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Abstract

In this paper we preseireventive Spatio-TemporalAggregation (RESTA), a reputation model
that combines spatial and temporal features to producesahat are behavior predictive and useful in
partial-knowledge situations. To evaluate its effecta®s) we applied RESTA in the domain of spam
detection. Studying the temporal properties of IP blatklise found that 25% of IP addresses once
listed on a blacklist were re-listed within 10 days. Furtltering our evaluation period over 45% of
IPs de-listed were re-listed. By using the IP address assgh hierarchy to define spatial groupings
and leveraging these temporal statisticREBTA produces reputation values that correctly classify up
to 50% of spam email not identified by blacklists alone, wimlaintaining low false-positive rates.
When used in conjunction with blacklists, an average of 93%pam emails are identified, and we
find the system is consistent in maintaining this blockag¢geaen during periods of decreased blacklist
performance. RESTA spam filtering can be employed as an intermediate filterhgps in-network)
prior to context-based analysis. Further, our spam detestystem is scalable; computation can occur
in near real-time and over 500,000 emails can be scored an hou

1 Introduction

Roughly 90% of the total volume of email on the Internet issidared spam [5], and IP-based blacklisting
has become a standard tool in fighting such influxes. The vagirity of spam originates frorbotnets
centrally controlled organizations of infected hosts. rBpeers can vary which hosts within a botnet are
sending spam, migrating as hosts become blacklisted. Asudtrsome 20% of spam emails received at a
large spam trap in 2006 were not listed on any blacklist [25].

Despite the dynamic nature of spamming IP addresses, tllegxsiibit interesting spatial properties.
In particular, the majority of such IPs are clustered thiaug the address space [25]; Spammers tend
to be spatially found “near” other spammeesd, within the same subnet or Autonomous System (AS)).
This phenomenon was recently reinforced when in Decemb2008 the McColo ISP was shutdown by
authorities and spam rates dropped by nearly 15% [5, 21th€uymprevious studies have demonstrated that
the AS-level membership of spamming IPs can be used to e#gctlassify spam [15].

Temporal properties of spam originating IPs, however, hatebeen studied as a measure of sender
reputation. The history of a single IP’s entry and exit frorblacklist is significant. More crucially, the
listing and de-listing patterns gpatially relatedlP addressesver timeis behavior predictive. For example,
suppose a subnet has a dense blacklist history. If half afitheet is currently or was recently blacklisted, it
would be prudent to view the other half suspiciously. In qualgsis, we found that previous blacklistings are
predictive of future listings. More than 25% of IPs oncedistvere re-listed within 10 days, and 45% were
re-listed during our experiment period. Given these dtesisit becomes clear that the usage of historical
data, as opposed to the static view blacklists provide, neantist helpful when valuating unknown entities.
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Further, we expand previous work regarding spatial graygof spam originating IP addresses by using
knowledge of the IP assignment hierarchy. We found thatutating reputation at multiple levels provides
greater insight into unknown quantities. For example, tlustering of spamming IPs within an AS are
distributed non-uniformly, just as malignant ASes are fbmon-uniformly across the address space. We
find a combination of both fine and broad groupings best cteeiegative feedback.

We have developed a novel reputation modetgETA (Preventive Spatio-Temporal Aggregation),
that computes values that are behavior predictive of unknemtities in partial-knowledge situations where
entity-specific data may be incompleteRESTA aggregates a history of negative feedback from a databas
(i.e., a blacklist) intareputationsfor entities based on their individual behavior and thabhefitspatial group-
ings. RRESTA requires only that, (1) there exists a grouping functadefine finite sets of participants, and
(2) there is observable negative feedback to construct avimhhistory. For each spatial grouping, a sepa-
rate reputation value is produced and machine learning eapplied to tune the combination to generate a
higher-order reputation. This value can incorporate asynspatial and temporal dimensions as necessary
to best represent the entities being valuated.

Spam is a motivating model forRESTA, and we use it to analyze five months of mail logs provided
by our university mail system. We do this by simulating a prcttbn email server implementingRRSTA,
complete with caching and periodic re-training. Empiricagults show that RESTA can identify up to
50% of spam emails not caught by blacklists while maintgriow false-positive rates. When used in
combination, RESTA and classic blacklists are able ¢onsistentlyidentify 93% of spam without text-
based analysis. Moreover, these blockage ratestabée remaining steady-state even as the performance of
the underlying blacklist suffers. Further, this implenagitn isscalable scoring at latencies unnoticeable
to an end user, while valuating over 500,000 emails/hour. dé/@ot propose thatBFESTA can replace
context-based filtering, but instead may be used as an iathate filter (perhaps in-network), reducing the
number of emails that require complex text-processing haddxposure of private email content.

However, RESTA defines a general model for spatio-temporal reputatibithvis broader than spam
and IP blacklists alone. Any application that meets the teage criteria of RESTA can benefit. Prelimi-
nary work [32] has already showrRBSTA reputation values helpful in detecting vandalism on ipékiia.
More generally, RESTA may be applicable to the entire class of dynamic trustagament systems [10,
31], characterized by the need for decision-making in tlesg@mce of uncertainty. The Wikipedia use-case
and other potential applications are given greater atigriti Sec. 8.

2 Related Work

Previous work within the spam detection community has fedusn using network-level properties to dis-
tinguish legitimate and malicious mail. Unlike contenséd filters that employ Bayesian quantifiers [28],
these techniques leverage the reputation of the sendeer-tbié IP address of the connecting mail server.

IP? blacklists [3], such as Spamhaus [7], collate IP addresSkssawn spamming hosts based on feed-
back from varied institutions (large email providers). Otmne, IP addresses may be listed, de-listed, and
re-listed. It is this dynamic nature of blacklists thateES TA leverages.

Recent work suggests that blacklists are too latent in tising of new spammers [24], and that 10%
of spamming IPs have never been seen previously [27]. Evestuaties have shown that the spamming IPs
are distributed non-uniformly throughout the address sp&arther, a large percentage of spam originates
from small regions of the address space [25]. Generallynspars are found adjacent to other spammers,
and this principle was shown to be an effective metric in cteig newspammers by Haet al.[15] in their

1IP blacklists are sometimes referred tolNS blacklistsdue to the frequent use of the DNS protocol in performings
(DNS lookup is used by mail servers that choose not to stovea topy of the blacklist). These lists contain only IPs.



development of the SNARE system. In particular, leaal. showed the AS-membership of an IP address to
be relevant. We build upon this research, grouping IPs atipheillevels of the address assignment hierarchy.

