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Abstract

In this paper we presentPreventiveSpatio-TemporalAggregation (PRESTA), a reputation model
that combines spatial and temporal features to produce values that are behavior predictive and useful in
partial-knowledge situations. To evaluate its effectiveness, we applied PRESTA in the domain of spam
detection. Studying the temporal properties of IP blacklists, we found that 25% of IP addresses once
listed on a blacklist were re-listed within 10 days. Further, during our evaluation period over 45% of
IPs de-listed were re-listed. By using the IP address assignment hierarchy to define spatial groupings
and leveraging these temporal statistics, PRESTA produces reputation values that correctly classify up
to 50% of spam email not identified by blacklists alone, whilemaintaining low false-positive rates.
When used in conjunction with blacklists, an average of 93% of spam emails are identified, and we
find the system is consistent in maintaining this blockage rate even during periods of decreased blacklist
performance. PRESTA spam filtering can be employed as an intermediate filter (perhaps in-network)
prior to context-based analysis. Further, our spam detection system is scalable; computation can occur
in near real-time and over 500,000 emails can be scored an hour.

1 Introduction

Roughly 90% of the total volume of email on the Internet is considered spam [5], and IP-based blacklisting
has become a standard tool in fighting such influxes. The vast majority of spam originates frombotnets,
centrally controlled organizations of infected hosts. Spammers can vary which hosts within a botnet are
sending spam, migrating as hosts become blacklisted. As a result, some 20% of spam emails received at a
large spam trap in 2006 were not listed on any blacklist [25].

Despite the dynamic nature of spamming IP addresses, they still exhibit interesting spatial properties.
In particular, the majority of such IPs are clustered throughout the address space [25]; Spammers tend
to be spatially found “near” other spammers (e.g., within the same subnet or Autonomous System (AS)).
This phenomenon was recently reinforced when in December of2008 the McColo ISP was shutdown by
authorities and spam rates dropped by nearly 15% [5, 21]. Further, previous studies have demonstrated that
the AS-level membership of spamming IPs can be used to effectively classify spam [15].

Temporal properties of spam originating IPs, however, havenot been studied as a measure of sender
reputation. The history of a single IP’s entry and exit from ablacklist is significant. More crucially, the
listing and de-listing patterns ofspatially relatedIP addressesover timeis behavior predictive. For example,
suppose a subnet has a dense blacklist history. If half of thesubnet is currently or was recently blacklisted, it
would be prudent to view the other half suspiciously. In our analysis, we found that previous blacklistings are
predictive of future listings. More than 25% of IPs once listed were re-listed within 10 days, and 45% were
re-listed during our experiment period. Given these statistics, it becomes clear that the usage of historical
data, as opposed to the static view blacklists provide, may be most helpful when valuating unknown entities.
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Further, we expand previous work regarding spatial groupings of spam originating IP addresses by using
knowledge of the IP assignment hierarchy. We found that calculating reputation at multiple levels provides
greater insight into unknown quantities. For example, the clustering of spamming IPs within an AS are
distributed non-uniformly, just as malignant ASes are found non-uniformly across the address space. We
find a combination of both fine and broad groupings best correlate negative feedback.

We have developed a novel reputation model, PRESTA (Preventive Spatio-TemporalAggregation),
that computes values that are behavior predictive of unknown entities in partial-knowledge situations where
entity-specific data may be incomplete. PRESTA aggregates a history of negative feedback from a database
(i.e., a blacklist) intoreputationsfor entities based on their individual behavior and that of their spatial group-
ings. PRESTA requires only that, (1) there exists a grouping functionto define finite sets of participants, and
(2) there is observable negative feedback to construct a behavior history. For each spatial grouping, a sepa-
rate reputation value is produced and machine learning can be applied to tune the combination to generate a
higher-order reputation. This value can incorporate as many spatial and temporal dimensions as necessary
to best represent the entities being valuated.

Spam is a motivating model for PRESTA, and we use it to analyze five months of mail logs provided
by our university mail system. We do this by simulating a production email server implementing PRESTA,
complete with caching and periodic re-training. Empiricalresults show that PRESTA can identify up to
50% of spam emails not caught by blacklists while maintaining low false-positive rates. When used in
combination, PRESTA and classic blacklists are able toconsistentlyidentify 93% of spam without text-
based analysis. Moreover, these blockage rates arestable, remaining steady-state even as the performance of
the underlying blacklist suffers. Further, this implementation isscalable, scoring at latencies unnoticeable
to an end user, while valuating over 500,000 emails/hour. Wedo not propose that PRESTA can replace
context-based filtering, but instead may be used as an intermediate filter (perhaps in-network), reducing the
number of emails that require complex text-processing and the exposure of private email content.

However, PRESTA defines a general model for spatio-temporal reputation which is broader than spam
and IP blacklists alone. Any application that meets the two usage criteria of PRESTA can benefit. Prelimi-
nary work [32] has already shown PRESTA reputation values helpful in detecting vandalism on Wikipedia.
More generally, PRESTA may be applicable to the entire class of dynamic trust management systems [10,
31], characterized by the need for decision-making in the presence of uncertainty. The Wikipedia use-case
and other potential applications are given greater attention in Sec. 8.

2 Related Work

Previous work within the spam detection community has focused on using network-level properties to dis-
tinguish legitimate and malicious mail. Unlike content-based filters that employ Bayesian quantifiers [28],
these techniques leverage the reputation of the sender – often the IP address of the connecting mail server.

IP1 blacklists [3], such as Spamhaus [7], collate IP addresses of known spamming hosts based on feed-
back from varied institutions (large email providers). Over time, IP addresses may be listed, de-listed, and
re-listed. It is this dynamic nature of blacklists that PRESTA leverages.

Recent work suggests that blacklists are too latent in theirlisting of new spammers [24], and that 10%
of spamming IPs have never been seen previously [27]. Even so, studies have shown that the spamming IPs
are distributed non-uniformly throughout the address space. Further, a large percentage of spam originates
from small regions of the address space [25]. Generally, spammers are found adjacent to other spammers,
and this principle was shown to be an effective metric in detecting newspammers by Haoet al. [15] in their

1IP blacklists are sometimes referred to asDNS blacklists, due to the frequent use of the DNS protocol in performing lookups
(DNS lookup is used by mail servers that choose not to store a local copy of the blacklist). These lists contain only IPs.
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development of the SNARE system. In particular, Haoet al. showed the AS-membership of an IP address to
be relevant. We build upon this research, grouping IPs at multiple levels of the address assignment hierarchy.

