: email,
Wikipedia, web-service mash-ups, BGP routing

 Implementation of PreSTA for use as a
lightweight initial filter for spam email
— Blocking up to 50% of spam evading blacklists
— Extremely consistent blockage rates
— Scalability of 500k+ emails/hour
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Additional slides
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e Half-life function is

straightforward
exponential decay
using 10-day half life.

Half-life was arrived at
empirically (sum of
CDF areas).

TAKEAWAY: Long
punishments lead to
few false-positives.
Don’t led bad guys off
the hook too easily!



e SNARE (GA-Tech, Hao et al. [7])

— ldentifies 13 spatio-temporal metrics - ML classifier

e Temporally weak aggregation (i.e., mean and variance)
e “Doesn’t need blacklists” = Neither does PreSTA

— Not scalable. PreSTA uses just 1 metric.

e Similar commercial services

— Symantec [17] and Ironport SenderBase [18]
— Closed source, but binary APIs indicate correlation
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