In combination with spatial measurement, SNARE also @#gimpletemporal metrics to perform spam
filtering (for example, the time-of-day an email was senty] apply a lightweight form of aggregatione(,
mean and variance) over such features to detect abnorntainmtin contrast, RESTA’s temporal aspect
is more complex, aggregating time-decayed behavioralreatiens that encodsonthsof detailedhistory.
Indeed, [15] identifies many valid measures of spamming\ehaut is ultimately incapable of Internet-
wide scalability given their reliance on high-dimensioterning. RRESTA spam detection computes over
a single feature, IP address (and groups thereof), andestw# while realizing wide-scalability.

Outside of academia, several commercial services claimdbaf techniques similar to those proposed
herein. For example, Symantec [30] allows one to look-uprédputation”, a feature used in its security
software. For the public-facing service, the response @rigs is binary — although we found it correlated
well with the values RESTA calculates. In addition, the SenderBase [16] systers sigatial data to build
reputations. Whatever the internals of such products, Wevesthe FRESTA system makes a contribution
by introducing this technology into a non-proprietary isgtt

PRESTA can also be examined in the context of general-purpgsetagon systems/logics, such as
EigenTrust [20] or TNA-SL [18]. The primary distinguishirfgctor between these systems arReBTA
is the nature of feedback. Conventional algorithms usuafjgregate both positive and negative feed-
back, where feedbacks are perpetually retained and at=be¢taa singleiscretetime-stamp. In contrast,
PRESTA considers only negative feedbacks, and functions biistexpiring feedbackwhere a behavioral
observation is valid for some finite duration and then didedr A transformation can be applied SRESTA
can operate using more conventional feedback, a topic siedufurther in Sec. 3.2.

Finally, most reputation systems are designed from a biged perspective, concentrating on how un-
trusted parties can identify reliable partners in a netvsaiting. In our application, the blacklist provider
renders a singular and fully-trusted perspective. Moreavhkile distributed reputation-network approaches
to spam-filtering [9, 13] exist, these focus on sharing di@ssions rather than the discovery of new ones.

3 PRESTA Reputation Model

Summarily, the reputation model begins by mapping negdteelback to some identifiei.€., a user).
Poor reputations correspond to those who have recently dbedbad behavior (resulting in a negative
feedback). In the absence of bad behavior, reputationsowepover time. Critically, user-level reputations
may also be combined according to the spatial relationsifiise associated entities.

We consider a database where an entity is considmstagewhen it receives negative feedback (becomes
listed) andinactive when that negative feedback expires (becomes de-listadjhd¥, one is able to query
this database to see an entity’s listing history. When aitydmds recently been assigned a negative feedback,
the penalty associated with the listing is a heavy one. Hewdkie more time that passes, the less weight
a prior listing carries. When an entity is re-listed (reezatthe database after removal), the weight of the
previous negative activity is still applied, but there issmcompounding evidence against the entity being
valuated. These characteristics are well represented®$PA where each listing, re-listing, and de-listing
carries a weight based on its temporal relevance, realiiged decay function.

Spatial properties are considered based on grouping @ungctvhich take an entity as input and return
all entities that are a member of the input’s group. We expene than one grouping function will be given,
and an entity will populate multiple groups — one for eachuging function. This is advantageous; in the
absence of entity-specific data, spatial (group) data lgh characterizing an entity’s expected behavior.
A reputation can then be computed at each grouping and cewhbitcording to application-specific criteria.



3.1 Reputation Computation

The goal of the reputation computation is to produce a dfiadtvalue that captures both the spatial and
temporal properties of the entity being valuated. Spatitle size of the grouping must be considered, and
temporally, the history of negative feedback must be weig/ipiroportional to its spatial proximity.

For example, suppose we are valuating the group-level agpatof an entity. If only a small portion
of members have recent listing activity, then the reputasbould be relatively high. Similarly, if a large
portion of group members have a rich listing history, buthia distant past, the reputation should still be
high. However, if many members have recent listing actithg reputation should be relatively low.

To capture these properties, three functions are requited temporal and one spatial:

e hist(a, G, H) is atemporal function returning a list of pai(s;,,, t,..), representing all entries/exits
from the feedback historyi, according to the grouping of entity by grouping functionGG. The
valuest;,, andt,,; are time-stamps bounding the listing. Active listings ret{t;,,, L ).

e decay(tout, h) is atemporal function that exponentially decays input imsing a half-lifeh, and
it takes the form2—2t/" where At = t,,0, — tou are of the same unit ds It returns a value in the
range|0, 1], and for consistencyjecay(L, h) = 1.

e size(a, G,t) is a spatial function returning the magnitude, at titnef the grouping defined b¢z,
of which « is/was a member. Iz defines multiple groupings for an entity, only the magnitude of
one grouping is returned. The choice of which group is aptibo specific.

We now define the raw reputation function as follows:

Z decay(tout, h)

raw_Tep(a’G’ H) - size(a, G, tin)

1)
(tin tout)€
hist(o,G,H)
This computation captures precisely the spatio-tempa@bgrties required by RESTA. Temporally, the
entry/exit history of the database is captured at each suimmaa thehist() function, and events occurring
recently are more strongly weighted via ttiecay() function. Spatially, grouping functioti defines the
group membership, and each summation is normalized by thepgize.

When two or more grouping functions are defined over theiestimultiple computations ofuw_rep()
are performed. Each value encodes the reputation of ary evitien considered within a different spatial
context. How to best combine reputation is an applicaticig decision, and for our spam application,
machine learning techniques are used (see Sec. 5.7).

The values returned byww_rep() are strictly comparable for all spatial groupings definedzbgnd the
history i . High values correspond to less reputable entities andwécea. However, it is more typical for
reputation systems [18, 20] to normalize values onto therwat [0, 1] where lower values correspond to low
reputation and vice-versa. Ultimately, our machine leagriechnigue does not require normalized values.
Such values do, however, enable our model to be consistémtotfier reputation systems and provide an
absolute interpretation that permits manually-authom@tties .9, allow access where reputation0.8).