In combination with spatial measurement, SNARE also utilizessimpletemporal metrics to perform spam
filtering (for example, the time-of-day an email was sent), and apply a lightweight form of aggregation (i.e.,
mean and variance) over such features to detect abnormal patterns. In contrast, PRESTA’s temporal aspect
is more complex, aggregating time-decayed behavioral observations that encodemonthsof detailedhistory.
Indeed, [15] identifies many valid measures of spamming behavior, but is ultimately incapable of Internet-
wide scalability given their reliance on high-dimensionallearning. PRESTA spam detection computes over
a single feature, IP address (and groups thereof), and is effective while realizing wide-scalability.

Outside of academia, several commercial services claim theuse of techniques similar to those proposed
herein. For example, Symantec [30] allows one to look-up “IPreputation”, a feature used in its security
software. For the public-facing service, the response to queries is binary – although we found it correlated
well with the values PRESTA calculates. In addition, the SenderBase [16] system uses spatial data to build
reputations. Whatever the internals of such products, we believe the PRESTA system makes a contribution
by introducing this technology into a non-proprietary setting.

PRESTA can also be examined in the context of general-purpose reputation systems/logics, such as
EigenTrust [20] or TNA-SL [18]. The primary distinguishingfactor between these systems and PRESTA
is the nature of feedback. Conventional algorithms usuallyaggregate both positive and negative feed-
back, where feedbacks are perpetually retained and associated to a singlediscretetime-stamp. In contrast,
PRESTA considers only negative feedbacks, and functions best with expiring feedback, where a behavioral
observation is valid for some finite duration and then discarded. A transformation can be applied so PRESTA
can operate using more conventional feedback, a topic discussed further in Sec. 3.2.

Finally, most reputation systems are designed from a distributed perspective, concentrating on how un-
trusted parties can identify reliable partners in a networksetting. In our application, the blacklist provider
renders a singular and fully-trusted perspective. Moreover, while distributed reputation-network approaches
to spam-filtering [9, 13] exist, these focus on sharing classifications rather than the discovery of new ones.

3 PRESTA Reputation Model

Summarily, the reputation model begins by mapping negativefeedback to some identifier (i.e., a user).
Poor reputations correspond to those who have recently committed bad behavior (resulting in a negative
feedback). In the absence of bad behavior, reputations improve over time. Critically, user-level reputations
may also be combined according to the spatial relationshipsof the associated entities.

We consider a database where an entity is consideredactivewhen it receives negative feedback (becomes
listed) andinactivewhen that negative feedback expires (becomes de-listed). Further, one is able to query
this database to see an entity’s listing history. When an entity has recently been assigned a negative feedback,
the penalty associated with the listing is a heavy one. However, the more time that passes, the less weight
a prior listing carries. When an entity is re-listed (re-enters the database after removal), the weight of the
previous negative activity is still applied, but there is now compounding evidence against the entity being
valuated. These characteristics are well represented in PRESTA where each listing, re-listing, and de-listing
carries a weight based on its temporal relevance, realized via a decay function.

Spatial properties are considered based on grouping functions which take an entity as input and return
all entities that are a member of the input’s group. We expectmore than one grouping function will be given,
and an entity will populate multiple groups – one for each grouping function. This is advantageous; in the
absence of entity-specific data, spatial (group) data is helpful in characterizing an entity’s expected behavior.
A reputation can then be computed at each grouping and combined according to application-specific criteria.
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3.1 Reputation Computation

The goal of the reputation computation is to produce a quantified value that captures both the spatial and
temporal properties of the entity being valuated. Spatially, the size of the grouping must be considered, and
temporally, the history of negative feedback must be weighted proportional to its spatial proximity.

For example, suppose we are valuating the group-level reputation of an entity. If only a small portion
of members have recent listing activity, then the reputation should be relatively high. Similarly, if a large
portion of group members have a rich listing history, but in the distant past, the reputation should still be
high. However, if many members have recent listing activity, the reputation should be relatively low.

To capture these properties, three functions are required –two temporal and one spatial:

• hist(α, G, H) is a temporal function returning a list of pairs,(tin, tout), representing all entries/exits
from the feedback history,H, according to the grouping of entityα by grouping functionG. The
valuestin andtout are time-stamps bounding the listing. Active listings return (tin,⊥).

• decay(tout, h) is a temporal function that exponentially decays input times using a half-lifeh, and
it takes the form2−∆t/h where∆t = tnow − tout are of the same unit ash. It returns a value in the
range[0, 1], and for consistency,decay(⊥, h) = 1.

• size(α, G, t) is a spatial function returning the magnitude, at timet, of the grouping defined byG,
of which α is/was a member. IfG defines multiple groupings for an entityα, only the magnitude of
one grouping is returned. The choice of which group is application specific.

We now define the raw reputation function as follows:

raw rep(α, G, H) =
∑

(tin,tout)∈
hist(α,G,H)

decay(tout, h)

size(α,G, tin)
(1)

This computation captures precisely the spatio-temporal properties required by PRESTA. Temporally, the
entry/exit history of the database is captured at each summation via thehist() function, and events occurring
recently are more strongly weighted via thedecay() function. Spatially, grouping functionG defines the
group membership, and each summation is normalized by the group size.

When two or more grouping functions are defined over the entities, multiple computations ofraw rep()
are performed. Each value encodes the reputation of an entity when considered within a different spatial
context. How to best combine reputation is an application specific decision, and for our spam application,
machine learning techniques are used (see Sec. 5.7).

The values returned byraw rep() are strictly comparable for all spatial groupings defined byG and the
historyH. High values correspond to less reputable entities and vice-versa. However, it is more typical for
reputation systems [18, 20] to normalize values onto the interval[0, 1] where lower values correspond to low
reputation and vice-versa. Ultimately, our machine learning technique does not require normalized values.
Such values do, however, enable our model to be consistent with other reputation systems and provide an
absolute interpretation that permits manually-authored policies (e.g., allow access where reputation> 0.8).

Normalization requires knowledge of an upper bound on the values returned byraw rep(). This cannot
be generally defined when the de-listing policy is non-regular. However, if it is known that listings expire
from the negative feedback database after a fixed durationd, and that listings are non-overlapping, then it is
possible to compute an upper bound. Such a bound can be found by considering an entity who is as bad as
possible; one that is re-listed immediately after every de-listing, and thus, is always active in the feedback
database. Considering a grouping of size 1, theraw rep() computation reduces to a geometric sequence:

4



MAX REP = 1 +
1

1 − 2−d/h
(2)

Similarly, the same worst case reputation occurs for groupsof larger size, however, instead of a single
entity acting as a bad as possible, the entire group is simultaneously re-listed immediately following each
de-listing. We can now define a normalized reputation as:

rep(α, G, H) = 1 −

(

raw rep(α,G,H)

MAX REP

)

(3)

Clearly, smalld produce largerMAX REP values. Thus, a precise value ford need not be known – only
a lower-bound. One may ask, “Why not choose an arbitrarily small d (i.e., 1 second) as the lower bound?”
Such a small lower bound will increase the normalization factor and the distance between what can be
considered good and bad reputation will become arbitrarilysmall. The best choice for easy differentiation
is the greatest lower-bound of the listing interval. We found that a good estimate ford is sufficient, at least
in the domain of spam detection, because the worst-case reputation is unlikely to be realized.

The reputation computation defined herein can be further specialized depending on the entities being
valuated or the nature of the negative feedback database. For example, one can eliminate all spatial relevance
by using grouping functions that define groups of size 1. Or, one can eliminate all temporal calculation
by defining the return ofdecay() as a constant (C). Both such usages are employed in spam detection;
the former due to dynamism in IP address assignment, and the latter due to properties of the blacklist in
question. Note that whendecay(tout, h) = C, MAX REP = decay(⊥, h) + C.

3.2 Reputation Database

The reputation database,H, depends on the nature of feedback available. PRESTA is most adept at handling
expiringfeedback like that present in IP blacklists. By definition, an expiring feedback occurs when an entity
is active (listed) in the database before being removed (de-listed) after some finite duration. In this case,H
is a record of the entries/exits of listings such that the active database can be reproduced at any point in time.

Feedback can also bediscrete, where negative feedbacks are associated with a single time-stamp but
stored for perpetuity. This is the model most frequently seen in general-purpose reputation management
systems [18, 20]. In such cases,hist() always returns pairs of the form(tin,⊥), and thus the associated
listings do not decay. A discrete database can be transformed into a compatibleH by setting an artificial
timeout to allow for decay (e.g.,(tin, tin + x) wherex is the timeout).

Overlapping listings (i.e., an entity having more than one active listing at a time) are not a concern
for our spam implementation. It is the case for IP blackliststhat an entity is actively listed at most once,
and such guarantees are helpful in normalizing reputation values. Nonetheless, overlapping listings can be
handled by PRESTA, provided some pre-processing is performed over the feedbacks.

4 Spam Detection Setup

In this section, we describe the application of the PRESTA model for the purpose of spam detection. Two
properties of spam and IP blacklists are well leveraged by PRESTA. First, spammers are generally found
“near” other spammers. Their identifiers, IP addresses, areeasily grouped spatially due to the hierarchical
nature of IP address assignment. Second, blacklists are a rich source of easily accessible temporal data.

It should be emphasized that IP blacklists are not a prerequisite to using PRESTA for spam detection.
Any manner of negative feedback associating spamming and IPaddresses is sufficient. IP blacklists, how-
ever, are a well-regarded and generally trusted source of negative feedback. They are centrally maintained
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and reputation computed upon them can be seen as a good globalquantifier. However, IP blacklists do have
weaknesses, and readers should take care not to associate these flaws to the PRESTA model.

4.1 Data Sources

Blacklist: To collect blacklist data, we subscribe to a popular blacklist-provider, Spamhaus [7]. The
arrival and exit of IP addresses listed on three Spamhaus blacklists (updated at thirty-minute intervals) were
recorded for the duration of the experiment2:

• POLICY BLOCK L IST (PBL): Listing of dynamic IP addresses (e.g., those provided by large ISPs
such as Comcast or Verizon), from which mail should never originate, on principle.

• SPAMHAUS BLOCK L IST (SBL): Manually-maintained listing of IPs of known spammers and spam
organizations. Typically these are IPs mapping to dedicated spam servers.

• EXPLOITS BLOCK L IST (XBL): Automated listing of IPs caught spamming; usually open proxies or
machines that have been compromised by a bot-net.

As the latter two blacklists contain IP addresses known to have participated in spamming, only these are
used to build reputation. The PBL is a preventative measure (though we do use its entries when examining
blacklist performance). The mechanism by which a blacklistentry occurs, be it accurate or otherwise,
is beyond the scope of this work. PRESTA considers all negative feedback equally, and as such, isnot
dependent on the means by which an IP becomes blacklisted. Some Spamhaus blacklists (PBL and SBL) list
IP-prefixes (blocks) as opposed to individual IPs, but this is no different than listing each IP independently.

Removal from the blacklist takes two forms: manual de-listing and timed-expiration. Given its rigorous
human maintenance, the SBL follows the former format. The XBL, on the other hand, defaults to a more
automated time-to-live style. Empirical evidence shows the bulk of such listings expire 5-days after their
appearance (see Fig. 1). However, in the case a blacklisted party can demonstrate its innocence or show the
spam-generating exploit has been patched, manual removal is also an option for the XBL. Manual de-listings
can complicate the calculation ofMAX REP, but as we will show, worst case spamming behaviors are rarely
realized, permitting strong normalization.

AS Mappings: For the purpose of mapping an IP address to the Autonomous System(s) thathomesor
originatesit, we use the reports generated by CAIDA [2]. These are compiled from Route Views [8] data
and are essentially a snapshot of the BGP routing table.

E-mail Set: For testing purposes, we procured approximately 31 millionemail headers collected at the
University of Pennsylvania engineering email servers between 8/1/2009 and 12/31/2009. The mail servers
host over 6,100 accounts, of which approximately 5,500 serve human-users, while the remaining are for
various administrative and school uses (i.e., courses, aliases, lists,etc.). Pertinent information included only
the time-stamp of receipt and the connecting email server’sIP address [14].

A considerable number of emails (2.8 million) in our data-set were both sent and received within the
university network. Such emails were not considered in our analysis. Many intra-network messages are
the result of list-serves and aliasing, and by removing them, only externally arriving emails are considered.
Our working set is further reduced to 6.1 million emails whenanalysis is conducted “above the blacklist” –
focusing only on those mails passing IP blacklists.