Normalization requires knowledge of an upper bound on theegareturned byaw_rep(). This cannot
be generally defined when the de-listing policy is non-raguHowever, if it is known that listings expire
from the negative feedback database after a fixed durdfiand that listings are non-overlapping, thenitis
possible to compute an upper bound. Such a bound can be fgurwhbidering an entity who is as bad as
possible; one that is re-listed immediately after everyistaig, and thus, is always active in the feedback
database. Considering a grouping of size 14w _rep() computation reduces to a geometric sequence:



Similarly, the same worst case reputation occurs for grafparger size, however, instead of a single
entity acting as a bad as possible, the entire group is samediusly re-listed immediately following each
de-listing. We can now define a normalized reputation as:

3)

MAX_REP

repla, G, H
rep(a,G,H) =1— (raw repla )>

Clearly, smalld produce largeMAX_REP values. Thus, a precise value #oneed not be known — only
a lower-bound. One may ask, “Why not choose an arbitrarilglsdh(i.e., 1 second) as the lower bound?”
Such a small lower bound will increase the normalizatiortdia@nd the distance between what can be
considered good and bad reputation will become arbitrariall. The best choice for easy differentiation
is the greatest lower-bound of the listing interval. We fddinat a good estimate fafis sufficient, at least
in the domain of spam detection, because the worst-castatipuis unlikely to be realized.

The reputation computation defined herein can be furtherislpged depending on the entities being
valuated or the nature of the negative feedback databasex&mple, one can eliminate all spatial relevance
by using grouping functions that define groups of size 1. @e can eliminate all temporal calculation
by defining the return oflecay() as a constant({). Both such usages are employed in spam detection;
the former due to dynamism in IP address assignment, andhtiee tue to properties of the blacklist in
question. Note that whetfecay(tou:, h) = C, MAX_REP = decay(L,h) + C.

3.2 Reputation Database

The reputation databasH, depends on the nature of feedback availabkeFTA is most adept at handling
expiringfeedback like that present in IP blacklists. By definitiomgapiring feedback occurs when an entity
is active (listed) in the database before being removedigted) after some finite duration. In this cage,

is a record of the entries/exits of listings such that thivactatabase can be reproduced at any point in time.

Feedback can also lzliscrete where negative feedbacks are associated with a singlestiamep but
stored for perpetuity. This is the model most frequentlynsieegeneral-purpose reputation management
systems [18, 20]. In such casésst() always returns pairs of the forit,,, L), and thus the associated
listings do not decay. A discrete database can be transtbimte a compatiblefd by setting an artificial
timeout to allow for decayd.g.,(tin, tin + ) Wherez is the timeout).

Overlapping listingsi(e., an entity having more than one active listing at a time) areanooncern
for our spam implementation. It is the case for IP blackltbist an entity is actively listed at most once,
and such guarantees are helpful in normalizing reputat@dmes. Nonetheless, overlapping listings can be
handled by RESTA, provided some pre-processing is performed over thabfseks.

4 Spam Detection Setup

In this section, we describe the application of thrreEBTA model for the purpose of spam detection. Two
properties of spam and IP blacklists are well leveraged RgSTA. First, spammers are generally found
“near” other spammers. Their identifiers, IP addresseseasdy grouped spatially due to the hierarchical
nature of IP address assignment. Second, blacklists ach agurce of easily accessible temporal data.

It should be emphasized that IP blacklists are not a preségub using RESTA for spam detection.
Any manner of negative feedback associating spamming aaddResses is sufficient. IP blacklists, how-
ever, are a well-regarded and generally trusted sourcegaitive feedback. They are centrally maintained

5



and reputation computed upon them can be seen as a good glatwdifier. However, IP blacklists do have
weaknesses, and readers should take care not to assoestdldws to the RESTA model.

4.1 Data Sources

Blacklist: To collect blacklist data, we subscribe to a popular blatigrovider, Spamhaus [7]. The
arrival and exit of IP addresses listed on three Spamhauklisis (updated at thirty-minute intervals) were
recorded for the duration of the experimént

e PoLicy BLock LisT (PBL): Listing of dynamic IP addresses.g, those provided by large ISPs
such as Comcast or Verizon), from which mail should nevaginate, on principle.

e SPAMHAUS BLOCK LIST (SBL): Manually-maintained listing of IPs of known spamsand spam
organizations. Typically these are IPs mapping to dedicspam servers.

e EXPLOITS BLOCK LIST (XBL): Automated listing of IPs caught spamming; usuallyeagroxies or
machines that have been compromised by a bot-net.

As the latter two blacklists contain IP addresses known te fmarticipated in spamming, only these are
used to build reputation. The PBL is a preventative meaghoaigh we do use its entries when examining
blacklist performance). The mechanism by which a blacldistry occurs, be it accurate or otherwise,
is beyond the scope of this work.RESTA considers all negative feedback equally, and as suamptis
dependent on the means by which an IP becomes blacklistete Spamhaus blacklists (PBL and SBL) list
IP-prefixes (blocks) as opposed to individual IPs, but thisa different than listing each IP independently.

Removal from the blacklist takes two forms: manual dedigtand timed-expiration. Given its rigorous
human maintenance, the SBL follows the former format. Thd X@ the other hand, defaults to a more
automated time-to-live style. Empirical evidence showeslihlk of such listings expire 5-days after their
appearance (see Fig. 1). However, in the case a blacklistig gan demonstrate its innocence or show the
spam-generating exploit has been patched, manual rensadabi an option for the XBL. Manual de-listings
can complicate the calculation BAX_REP, but as we will show, worst case spamming behaviors areyrarel
realized, permitting strong normalization.

AS Mappings: For the purpose of mapping an IP address to the Autonomouer8{s thathomesor
originatesit, we use the reports generated by CAIDA [2]. These are cladgrom Route Views [8] data
and are essentially a snapshot of the BGP routing table.

E-mail Set: For testing purposes, we procured approximately 31 mikiorail headers collected at the
University of Pennsylvania engineering email servers betwd/1/2009 and 12/31/2009. The mail servers
host over 6,100 accounts, of which approximately 5,500esboman-users, while the remaining are for
various administrative and school uses.(courses, aliases, listsic). Pertinent information included only
the time-stamp of receipt and the connecting email serier&ddress [14].

A considerable number of emails (2.8 million) in our datdsere both sent and received within the
university network. Such emails were not considered in malyesis. Many intra-network messages are
the result of list-serves and aliasing, and by removing thamty externally arriving emails are considered.
Our working set is further reduced to 6.1 million emails wiaealysis is conducted “above the blacklist” —
focusing only on those mails passing IP blacklists.