To categorize email in our data-set as either spam or ham (notspam), we were provided a Proofpoint [6]
score (in addition to the aforementioned headers). Proofpoint is a commercial spam detection service em-
ployed by the University whose detection methods are known to include proprietary filtering and Bayesian

2Although blacklist data is pulled every 30 minutes, a time-stamp is provided to identify precisely when a new IP is listed.
However, no time-stamp is available for de-listing, and thetiming of this event is inferred.
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Figure 1: XBL Listing Duration & Re-listing Rates

content analysis [28] similar to that employed by SpamAssassin [1], an open source alternative. Proofpoint
claims 99.8% accuracy with a low false-positive rate. Givenno other consistent scoring metric and a lack of
access to the original email bodies, we use the Proofpoint score as the control classifier for our analysis.

A fair question is then, “If text-based analysis is so accurate, what benefit is PRESTA?” The gains are
three-fold: (1) Text-based analysis exposes private emailto third party sources (often such services are web-
based, as opposed to local software). (2) It is far easier forspammers to change email bodies than their
mail-server’s IP address. And, (3) PRESTA can be implemented as a lightweight pre-processor (perhaps
in-network) to such text-based filtering, reducing the overhead of computationally expensive analysis.

4.2 Temporal Properties

PRESTA leverages the temporal properties of IP blacklists by aggregating the de-listing and re-listing rates
of blacklist entries. Fig. 1 displays our analysis of those two statistics. Of IP-addresses de-listed during our
experiment, 26% were re-listed within 10 days. Overall, 47%of such IPs were re-listed within 10 weeks,
and it is precisely such statistics that motivate PRESTA’s use of temporal data

Given that IP addresses are frequently re-listed, we examined the rate at which de-listing occurs. Empir-
ical analysis shows that 80% of XBL entries were de-listed at, or very close to, 5 days after their entry (see
Fig. 1). Even so, this 5-day interval is not fixed. Despite a non-exact expiration,MAX REP is well computed
usingd = 5 (days) as a lower-bound. Raw reputation values rarely exceeded the calculatedMAX REP (less
than 0.01% of the time). Moreover, the worst-case reputation is achieved when the time to re-listing is effec-
tively zero. The shortest observed re-listing interval wasapproximately 6 minutes, and re-listings intervals
on this order of duration are extremely rare.

Manually maintained, the SBL has no consistent listing length, and computingMAX REP cannot be
performed using the same analysis. Instead, the manual maintenance of the blacklist can be used as a factor
in reputation. For an IP to be de-listed, it must be verified asa non-spamming address. Thus, there is no
reason to decay entries as they exit the list3. That is,∀tout, decay(tout) = 0, butdecay(⊥) is still 1. In such
circumstances, theMAX REP value for such IPs is computed as 1 (i.e., the IP address is currently listed).

3A reader’s intuition may be, “If SBL entries are not decayed and the decay output simply echoes the SBL status, why is the
SBL needed for reputation?” The answer is spatial: SBL and XBL listed IPs may reside inside the same spatial grouping, andSBL
listings are representative of malicious behavior which should lower the reputation for that grouping.
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By adjusting thedecay() function in this way, reputations’ of SBL IPs are based solely on spatial
properties. Our reputation model allows for such flexibility when the feedback database permits. In a
similar way, one can focus solely on temporal properties. Nomatter the case, all such reputations (of
varying groupings and decays) can be used in combination (see Sec. 5.7).

4.3 Spatial Groupings

The hierarchical nature of IP address assignment provides natural spatial groupings for use by PRESTA.
Starting at the lowest level, a local router or DHCP service assigns IP addresses to individual machines. The
selection pool is likely, but not necessarily, well boundedto a subnet (i.e.,a/24 or/16). In turn, these routers
operate within an ISP/AS, and ISP/AS get their allocations from Regional Internet Registries (RIRs), whose
space is delegated from the Internet Assigned Number Authority [4] (IANA). A clear hierarchy exists, and
at each level, a unique reputation can be applied.

We focus our groupings at three levels when considering an IPaddress: (1) the IP addresses itself, (2)
the 768-IP block membership (approximating the subnet), and (3) the AS that homes/originates the IP. It
may be the case that an IP address is multi-homed – advertisedby two or more ASes. In such situations,
where multiple groupings occur for a single grouping function, a data-specific choice should be made. We
consider only the highest reputation among the advertisingASes, a choice we discuss further in Sec. 5.5.

In addition to the address space hierarchy, other spatial relationships could be leveraged to form group-
ings. The social network of email receivers has been proposed as an effective means of spam filtering, as
well as network distance [11, 13]. In [15], geographic distance was used as a classifier. Although not inves-
tigated herein, groups based on social, routing, or geographic distance could be reasonable, and the addition
of these features is an area of future research.

Despite its easily partitioned nature, it has yet to be shownthat the IP assignment hierarchy provides
relevant groupings. Previous work and anecdotal evidence suggest that AS-number is one of the strongest
identifiers of spammers. Indeed, entire AS/ISPs, such as McColo [21] and 3FN [22], have been shut down
as a result of their malicious nature. Moreover, in [15], AS-level identifiers were used as a reliable indicator
of spamming hosts, after observation indicated only 20 ASeshost 42% of spamming IPs.

At the subnet level, we found that groupings of 768 IP-addresses (i.e., three adjacent/24s) well contain
malicious activity (see Sec. 5.5 for details). As seen in Fig. 2, we visualized/24 blocks of address space for
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Figure 3: PRESTA Spam Detection Architecture

an ISP in Uzbekistan by their quantity of XBL listings. Clearly, there is strong variance across the address
space – some regions are highly listed while others have no listings whatsoever. The AS-level reputation of
this ISP is comparatively poor due to the quantity of listings, but within the address space, certain block-
level reputations are ideal. This suggests that using AS-level reputation alone may be inappropriate because
it is too broad a metric. Alternatively, it could be that there is no mail originating from these blocks, but as
described in Sec. 5.7, we have automated ways of dealing withsuch contradictory information.

Finally, using a grouping function that singularly groups entities effectively removes spatial relevance
from reputation computation. Intuitively, the reputationof a single IP address should be considered because
many mail servers use static addresses. However, the often dynamic nature of address assignment implies
that unique IP addresses are not singular groupings, but rather, could represent many different machines
over time. A recent study reported that the percentage of dynamically assigned IP addresses4 on the Internet
is substantial and that 96% of mail servers using dynamic IPssend spam almost exclusively [33].

5 Spam Detection Implementation

In this section we describe the implementation of PRESTA for spam detection. The implementation is
designed with three primary goals. It should produce a classifier that is (1) lightweight, (2) capable of
detecting a large quantity of spam, and (3) do so with a low false-positive rate. We justify our design
decisions with respect to these goals. Further, we discuss the practical concerns of such an implementation.

At a high-level, our work-flow begins when an email is received and the connecting IP address and
time-stamp of receipt is recorded. Assuming the IP is not actively blacklisted, our spatio-temporal approach
is brought to bear. The IP is mapped to its respective spatialgroupings: itself, its subnet, and its originating
AS(es). Reputations are calculated at each granularity, and these component reputations are supplied as
input to a machine-learning classifier trained over previous email. The output is a binary ham/spam label
along with each of the three component reputations – all of which may be of use to a client application. We
now describe this procedure in detail, and present a visual reference of the PRESTA work-flow in Fig. 3.

4Recall that Spamhaus’ PBL blacklist is essentially a listing of dynamic IP addresses. We note it is constructed mainly using
ISP-provided data, and as such, is far from a complete listing.
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5.1 Traditional Blacklists

In Sec. 4.1 the various Spamhaus blacklists were introduced. They not only provide the basis on which
reputations are built, but in an implementation of PRESTA, it is natural to apply them as intended – to label
emails originating fromcurrently listedIPs as spam. When applied to the email data-set, the Spamhaus
blacklists (PBL included) captured 91.0% of spam with a 0.74% false-positive rate. Interestingly, this is
somewhat higher than previous published statistics5 [19]. Had we chosen not to exclude the intra-network
emails from analysis, the blacklists would have captured a similar 90.9% of spam emails with a much-
reduced 0.46% false-positive rate. The exclusion of such emails, while inflating false-positive rates, allows
us to concentrate only on the more interesting set of externally-received emails and not bias our results.

The usage of blacklists (independent of spatio-temporal properties), enables fast detection of a large
portion of spam emails with minimal time and space requirements. In the implementation of PRESTA,
we cache the current blacklists to improve look-up speed, requiring roughly 100MB of space; a reasonable
requirement for most email servers. Further, a local store of the blacklist is needed for PRESTA calculation
because forms the basis of the historical database.

5.2 Historical Database

Before reputation can be calculated, a historical feedbackdatabase must be in place. As described, we
retrieve the Spamhaus blacklists at 30-minute intervals. Thediff is calculated between consecutive copies
and time-stamped entries/exits are written to a database. When a new listing appears, wepermanentlyrecord
the spatial groups (IP, subnet, and AS(es)) that IP is a member of. For example, if IPi was blacklisted as a
member of ASa, that entry will always be a part ofa’s blacklist history.

We found that roughly 1GB of space is sufficient to store one month’s blacklist history (the XBL has
1.0–1.5 million IPs turn over on a daily basis). Fortunately, an extensive history is not required given the
exponentialdecay() function6. For example, given a 10-day half-life, a 3-month old XBL entry contributes
0.6% the weight of an active listing. Lengthy histories offer diminishing returns. To save space, one should
discard records incapable of contributing statistical significance. Further, such removal saves time because
the smaller the sethist() returns the fewer values which must be processed byraw rep().

5.3 Grouping Functions

Given an entity (IP address) for which to calculate reputation, we must determine to which groups this entity
belongs through the use of our three grouping functions:

• IP FUNCTION: An IP is a group in and of itself, so such a grouping function mirrors its input. As
noted earlier, singular groups are interesting because over time, an IP may have multiple inhabitants.

• SUBNET FUNCTION: IP subnet boundaries are not publicly available. Instead,an estimate considers
blocks of IP addresses (we use the terms “subnet-level” and “block-level” interchangeably). IP space
is partitioned into/24s (256 IP segments), and an IP’s block grouping consists of the segment in
which it resides as well as the segment on either side; 768 addresses per block. Thus, block groupings
overlap in the address space, and a single IP input returns one block of IPs (three/24s). Although
these subnet estimations may overflow known AS boundaries, these naı̈ve blocks prove effective.

• AS FUNCTION: Mapping an IP to its parent AS(es) requires CAIDA [2] and RouteViews [8] data.
We note that some AS boundaries overlap in address space and some portions of that space (i.e.,
unallocated portions) have no resident AS whatsoever. An IPcan be homed by any number of ASes,

5Our analysis of blacklist performance is from a single-perspective, and therefore may not speak to global blacklist effectiveness.
6This minimal history requirement was of benefit to our own study. Reputations mustwarm-upbefore their use is appropriate.

Indeed, our collection of blacklist data began in 5/2009, three months before our first classifications.
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including none at all, the technical considerations of which are addressed in Sec. 5.5. The function’s
output is all the IPs homed by an AS(es) in which the input IP isa member. Each returned IP is tagged
with the parent AS, so a well-defined subset of the output can be chosen.

5.4 Decay Function

The decay function controls the extent to which temporal proximity factors into reputation. This is config-
ured via the half-life parameter,h. If h is too small, reputations will decay rapidly and provide little benefit
over using blacklists alone. Too large anh can cause an increase in false positives due to stale information.

A good half-life should maximize the difference between thereputation of spam and ham email, and to
arrive at a reasonable value forh, we analyzed a set of emails/reputations pre-dating our evaluation period.
By plotting the reputation-CDF for both spam and ham email, we sought a value forh that maximized the
area between the curves. In Fig. 4 we present the calculations from these experiments. We foundh = 10
(days) to optimal and therefore use this value in our spam application7. With the half-life established, and
having previously chosend = 5 (days), we calculateMAX REP= 4.14.

As described previously, we actually employ two separatedecay() functions depending on where a
listing appeared, either on the SBL or the XBL. Manually maintained, we do not decay de-listing for the
SBL, but the XBL is decayed using the aforementioned 10-day half-life. In order to use both listings
in combination, we apply a flag to each time pair returned byhist() dependent on which blacklist they
originated from, allowing us to apply the appropriate decayfunction.

5.5 Reputation Calculation

Given the decay function (Sec. 5.4), output (sets of IP addresses) of the three grouping functions (Sec. 5.3),
and the feedback database (Sec. 5.2), reputation may now be calculated. Valuation is performed at each
granularity; three reputation values are returned. Calculation closely follows as described in Sec. 3.