To categorize email in our data-set as either spam or hansgaoh), we were provided a Proofpoint [6]
score (in addition to the aforementioned headers). Prautffima commercial spam detection service em-
ployed by the University whose detection methods are knanndlude proprietary filtering and Bayesian

2pAlthough blacklist data is pulled every 30 minutes, a tirte® is provided to identify precisely when a new IP is listed
However, no time-stamp is available for de-listing, andtth@ng of this event is inferred.
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Figure 1: XBL Listing Duration & Re-listing Rates

content analysis [28] similar to that employed by SpamAsisg4], an open source alternative. Proofpoint
claims 99.8% accuracy with a low false-positive rate. Gimerother consistent scoring metric and a lack of
access to the original email bodies, we use the Proofpoanesas the control classifier for our analysis.

A fair question is then, “If text-based analysis is so actrevhat benefit is RESTA?” The gains are
three-fold: (1) Text-based analysis exposes private eim#tiird party sources (often such services are web-
based, as opposed to local software). (2) It is far easiesgammers to change email bodies than their
mail-server’s IP address. And, (SRESTA can be implemented as a lightweight pre-processor épsrh
in-network) to such text-based filtering, reducing the bead of computationally expensive analysis.

4.2 Temporal Properties

PRESTA leverages the temporal properties of IP blacklists lyreggating the de-listing and re-listing rates
of blacklist entries. Fig. 1 displays our analysis of thase statistics. Of IP-addresses de-listed during our
experiment, 26% were re-listed within 10 days. Overall, 410uch IPs were re-listed within 10 weeks,
and it is precisely such statistics that motivateeBTA’s use of temporal data

Given that IP addresses are frequently re-listed, we exanhtime rate at which de-listing occurs. Empir-
ical analysis shows that 80% of XBL entries were de-listedatvery close to, 5 days after their entry (see
Fig. 1). Even so, this 5-day interval is not fixed. Despite a-egact expiration(AX_REP is well computed
usingd = 5 (days) as a lower-bound. Raw reputation values rarely elezbthe calculatetYAX_REP (less
than 0.01% of the time). Moreover, the worst-case reputai@chieved when the time to re-listing is effec-
tively zero. The shortest observed re-listing interval wpproximately 6 minutes, and re-listings intervals
on this order of duration are extremely rare.

Manually maintained, the SBL has no consistent listing flepngnd computingVAX_REP cannot be
performed using the same analysis. Instead, the manuatenaince of the blacklist can be used as a factor
in reputation. For an IP to be de-listed, it must be verified a®n-spamming address. Thus, there is no
reason to decay entries as they exit thélighat is,v4o.:, decay(tou:) = 0, butdecay(L)is still 1. In such
circumstances, theIAX_REP value for such IPs is computed asik( the IP address is currently listed).

3A reader’s intuition may be, “If SBL entries are not decayed ¢he decay output simply echoes the SBL status, why is the
SBL needed for reputation?” The answer is spatial: SBL and ¥&ed IPs may reside inside the same spatial grouping SiBid
listings are representative of malicious behavior whiobusth lower the reputation for that grouping.
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By adjusting thedecay() function in this way, reputations’ of SBL IPs are based soleh spatial
properties. Our reputation model allows for such flexipiithen the feedback database permits. In a
similar way, one can focus solely on temporal properties. nhter the case, all such reputations (of
varying groupings and decays) can be used in combinati@engse. 5.7).

4.3 Spatial Groupings

The hierarchical nature of IP address assignment providagal spatial groupings for use byRESTA.
Starting at the lowest level, a local router or DHCP serviesigns |IP addresses to individual machines. The
selection pool is likely, but not necessarily, well bountted subneti(e.,a /24 or /16). In turn, these routers
operate within an ISP/AS, and ISP/AS get their allocatisomfRegional Internet Registries (RIRS), whose
space is delegated from the Internet Assigned Number Aityhd (IANA). A clear hierarchy exists, and

at each level, a unique reputation can be applied.

We focus our groupings at three levels when considering adtiPess: (1) the IP addresses itself, (2)
the 768-IP block membership (approximating the subnet), (& the AS that homes/originates the IP. It
may be the case that an IP address is multi-homed — advehlysedo or more ASes. In such situations,
where multiple groupings occur for a single grouping fumicfia data-specific choice should be made. We
consider only the highest reputation among the adverti&fdgs, a choice we discuss further in Sec. 5.5.

In addition to the address space hierarchy, other spat&lorships could be leveraged to form group-
ings. The social network of email receivers has been prapasean effective means of spam filtering, as
well as network distance [11, 13]. In [15], geographic disewas used as a classifier. Although not inves-
tigated herein, groups based on social, routing, or gebirajistance could be reasonable, and the addition
of these features is an area of future research.

Despite its easily partitioned nature, it has yet to be shtivan the IP assignment hierarchy provides
relevant groupings. Previous work and anecdotal evidenggest that AS-number is one of the strongest
identifiers of spammers. Indeed, entire AS/ISPs, such asaléci21] and 3FN [22], have been shut down
as a result of their malicious nature. Moreover, in [15], kel identifiers were used as a reliable indicator
of spamming hosts, after observation indicated only 20 Afass 42% of spamming IPs.

At the subnet level, we found that groupings of 768 IP-adkkeg.e., three adjacent24s) well contain
malicious activity (see Sec. 5.5 for details). As seen in Ejgve visualized/'24 blocks of address space for
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Figure 3: PRESTA Spam Detection Architecture

an ISP in Uzbekistan by their quantity of XBL listings. Cligathere is strong variance across the address
space — some regions are highly listed while others havestiods whatsoever. The AS-level reputation of
this ISP is comparatively poor due to the quantity of lisingut within the address space, certain block-
level reputations are ideal. This suggests that using A8-feputation alone may be inappropriate because
it is too broad a metric. Alternatively, it could be that taés no mail originating from these blocks, but as
described in Sec. 5.7, we have automated ways of dealingswith contradictory information.

Finally, using a grouping function that singularly groupgites effectively removes spatial relevance
from reputation computation. Intuitively, the reputatioina single IP address should be considered because
many mail servers use static addresses. However, the ofterndc nature of address assignment implies
that unique IP addresses are not singular groupings, twtrratould represent many different machines
over time. A recent study reported that the percentage admyeally assigned IP addreséem the Internet
is substantial and that 96% of mail servers using dynamic#psl spam almost exclusively [33].

5 Spam Detection Implementation

In this section we describe the implementation &FEBTA for spam detection. The implementation is
designed with three primary goals. It should produce a ifiesghat is (1) lightweight, (2) capable of
detecting a large quantity of spam, and (3) do so with a lowefglositive rate. We justify our design
decisions with respect to these goals. Further, we distesgractical concerns of such an implementation.