Calculation of IP-level and subnet-level reputation is straightforward per the reputation model with
size() = 1 andsize() = 768, respectively. The particulars of AS-level calculation are more interesting.
An IP may be a member of any quantity of ASes, including none atall. If an IP is multi-homed, we make
the conservative choice by selecting the most reputable AS value as the AS-level reputation. Those IPs
mapping to no AS form their own group, and we designate the reputation for this group as 0 because, in
general, unallocated space is only used for malicious activity. In this spatial grouping,size() is not constant
over time. Instead, magnitudes are pre-computed for all AS using CAIDA data and updated as BGP routes
change. Onlyuniqueoriginating IPs are considered (blocks often overlap to support traffic engineering).

7Although we found it unnecessary,h could be optimized on an interval basis, much like re-training a classifier. However, our
experiments showed minor variations of the parameter to be inconsequential.
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5.6 Calculation Optimizations

To be lightweight, our system must calculate reputation efficiently. It should not significantly slow email
delivery (latency), and it should handle heavy email loads (bandwidth). We now describe caching strategies
and other techniques in support of these goals:

• AS VALUE CACHING: Reputations forall ASes are periodically recalculated off-line. These calcu-
lations are (relatively) slow given theirhist() calls return large sets.

• BLOCK/IP VALUE CACHING: Similarly, block and IP reputations can be cached after thefirst cache
miss. Cache hit rates are expected to be high because (1) an email with multiple recipients (i.e.,
a carbon copy) is received multiple times but with the same source IP address, and (2) source IP
addresses are non-uniformly distributed. For the 6.1 million (non-Penn, non-blacklisted) emails in
our working data-set, there are 364k unique IP senders and 176k unique sender ‘blocks.’

• CACHE CONSISTENCY: Caches at all levels need to be cleared when the blacklists are updated (every
30 minutes), to avoid inconsistencies involving the arrival of new listings. As far as time-decay is
concerned, a discrepancy of up to 30 minutes is inconsequential when considering a 10-day half-life.

• WHITELISTING: There is no reason to calculate reputation in trusted IP addresses, such as one’s
own server. Of course, whitelists could also be utilized in afeedback loop to alleviate false-positives
stemming from those entities whose emails are consistentlymisclassified.

Using these optimizations, our PRESTA implementation is capable of scoring 500k emails an hour, with
average email latencies well under a second. Latency and bandwidth are minimal concerns. Instead, it
is the off-line processing supporting this scoring which isthe biggest resource consumer. Even so, our
implementation is comfortably handled by a commodity machine and could easily run adjacent to an email
server. Pertinent implementation statistics, such as cache performance, are available in Sec. 6.4.

5.7 Reputation Classification

Extraction of a binary classification (i.e., spam or ham) is based on athresholdstrategy. Emails valuated
above the threshold are considered ham, and those below are considered spam. Finding an appropriate
threshold can be difficult, especially as dimensionality grows, as is the case when classifying multiple repu-
tation values. Further, a fixed threshold is insufficient dueto temporal fluctuations; as large groups (botnets)
of spamming IPs arise and fall over time, and the distinctionbetween good and bad may shift.

Support vector machines(SVM) [17] are employed to determine thresholds. SVM is a form of su-
pervised learning that provides a simple and effective means to classify multiple reputation values. The
algorithm maps reputation triples (a feature for each spatial dimension) from an email training set into 3-
dimensional space. It then determines the surface (threshold) that best divides spam and ham data-points
based on the training labels. This same threshold can then beapplied during classification. The SVM routine
can be tuned via acostmetric which is correlated to the eventual false-positive rate of the classifier.

The classifier is adjusted (re-trained) every 4 days to handle dynamism. A subset of emails received in
the previous 4 days are trained upon, and the resulting classifier is used for the next 4 day interval. The
affect of different training periods has not been extensively studied. Clearly, large periods are not desired;
the reputation of distant emails may not speak to the classification of more current ones. Too short a period
is equally poor because it requires extensive resources to re-train so frequently. We believe 4-day re-training
is a good compromise. However, the re-training period need not be fixed, and future work will explore
re-training rates that adjust based on various environmental factors at the email server.

At each re-training, we used 10,000 emails (5% of the non-Penn, non-blacklisted email received every
4 days), and labeled emails as spam/ham based on the Proofpoint score. In a more general use case, there
would be some form of client feedback correlated across manyaccounts that can classify spam post-delivery
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Figure 5: XBL Size Relative to Global Reputation

and train various spam detectors. Since we do not have accessto such user behavior, correlation statistics,
or any external spam filters, the provided Proofpoint valuesare assumed.

Post-training, the false-positive (FP) rate of the classifier can be estimated by measuring the error over
the training set (assuming one does not over-fit the trainingdata). The estimated FP-rate is a good indicator
of the true FP-rate, and the SVM cost parameter can be adjusted to tune the expected FP-rate. All classifier
statistics and graphs hereafter were produced with a 0.5% tolerance for false-positives (over the classification
set), as this simplifies presentation. We believe 0.5% is a reasonable setting given that blacklists are widely
accepted and achieved a 0.74% FP-rate over the same dataset.Additionally, these rates are somewhat
inflated given our decision to exclude intra-network emails, which are unlikely to contribute false-positives
(the blacklist FP-rate reduced to 0.46% with their inclusion). In Sec. 6.5, the trade-off between the FP-rate
and spam blockage is examined in greater depth.

6 Empirical Results

We begin our PRESTA spam detection analysis by examining the component reputations individually. From
there, two case studies will exemplify how PRESTA can produce metrics outperforming traditional blacklists
in both spatial and temporal dimensions. Finally, we examine the effectiveness of the full-fledged spam filter:
For each mail in our data-set, reputation metrics are calculated and email is valuated in a way that would
mimic our PRESTA implementation on a production email server, complete with re-training and caching.

6.1 Blacklist Relationship

In examining how our reputations quantify behavior, we began with a simple intuition: one would expect
to see a clear push-pull relationship between an entities reputation and the number of corresponding entries
on the blacklist. To confirm, we graphed the size of the XBL blacklist8 over time and compared this to
the average reputation ofall ASes. Results are presented in Fig. 5. We observe an inverse relationship,
confirming our expectations. When the number of listings dips, reputation increases – and vice versa.
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6.2 Component Reputation Analysis

In order for component reputations (IP, block, and AS) to be useful in spam detection they must bebehavior
predictive. That is, the reputations associated to ham emails should exceed those of spam emails. This
relationship is visualized in the cumulative-distribution-functions (CDFs) of Fig. 6. We observe that all
component reputations behave as expected. Fig. 6 also showsthe benefit of using multiple spatial groupings.
While nearly 90% of spam emails come from IPs that had ideal reputation (i.e.,a reputation of 1) at the time
of receipt, this is true for just 46% of blocks, and only 3% of AS.

The CDFs of Fig. 6 imply that each component reputation is, inand of itself, a metric capable of classi-
fying some quantity of spam. However, it is desirable to showthat each granularity capturesuniquespam,
so that the combination of multiple reputations can producea higher-order classifier of greater accuracy.
In Fig. 7, the effectiveness of each component reputation ispresented. The percentage of spam caught is
“above the blacklist,” or more precisely, the percentage ofspam well-classified by the reputation value that
was not identified by the blacklist alone. Given the inclusion of traditional blacklist filtering, the primary
concern is those emails that are not actively listed.

On the average, PRESTA is able to capture 25.7% of spam emails not caught by traditional blacklists.

8The XBL is the driving force behind reputation. The SBL is also a contributor, but is orders of magnitude smaller.
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Crucially, the combined performance (the top line of Fig. 7), exceeds that of any individual component, so
each spatial grouping catches spam the others do not.

We are also interested in determining which grouping provides the best classification. AS-level reputa-
tion is the most stable of the components, individually capable of classifying an additional 10-15% of spam
above the blacklist. However, we observe that during periods of increased PRESTA performance, it is often
the block and IP levels that make significant contributions.This is intuitive; AS-level thresholding must be
conservative. Given their large size, ASes have relativelystable reputations. Thus, the classification of a
single reputation value may effectively make the spam/ham determination for many thousand emails – and
could result in an unacceptable increase in the FP-rate. Meanwhile, the cost associated with a mis-prediction
is far less for block and IP groupings, permitting more aggressive/speculative thresholds.

These results suggest that considering more spatial dimensions can increase performance, that is, when
there are non-overlapping classifications. However, thereare diminishing returns. Each additional compo-
nent reputation requires increased resources for valuation and classification. An application should seek a
minimal set of dimensions to best represent and classify itsdata.

6.3 Case Studies

Two case studies are exemplary of the types of spam behavior able to evade blacklists, yet captured via
PRESTA. First, Fig. 8 shows thetemporalsending patterns of a single spamming IP address. This IP
was blacklisted twice during the course of the study (as indicated by shaded regions), and the time be-
tween listings was small (roughly 2 days). The controller ofthis IP address likely used blacklist counter-
intelligence [26] to increase the likelihood that spam would be delivered. Notice that no spam was observed
when the IP was actively blacklisted, but 150 spam emails were received at other times.

Traditional blacklist are reactive, binary measures that do not take history into account. During the
intermittent period between listings, as far as the blacklist is concerned, the spamming IP is an innocent one.
However, as shown in Fig. 8, the IP-level reputation metric compounds prior evidence. Thus, if PRESTA
had been in use, the intermittent influx of email would have been identified as spam.

Secondly, Fig. 9 visualizes a case study at the AS-level utilizing bothspatialandtemporaldimensions.
In the early stages of our data collection we noticed anomalous activity occurring at a particular AS (AS#-
12743)9. Even when compared to the other four worst performing ASes during the time block, ASN-12743’s

9PTK-Centertel, a major Polish mobile service provider
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Figure 9: Temporal Shift within Spatial Grouping (AS)

drop in reputation is astounding. Nearly its entire addressspace, some 4,500 addresses, were blacklisted in
the course of several days – likely indicative of an aggressive botnet-based spam campaign – after which,
the reputation increases exponentially (per the half-life), eventually returning to innocent levels.

With traditional blacklists, an IP must actually send spam before it can be blacklisted. In the ASN-12743
case, this means all 4,500 IPs had some window in which to freely send spam. However, as the IPs were
listed in mass, thereputationof the AS drops at an alarming rate, losing more than 50% of itsvalue. Had
PRESTA been implemented, the reputation of the AS (and the blocks within) would have been low enough
to classify mails sourced from the remainder of the space as spam, mitigating the brunt of the attack.

6.4 Implementation Performance

The previous case studies are but two examples of the way component reputations capture spamming behav-
ior that evades traditional blacklists. We now present the results of the simulated PRESTA implementation.

Our experimental setup was as follows: To best simulate the normal processing at a mail server, we
assumed each email arrived in the order of the time-stamp. The blacklist history and cached reputation
scores were regulated so that only the knowledge available at the time of arrival is used to valuate the email.
PRESTA requires a warm-up period to gather enough temporal knowledge to process correctly; hence,
historical blacklist storage began three months prior to the first email being scored.

We were interested in measuring the effectiveness of the cache and the latency of the system. Caching
was highly effective: 56.8% of block-level calculations are avoided, and 43.1% are avoided at the IP-level
(recall thatall AS-level calculations are performed off-line and then cached). As such, the reputation of an
incoming email can be calculated in nearly real time, with the average email being processed in fractions of
a second. Under typical conditions, over 500,000 emails canbe scored in an hour.

Re-training our classifiers and rebuilding the AS-cache arethe most time consumptive activities. Fortu-
nately, finding new classifiers takes only minutes of work fora 10,000 email training set, and only needs to
be performed every 4 days. Re-training can also be done off-line and not affect current scoring. Rebuilding
the AS reputation cache must be done every 30 minutes once newblacklist data is available, but it need not
delay current scoring as the previous AS-level reputationsare still relevant (at most 30 minutes old).
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6.5 Spam Mitigation Performance

The spam detection capabilities of PRESTA are summarized in Fig. 10. On average, 93% of spam emails
are identified when using our system in conjunction with traditional blacklists. To some this may seem
to be only a nominal increase over using blacklists alone. However, the inset of Fig. 10 is more intuitive;
plotting the PRESTA blockage rate only over those mails passing the Spamhausblacklists (identical to the
top line seen in Fig. 7). We observe that between 20% and 50% ofspams evading blacklists can be caught by
PRESTA (with a 25.7% average). Had PRESTA been implemented on our university mail server, it would
have caught 650,000 spam emails that evaded the Spamhaus blacklists over the course of our study.