At a high-level, our work-flow begins when an email is recdiand the connecting IP address and
time-stamp of receipt is recorded. Assuming the IP is natelgtblacklisted, our spatio-temporal approach
is brought to bear. The IP is mapped to its respective sggtbalpings: itself, its subnet, and its originating
AS(es). Reputations are calculated at each granularity,tle@se component reputations are supplied as
input to a machine-learning classifier trained over previemail. The output is a binary ham/spam label
along with each of the three component reputations — all e€lvimay be of use to a client application. We
now describe this procedure in detail, and present a visefiatence of the RESTA work-flow in Fig. 3.

“Recall that Spamhaus’ PBL blacklist is essentially a lstifi dynamic IP addresses. We note it is constructed mairihgus
ISP-provided data, and as such, is far from a complete djstin



5.1 Traditional Blacklists

In Sec. 4.1 the various Spamhaus blacklists were introdud@éey not only provide the basis on which
reputations are built, but in an implementation &fH#S TA, it is natural to apply them as intended — to label
emails originating froncurrently listedIPs as spam. When applied to the email data-set, the Spamhaus
blacklists (PBL included) captured 91.0% of spam with a @ 74lse-positive rate. Interestingly, this is
somewhat higher than previous published stati3{jt8]. Had we chosen not to exclude the intra-network
emails from analysis, the blacklists would have capturedrdleas 90.9% of spam emails with a much-
reduced 0.46% false-positive rate. The exclusion of suchilenwhile inflating false-positive rates, allows
us to concentrate only on the more interesting set of extgrreceived emails and not bias our results.
The usage of blacklists (independent of spatio-temporapeaties), enables fast detection of a large
portion of spam emails with minimal time and space requimse In the implementation of HESTA,
we cache the current blacklists to improve look-up speegliring roughly 100MB of space; a reasonable
requirement for most email servers. Further, a local stbtkeoblacklist is needed forEESTA calculation
because forms the basis of the historical database.

5.2 Historical Database

Before reputation can be calculated, a historical feedlmtkbase must be in place. As described, we
retrieve the Spamhaus blacklists at 30-minute intervetedr f f is calculated between consecutive copies
and time-stamped entries/exits are written to a databaken\& new listing appears, ywermanentlyecord

the spatial groups (IP, subnet, and AS(es)) that IP is a meofb&or example, if IR was blacklisted as a
member of A, that entry will always be a part afs blacklist history.

We found that roughly 1GB of space is sufficient to store onatinie blacklist history (the XBL has
1.0-1.5 million IPs turn over on a daily basis). Fortunataly extensive history is not required given the
exponentiaklecay() functiorf. For example, given a 10-day half-life, a 3-month old XBLrgrdontributes
0.6% the weight of an active listing. Lengthy histories offeninishing returns. To save space, one should
discard records incapable of contributing statisticahi$igance. Further, such removal saves time because
the smaller the sétist() returns the fewer values which must be processetuhy rep().

5.3 Grouping Functions

Given an entity (IP address) for which to calculate repatgtive must determine to which groups this entity
belongs through the use of our three grouping functions:

e |IP FUNCTION: An IP is a group in and of itself, so such a grouping functiomrons its input. As
noted earlier, singular groups are interesting becausetiove, an IP may have multiple inhabitants.

e SUBNET FUNCTION: IP subnet boundaries are not publicly available. Instaadstimate considers
blocks of IP addresses (we use the terms “subnet-level” blotK-level” interchangeably). IP space
is partitioned into/24s (256 IP segments), and an IP’s block grouping consistseokégment in
which it resides as well as the segment on either side; 76&asiels per block. Thus, block groupings
overlap in the address space, and a single IP input retum®lock of IPs (threg/24s). Although
these subnet estimations may overflow known AS boundahesgtnaive blocks prove effective.

e AS FUNCTION: Mapping an IP to its parent AS(es) requires CAIDA [2] and EMiews [8] data.
We note that some AS boundaries overlap in address spaceoaral [gortions of that spaced.,
unallocated portions) have no resident AS whatsoever. AzatPbe homed by any number of ASes,

°0ur analysis of blacklist performance is from a single-pecsive, and therefore may not speak to global blacklisigiffeness.
This minimal history requirement was of benefit to our owrdgtiReputations mustarm-upbefore their use is appropriate.
Indeed, our collection of blacklist data began in 5/2008é¢tmonths before our first classifications.
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including none at all, the technical considerations of \wtdce addressed in Sec. 5.5. The function’s
output is all the IPs homed by an AS(es) in which the input Erisember. Each returned IP is tagged
with the parent AS, so a well-defined subset of the output eachlosen.

5.4 Decay Function

The decay function controls the extent to which temporakionity factors into reputation. This is config-
ured via the half-life parameteh, If h is too small, reputations will decay rapidly and providéddibenefit
over using blacklists alone. Too large &aran cause an increase in false positives due to stale infiorma

A good half-life should maximize the difference betweenrdgutation of spam and ham email, and to
arrive at a reasonable value floywe analyzed a set of emails/reputations pre-dating ouuatian period.
By plotting the reputation-CDF for both spam and ham emad,seught a value fok that maximized the
area between the curves. In Fig. 4 we present the calcuatiom these experiments. We fouhd= 10
(days) to optimal and therefore use this value in our sparticapion’. With the half-life established, and
having previously choseth= 5 (days), we calculat®AX REP= 4.14.

As described previously, we actually employ two separ&teiy() functions depending on where a
listing appeared, either on the SBL or the XBL. Manually ntaimed, we do not decay de-listing for the
SBL, but the XBL is decayed using the aforementioned 10-daflifie. In order to use both listings
in combination, we apply a flag to each time pair returnedhbyt() dependent on which blacklist they
originated from, allowing us to apply the appropriate deftegction.

5.5 Reputation Calculation

Given the decay function (Sec. 5.4), output (sets of IP adé® of the three grouping functions (Sec. 5.3),
and the feedback database (Sec. 5.2), reputation may noalddated. Valuation is performed at each
granularity; three reputation values are returned. Catmn closely follows as described in Sec. 3.
Calculation of IP-level and subnet-level reputation isigtintforward per the reputation model with
size() = 1 andsize() = 768, respectively. The particulars of AS-level calculatioe amore interesting.
An IP may be a member of any quantity of ASes, including noralatf an IP is multi-homed, we make
the conservative choice by selecting the most reputable #l&vas the AS-level reputation. Those IPs
mapping to no AS form their own group, and we designate thatation for this group as 0 because, in
general, unallocated space is only used for maliciousictin this spatial groupingsize() is not constant
over time. Instead, magnitudes are pre-computed for all #i§guCAIDA data and updated as BGP routes
change. Onlyniqueoriginating IPs are considered (blocks often overlap tgsuptraffic engineering).

"Although we found it unnecessary,could be optimized on an interval basis, much like re-traira classifier. However, our
experiments showed minor variations of the parameter todmisequential.
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5.6 Calculation Optimizations

To be lightweight, our system must calculate reputatiorcieffitly. It should not significantly slow email
delivery (latency), and it should handle heavy email lodds(width). We now describe caching strategies
and other techniques in support of these goals:

e AS VALUE CACHING: Reputations forll ASes are periodically recalculated off-line. These calcu-
lations are (relatively) slow given thefrist() calls return large sets.

e BLOCK/IP VALUE CACHING: Similarly, block and IP reputations can be cached aftefiteecache
miss. Cache hit rates are expected to be high because (1) @hweith multiple recipients i(e.,

a carbon copy) is received multiple times but with the samecwIP address, and (2) source IP
addresses are non-uniformly distributed. For the 6.1 omillinon-Penn, non-blacklisted) emails in
our working data-set, there are 364k unique IP senders adlidurique sender ‘blocks.’

e CACHE CONSISTENCY. Caches at all levels need to be cleared when the blackiistspmated (every
30 minutes), to avoid inconsistencies involving the atrofanew listings. As far as time-decay is
concerned, a discrepancy of up to 30 minutes is inconsei@l&rien considering a 10-day half-life.

e WHITELISTING: There is no reason to calculate reputation in trusted IResdds, such as one’s
own server. Of course, whitelists could also be utilized feedback loop to alleviate false-positives
stemming from those entities whose emails are consistemtglassified.

Using these optimizations, ourRBRSTA implementation is capable of scoring 500k emails an ,haith
average emalil latencies well under a second. Latency andwidith are minimal concerns. Instead, it
is the off-line processing supporting this scoring whichthe biggest resource consumer. Even so, our
implementation is comfortably handled by a commodity maetand could easily run adjacent to an email
server. Pertinent implementation statistics, such asecpelformance, are available in Sec. 6.4.

5.7 Reputation Classification

Extraction of a binary classification.€., spam or ham) is based ontlaresholdstrategy. Emails valuated
above the threshold are considered ham, and those belowoasaered spam. Finding an appropriate
threshold can be difficult, especially as dimensionalityvgg, as is the case when classifying multiple repu-
tation values. Further, a fixed threshold is insufficient tluemporal fluctuations; as large groups (botnets)
of spamming IPs arise and fall over time, and the distinctietween good and bad may shift.

Support vector machingSVM) [17] are employed to determine thresholds. SVM is axfaf su-
pervised learning that provides a simple and effective mearclassify multiple reputation values. The
algorithm maps reputation triples (a feature for each apdtmension) from an email training set into 3-
dimensional space. It then determines the surface (thisBstiat best divides spam and ham data-points
based on the training labels. This same threshold can thepf@ied during classification. The SVM routine
can be tuned via eostmetric which is correlated to the eventual false-positate 10f the classifier.

The classifier is adjusted (re-trained) every 4 days to ladghamism. A subset of emails received in
the previous 4 days are trained upon, and the resultingifodess used for the next 4 day interval. The
affect of different training periods has not been exterigigtudied. Clearly, large periods are not desired;
the reputation of distant emails may not speak to the claasibin of more current ones. Too short a period
is equally poor because it requires extensive resourcesttain so frequently. We believe 4-day re-training
is a good compromise. However, the re-training period newdba fixed, and future work will explore
re-training rates that adjust based on various environahésttors at the email server.

At each re-training, we used 10,000 emails (5% of the nomPeon-blacklisted email received every
4 days), and labeled emails as spam/ham based on the Praa$pore. In a more general use case, there
would be some form of client feedback correlated across raacgunts that can classify spam post-delivery
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Figure 5: XBL Size Relative to Global Reputation

and train various spam detectors. Since we do not have attcessh user behavior, correlation statistics,
or any external spam filters, the provided Proofpoint valresassumed.

Post-training, the false-positive (FP) rate of the classsitan be estimated by measuring the error over
the training set (assuming one does not over-fit the traidatg). The estimated FP-rate is a good indicator
of the true FP-rate, and the SVM cost parameter can be adjtstane the expected FP-rate. All classifier
statistics and graphs hereafter were produced with a 0.E¥atee for false-positives (over the classification
set), as this simplifies presentation. We believe 0.5% isssamable setting given that blacklists are widely
accepted and achieved a 0.74% FP-rate over the same datedditionally, these rates are somewhat
inflated given our decision to exclude intra-network emailsich are unlikely to contribute false-positives
(the blacklist FP-rate reduced to 0.46% with their incla¥idn Sec. 6.5, the trade-off between the FP-rate
and spam blockage is examined in greater depth.

6 Empirical Results

We begin our RESTA spam detection analysis by examining the componentatpnos individually. From
there, two case studies will exemplify holRBESTA can produce metrics outperforming traditional blastkli

in both spatial and temporal dimensions. Finally, we exantie effectiveness of the full-fledged spam filter:
For each malil in our data-set, reputation metrics are catledland email is valuated in a way that would
mimic our RRESTA implementation on a production email server, compldta re-training and caching.

6.1 Blacklist Relationship

In examining how our reputations quantify behavior, we Imegith a simple intuition: one would expect
to see a clear push-pull relationship between an entitstaéon and the number of corresponding entries
on the blacklist. To confirm, we graphed the size of the XBLcklat® over time and compared this to
the average reputation @il ASes. Results are presented in Fig. 5. We observe an invele@nship,
confirming our expectations. When the number of listings dipputation increases — and vice versa.
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6.2 Component Reputation Analysis

In order for component reputations (IP, block, and AS) to $&ful in spam detection they must behavior
predictive That is, the reputations associated to ham emails shoueeexthose of spam emails. This
relationship is visualized in the cumulative-distributitunctions (CDFs) of Fig. 6. We observe that all
component reputations behave as expected. Fig. 6 also shewsnefit of using multiple spatial groupings.
While nearly 90% of spam emails come from IPs that had idgmltetion (.e.,a reputation of 1) at the time
of receipt, this is true for just 46% of blocks, and only 3% &.A

The CDFs of Fig. 6 imply that each component reputation ignidh of itself, a metric capable of classi-
fying some quantity of spam. However, it is desirable to shioat each granularity capturesiquespam,
so that the combination of multiple reputations can prodai¢egher-order classifier of greater accuracy.
In Fig. 7, the effectiveness of each component reputatiggrasented. The percentage of spam caught is
“above the blacklist,” or more precisely, the percentagspaim well-classified by the reputation value that
was not identified by the blacklist alone. Given the inclasad traditional blacklist filtering, the primary
concern is those emails that are not actively listed.