Most interestingly, PRESTA allows for a consistent and steady state of spam detection. For example,
consider the significant drops in blacklist performance seen throughout our study (for example, in late Au-
gust 2009 and again in mid-November 2009). PRESTA is nearly unaffected during these periods and could
be used as a stop-gap to variance in blacklist accuracy. Clearly, whatever the means of blacklist evasion
was during these periods, it was insufficient to evade PRESTA. Further, we believe future data will show
such dips and rises in blacklist performance to be non-anomalous. Periods of high de-listing are likely to
be followed by periods of high re-listing as spammers try to maximize the utility of available IPs. In the
interim, blacklists are likely to perform relatively poorly, and PRESTA could aid in maintaining a consistent
level of spam blockage. While the blockage-rates of the blacklists fluctuate 18% over the course of our
study, PRESTA is far more consistent, exhibiting just 5% of variance.

Ultimately, the performance attainable by our classifier isdependent on the number of false-positives
(FPs) a user is willing to tolerate. To this point, the FP-rate has been fixed at 0.5% in order to simplify
discussion. However, as exemplified in Fig. 11, the FP-rate is tune-able and strongly correlates with the
blockage rate. The plot is generated over a characteristic interval of email from mid-October 2009, and is
akin to the precision/recall graphs common in machine-learning. We remind readers that our decision to
exclude intra-network emails from our dataset (see Sec. 5.1) significantly inflates the presented FP-rates.
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7 Evasion and Gamesmanship

In order for a PRESTA-based spam filtering approach to be effective, it must berobust to evasion. Given
that we use blacklists as a feedback source, perhaps the mosteffective way to avoid PRESTA detection is
to avoid getting blacklisted in the first place (this is true in any PRESTA application where one can avoid
negative feedback). However, such a technique is not fail-safe; a single evasive entity may still have poor
reputation at broader granularity. Given that negative feedback does exist, and an IP has been blacklisted, the
best recourse is patience. Over time, the weight of the listing will decrease according to the decay function.
As such, there is no way to evade PRESTA in the temporal dimension.

However, spammers are migrant, and the spatial dimension affords greater opportunities. While IP and
block magnitudes are fixed, an AS controls the number of IPs itbroadcasts. An actively evasive AS would
ensure its entire allocation is broadcasted. More maliciously, a spammer may briefly hijack IP space they
werenot allocated in order to send spam from stolen IPs. Suchspectrum agilitywas shown by [25] to be
an emergent spamming technique. Fortunately, if the hijacked IP space was not being broadcasted (i.e.,
unallocated), emails from these IPs would map to the specialgrouping “no AS”, whose reputation is zero
(per Sec. 5.5). However, if the hijacked space was being broadcasted by a reputable AS, evasion may be
possible. Fortunately, [25] observes the use of unallocated space is most prevalent.

As a general purpose reputation engine, asizing attackcan be of real concern. The entities being valuated
should not be able to affect the size of their spatial groupings. However, this attack is only effective when
the group size is non-singular, and an easy avoidance technique is to always include a grouping function
that defines singular groups. Further, an implementation should try to assign persistent identifiers to entities.
When identifiers are non-persistent, PRESTA could fall victim to a Sybil attack [12] since an entity could
evade negative feedback by simply changing identifiers.

8 Additional PRESTA Applications

PRESTA’s applicability is broader than email spam alone, as thespatial and temporal properties described
are inherent in a number of domains. Indeed, PRESTA reputation values have already proven successful
in the detection of vandalism on Wikipedia [32]. Any edit which is blatantly unproductive, offensive, or
over-zealous in its removal of content is said to exhibitvandalism. Prior to [32], attempts to detect these
edits resided only in the language-processing domain [23, 29]. Akin to the Bayesian filters of email spam,
these efforts also suffer from many of the same drawbacks (evade-ability and minimal throughput).

Recall our two PRESTA application criteria. First, A view-able history of dynamic negative feedback.
On Wikipedia, a special administration form of reversion called rollback permits the discovery of malicious
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edits, fulfilling this requirement. Second, there should beat least one finite partitioning of the entities.
The authors of [32] find it appropriate to consider bothusersand articles as the entities involved in an
edit. In addition to singular groupings, these entities aregrouped by geographical-space and topic-space
(i.e., categories), respectively. Combining PRESTA values with other metadata features, [32] ultimately
produces a classifier comparable in performance to natural-language efforts.

Other use-cases for PRESTA are active areas of research, and in particular, content-based access control
scenarios seem most ripe for exploration. However, it may bepossible to generalize the PRESTA model
further by providing a reduction todynamic trust management(DTM) systems [10, 31], which combine
trust management and reputation management fundamentals to make access control decisions using only
partial information. Credential delegation chains have hierarchical properties from which spatial groups can
be extracted. Moreover, DTM systems rely on feedback databases for their reputation component, which
PRESTA could easily leverage. Future work could formalize thisreduction, showing that PRESTA may be
applicable to an entire new class of systems.

9 Conclusions

In this paper, we have introduced PRESTA, a spatio-temporal reputation model, and demonstratedits ef-
fectiveness by using it for spam detection. PRESTA has proven capable with respect to spam, blocking up
to 50% of spam emails not caught by traditional blacklists, and identifying 93% of spam on average when
used in combination. In particular, our method succeeded inbeing a stop-gap mechanism for periods of
low blacklist performance. Our technique is also scalable and able to efficiently handle production email
workload, at least at the level of a university mail system, processing over 500,000 emails an hour.

We do not propose PRESTA based spam detection as a replacement for context-basedanalysis systems.
However, we believe it could be useful as an intermediate filter, perhaps centrally maintained and queried
like DNS-based IP blacklists are today. Alternatively, thereputation values PRESTA computes could be
used in combination with other features to produce classifiers of even greater accuracy. With only a small
amount of extra processing, PRESTA was able to turn a reactive blacklist into a predictive service.

Further, we believe PRESTA has applicability beyond spam, and recent related work with Wikipedia
has already shown this to be the case. Any application meeting our two criteria is a potential use case.
No matter the application, PRESTA’s power is derived from its ability to take a historical record of bad
behavior and produce from that predictive identifications of additional malicious entities. This is achieved
by analyzing not just an individual entity’s historical behavior, but also the histories of groups wherein the
entity resides. Thus, in the absence of entity-specific data, we are able to rely on spatial and temporal data
to make a characterization. By combining reputations from varying granularity, we are able to produce
robust reputation values that, as a result of normalization, are comparable. Ultimately, the reputations may
be utilized as an effective means of performing dynamic access-control and mitigating malicious behavior,
two extremely relevant issues as service paradigms shift tomore distributed architectures.
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