On the average, B®ESTA is able to capture 25.7% of spam emails not caught bytioadi blacklists.

8The XBL is the driving force behind reputation. The SBL iscadscontributor, but is orders of magnitude smaller.
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Crucially, the combined performance (the top line of Fig.eRceeds that of any individual component, so
each spatial grouping catches spam the others do not.

We are also interested in determining which grouping prewithe best classification. AS-level reputa-
tion is the most stable of the components, individually tépaf classifying an additional 10-15% of spam
above the blacklist. However, we observe that during peradncreased RESTA performance, it is often
the block and IP levels that make significant contributiofisis is intuitive; AS-level thresholding must be
conservative. Given their large size, ASes have relatig&yple reputations. Thus, the classification of a
single reputation value may effectively make the spam/hatarchination for many thousand emails — and
could result in an unacceptable increase in the FP-ratenMei&e, the cost associated with a mis-prediction
is far less for block and IP groupings, permitting more aggiree/speculative thresholds.

These results suggest that considering more spatial diomensan increase performance, that is, when
there are non-overlapping classifications. However, thegadiminishing returns. Each additional compo-
nent reputation requires increased resources for vatuatao classification. An application should seek a
minimal set of dimensions to best represent and classifyaita.

6.3 Case Studies

Two case studies are exemplary of the types of spam behdviert@ evade blacklists, yet captured via
PRESTA. First, Fig. 8 shows théemporalsending patterns of a single spamming IP address. This IP
was blacklisted twice during the course of the study (asceieéid by shaded regions), and the time be-
tween listings was small (roughly 2 days). The controllethi$ IP address likely used blacklist counter-
intelligence [26] to increase the likelihood that spam vddu delivered. Notice that no spam was observed
when the IP was actively blacklisted, but 150 spam emailgeweteived at other times.

Traditional blacklist are reactive, binary measures thaihdt take history into account. During the
intermittent period between listings, as far as the blatidiconcerned, the spamming IP is an innocent one.
However, as shown in Fig. 8, the IP-level reputation metampounds prior evidence. Thus, iIRESTA
had been in use, the intermittent influx of email would haverbieentified as spam.

Secondly, Fig. 9 visualizes a case study at the AS-levetung bothspatialandtemporaldimensions.

In the early stages of our data collection we noticed anonsaxtivity occurring at a particular AS (AS#-
12743f. Even when compared to the other four worst performing ASesg the time block, ASN-12743's

®PTK-Centertel, a major Polish mobile service provider
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drop in reputation is astounding. Nearly its entire addsgege, some 4,500 addresses, were blacklisted in
the course of several days — likely indicative of an aggveskbtnet-based spam campaign — after which,
the reputation increases exponentially (per the halj;légentually returning to innocent levels.

With traditional blacklists, an IP must actually send spaafole it can be blacklisted. Inthe ASN-12743
case, this means all 4,500 IPs had some window in which tdyfsead spam. However, as the IPs were
listed in mass, theeputationof the AS drops at an alarming rate, losing more than 50% ofatgse. Had
PRESTA been implemented, the reputation of the AS (and the Bledthin) would have been low enough
to classify mails sourced from the remainder of the spac@as smitigating the brunt of the attack.

6.4 Implementation Performance

The previous case studies are but two examples of the wayawenpreputations capture spamming behav-
ior that evades traditional blacklists. We now present éseilts of the simulatedFESTA implementation.

Our experimental setup was as follows: To best simulate tmenal processing at a mail server, we
assumed each email arrived in the order of the time-stampe bldrcklist history and cached reputation
scores were regulated so that only the knowledge availaliedime of arrival is used to valuate the email.
PRESTA requires a warm-up period to gather enough temporal ladye to process correctly; hence,
historical blacklist storage began three months prior &dfittst email being scored.

We were interested in measuring the effectiveness of thieecand the latency of the system. Caching
was highly effective: 56.8% of block-level calculation® @avoided, and 43.1% are avoided at the IP-level
(recall thatall AS-level calculations are performed off-line and then eat)h As such, the reputation of an
incoming email can be calculated in nearly real time, withdlkierage email being processed in fractions of
a second. Under typical conditions, over 500,000 emailseascored in an hour.

Re-training our classifiers and rebuilding the AS-cachedlz@anost time consumptive activities. Fortu-
nately, finding new classifiers takes only minutes of worka&d0,000 email training set, and only needs to
be performed every 4 days. Re-training can also be donéneffaind not affect current scoring. Rebuilding
the AS reputation cache must be done every 30 minutes oncélaeltist data is available, but it need not
delay current scoring as the previous AS-level reputatasesstill relevant (at most 30 minutes old).
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6.5 Spam Mitigation Performance

The spam detection capabilities oORESTA are summarized in Fig. 10. On average, 93% of spam emails
are identified when using our system in conjunction with itradal blacklists. To some this may seem
to be only a nominal increase over using blacklists alonewéver, the inset of Fig. 10 is more intuitive;
plotting the RRESTA blockage rate only over those mails passing the Spantsiacdklists (identical to the

top line seen in Fig. 7). We observe that between 20% and 5@}eniis evading blacklists can be caught by
PRESTA (with a 25.7% average). HacRBSTA been implemented on our university mail server, it would
have caught 650,000 spam emails that evaded the Spamhakissidaover the course of our study.

Most interestingly, RESTA allows for a consistent and steady state of spam deteckor example,
consider the significant drops in blacklist performancengaeoughout our study (for example, in late Au-
gust 2009 and again in mid-November 2009REBTA is nearly unaffected during these periods and could
be used as a stop-gap to variance in blacklist accuracy.rlZl@ehatever the means of blacklist evasion
was during these periods, it was insufficient to evage®TA. Further, we believe future data will show
such dips and rises in blacklist performance to be non-atoarea Periods of high de-listing are likely to
be followed by periods of high re-listing as spammers try sximize the utility of available IPs. In the
interim, blacklists are likely to perform relatively pogrand FRESTA could aid in maintaining a consistent
level of spam blockage. While the blockage-rates of thellits fluctuate 18% over the course of our
study, RRESTA is far more consistent, exhibiting just 5% of variance.

Ultimately, the performance attainable by our classifielependent on the number of false-positives
(FPs) a user is willing to tolerate. To this point, the FRerhas been fixed at 0.5% in order to simplify
discussion. However, as exemplified in Fig. 11, the FP-mteine-able and strongly correlates with the
blockage rate. The plot is generated over a characterigicvial of email from mid-October 2009, and is
akin to the precision/recall graphs common in machineriegr We remind readers that our decision to
exclude intra-network emails from our dataset (see Sefshificantly inflates the presented FP-rates.

17



2 : :
[ Performance m | /-/

(26%, 0.5%)

N

-+ Classification
switched for
large AS.

e B

10 20 30 40 50
% Blockage Above Blacklist (Recall)

False Positive %
[
el

Figure 11: Characteristic FP/Blockage Trade-Off

7 Evasion and Gamesmanship

In order for a RESTA-based spam filtering approach to be effective, it musbobest to evasion. Given
that we use blacklists as a feedback source, perhaps theeffextive way to avoid RESTA detection is

to avoid getting blacklisted in the first place (this is trneany RRESTA application where one can avoid
negative feedback). However, such a technique is not d#d:sa single evasive entity may still have poor
reputation at broader granularity. Given that negativelieek does exist, and an IP has been blacklisted, the
best recourse is patience. Over time, the weight of thegisiiill decrease according to the decay function.
As such, there is no way to evadeESTA in the temporal dimension.

However, spammers are migrant, and the spatial dimensfordafgreater opportunities. While IP and
block magnitudes are fixed, an AS controls the number of IBo#idcasts. An actively evasive AS would
ensure its entire allocation is broadcasted. More malgioa spammer may briefly hijack IP space they
werenot allocated in order to send spam from stolen IPs. Spactrum agilitywas shown by [25] to be
an emergent spamming technique. Fortunately, if the hgddlP space was not being broadcastiesl, (
unallocated), emails from these IPs would map to the spgoimlping “no AS”, whose reputation is zero
(per Sec. 5.5). However, if the hijacked space was beingdoasied by a reputable AS, evasion may be
possible. Fortunately, [25] observes the use of unallacsipace is most prevalent.

As a general purpose reputation engingizang attackcan be of real concern. The entities being valuated
should not be able to affect the size of their spatial grogmirHowever, this attack is only effective when
the group size is non-singular, and an easy avoidance taahis to always include a grouping function
that defines singular groups. Further, an implementationlgtry to assign persistent identifiers to entities.
When identifiers are non-persistenRESTA could fall victim to a Sybil attack [12] since an entityudd
evade negative feedback by simply changing identifiers.

8 Additional PRESTA Applications

PRESTA'’s applicability is broader than email spam alone, assihegial and temporal properties described
are inherent in a number of domains. IndeegdeBTA reputation values have already proven successful
in the detection of vandalism on Wikipedia [32]. Any edit whiis blatantly unproductive, offensive, or
over-zealous in its removal of content is said to exhiaihdalism Prior to [32], attempts to detect these
edits resided only in the language-processing domain [2B,/2Kin to the Bayesian filters of email spam,
these efforts also suffer from many of the same drawbackslgeability and minimal throughput).

Recall our two RESTA application criteria. First, A view-able history of dgmic negative feedback.
On Wikipedia, a special administration form of reversiotiechrollback permits the discovery of malicious
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edits, fulfilling this requirement. Second, there shouldabdeast one finite partitioning of the entities.
The authors of [32] find it appropriate to consider battersand articles as the entities involved in an
edit. In addition to singular groupings, these entities gnaiped by geographical-space and topic-space
(i.e., categories), respectively. CombiningRIESTA values with other metadata features, [32] ultimately
produces a classifier comparable in performance to naamgliage efforts.

Other use-cases forRESTA are active areas of research, and in particular, cofasdd access control
scenarios seem most ripe for exploration. However, it mapdssible to generalize theRBSTA model
further by providing a reduction tdynamic trust manageme(TM) systems [10, 31], which combine
trust management and reputation management fundamentaiake access control decisions using only
partial information. Credential delegation chains hawdrichical properties from which spatial groups can
be extracted. Moreover, DTM systems rely on feedback databor their reputation component, which
PRESTA could easily leverage. Future work could formalize tieiduction, showing thatFESTA may be
applicable to an entire new class of systems.

9 Conclusions

In this paper, we have introducedkBSTA, a spatio-temporal reputation model, and demonstriégesf-
fectiveness by using it for spam detectiorRES TA has proven capable with respect to spam, blocking up
to 50% of spam emails not caught by traditional blacklists] mlentifying 93% of spam on average when
used in combination. In particular, our method succeedduking a stop-gap mechanism for periods of
low blacklist performance. Our technigue is also scalabi@ @ble to efficiently handle production email
workload, at least at the level of a university mail systerocpssing over 500,000 emails an hour.

We do not propose RESTA based spam detection as a replacement for context-basdybis systems.
However, we believe it could be useful as an intermediater fiierhaps centrally maintained and queried
like DNS-based IP blacklists are today. Alternatively, teputation values RESTA computes could be
used in combination with other features to produce classifié even greater accuracy. With only a small
amount of extra processingRBESTA was able to turn a reactive blacklist into a predictiveriee.

Further, we believe RESTA has applicability beyond spam, and recent related wathk Wikipedia
has already shown this to be the case. Any application ngeetim two criteria is a potential use case.
No matter the application, HESTA’s power is derived from its ability to take a historicacord of bad
behavior and produce from that predictive identificatiohgaaditional malicious entities. This is achieved
by analyzing not just an individual entity’s historical lzefior, but also the histories of groups wherein the
entity resides. Thus, in the absence of entity-specific, degaare able to rely on spatial and temporal data
to make a characterization. By combining reputations fraryimg granularity, we are able to produce
robust reputation values that, as a result of normalizago& comparable. Ultimately, the reputations may
be utilized as an effective means of performing dynamic sssoentrol and mitigating malicious behavior,
two extremely relevant issues as service paradigms shifici@ distributed architectures.
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