Conclusion and Future Work

Insup Lee
Computer and Information Science
University of Pennsylvania

ONR MURI N00014-07-1-0907
Review Meeting
November 4, 2009
Summary

- Develop semantic basis that integrates Policy-based Trust Management (PTM) and Reputation-based Trust Management (RTM)
 - Develop a QTM (Quantitative Trust Management) platform
 - Implement prototype (QuanTM) and experimentally evaluate

- Extend PTM systems
 - Permission to speak
 - Dynamic Trust Management
 - Coordinated Policy Enforcement

- Improve RTM systems
 - Develop evaluation metrics and extensible simulator
 - Identify attack models
 - Design a highly effective and resilient RTM/FM framework

ONR MURI Review

11/4/09
Proposed work

- PTM: Extensions to PTM
- RTM: Extensions to RTM
- QTM: Integration into QTM
- Distributed TM
- QTM Applications
PTM: Extensions to PTM

• Develop and harden policy languages and mechanisms for
 – dynamic, multi-layered, fine-grained access control
 – sophisticated control of delegation
 – logic for reasoning with uncertainty
 – logic for reasoning with degrees of trust

• Refine architecture and system further
 – Explore performance/scalability, effectiveness, overhead tradeoff
RTM: Extensions to RTM

• Compute reputations in the context of
 – correlations between corrupted nodes (shared bad files, for example)
 – adversary (BOT Master) recruiting nodes dynamically
 – collusion between bad nodes
 – targeted attacks by bad nodes
RTM: Spatio-Temporal Reputation

• Generalize and Formalize
 – Insight for general model?
 – Picking spatial groupings
 • Distance functions in non-IP-space situations?
 – Output values
 • Probabilistic characterization
 • Normalization considerations

• Case studies
 – Wikipedia
 – Facebook

• Connection to homophily in social networks
RTM: Reputations and Games

- Model adversaries as economic agents
- Define and analyze reputations using game-theoretic machinery
- Build mechanisms and incentives that will encourage agents to behave properly while maximizing social welfare
- Codify optimal (self-interested) behavior as policy and integrate with policy-based trust management
- Reconcile economics view with real systems - where do we get payoffs, strategy lists from?
Integration into QTM

• **New insight:**
 – Computation of the trust value on the TDG has a straightforward mapping to Datalog query evaluation

• **NDlog (Network Datalog)** is a novel system for distributed query evaluation that can provide a platform for efficient QTM systems

• **Future tasks:**
 – NDlog encoding of TDG evaluation
 – Integration with reputation databases
QTM: “permission to speak”

• L_{PS} can be used as an alternative to Keynote in the QuanTM architecture
 – L_{PS} evaluation is based on a logic programming framework

• New insight:
 – Tighter integration with NDlog-based QTM will yield more efficient policy evaluation

• Future tasks:
 – Define quantitative semantics for L_{PS}
 – Implement NDlog-based L_{PS} access control
Distributed TM

• Integrate with QTM
 – Particularly important in federated environments (e.g., dynamically composable SOAs)
• Efficiency of implementation; systems issues
• Large-scale case study
• Investigate the use of reactive mechanisms
 – Global coordination of dynamic defenses
• Investigate the use of active deception
 – Possible integration in NCR (National Cyber Range)
Applications of QTM

- SIE (Security Information Exchange)
- BGP (Border Gateway Protocol)
- CPS (Cyber Physical Systems)
- Cloud Computing
QTM for SIE (Security Information Exchange)

• Goal: develop dynamic trust management systems for Internet principals and services
 – E.g., IP addresses, DNS domains/servers, BGP/AS, etc.
 – Avoid connections to/from malicious/fraudulent elements on the Internet

• Progress thus far
 – Build an infrastructure, SIE, for collecting real-time Internet security information (GT)
 • Operational; data sources for dynamic trust management
 – SIE data used for studies of
 • Dynamic IP reputation using DNS data (GT)
 • Spatial-temporal reputation of IP from spam and WIKIPEDIA data (Penn)
 – Economics and games (Penn)

• Future work
 – Integrate IP reputation work at GT and Penn, in particular, GT can use the more formal and rigorous reputation models developed by Penn
 – Incorporate ideas of economics and games in reputation scoring to incentivize good behaviors

11/3/2009
Securing BGP

- Protocol for exchanging information between Autonomous Systems (AS) on how to reach specific destinations. Based on exchange of IP Prefixes
- Acceptance of BGP update packet and forwarding it depends upon custom policies

- Principal vulnerability of BGP – it does not check if:
 - Router introducing prefixes own them
 - Router is using the AS number allocated to it

- Current approaches for securing BGP
 - Approach 1:
 - Use PKI in the prefix address allocation hierarchy to bind as prefix to AS and AS to organization
 - Expensive (signature and validation needs) and modified BGP
 - Approach 2:
 - Use inter-domain route validation servers (IRV) at ASes which can be used to query the address and path associations
 - IPSec based communication security

- Given the flexibility provided by the policy space in BGP, network-level security is not sufficient – as there is not way to prevent router misbehavior at the policy level
QTM-BGP

- **Goal**
 - Use QTM to secure BGP without modifying BGP

- **Potential Approach**
 - Add trust and reputation to BGP policy specification
 - Compute reputation of BGP update (e.g., u1, u2) based on reputation of AS in the path
 - Compute AS reputation (e.g., r1, r2, r3, r4) based on
 - feedback obtained from IRV (Interdomain Route Validation) query mechanism
 - receiver’s own experience of past behavior

- **Experimental platform**
 - Coding QTM-BGP on declarative network simulation toolkit RapidNet (uses Datalog like language) for prototyping

\[\text{Rep (u1) = fn (r2, r1, r3)} \]
\[\text{Rep (u2) = fn(r2, r4)} \]

@r5 choose \(\max (\text{Rep(u1)}, \text{Rep(u2)}) \)
QTM for CPS (Cyber Physical Systems)

- Integrate cyber and physical trusts
 - Interactions between cyber and physical systems
- Issues
 - Authentication/provenance of physical stimuli
 - Environmental uncertainty
- PTM for physical systems
- RTM for physical systems
- Case studies
 - Voting machines
 - Emergency management
QTM in the Cloud

• Trust Between…
 – Client → Service
 – Client → Service Provider
 – Service → Service
 – Federated Services, etc.

• Cloud Challenges
 – Migration and virtualization means reputation must be very dynamic
 – How to combine & valuate hardware/service/client-level metrics?
 – Maintaining security guarantees across diverse architecture

• Why QTM?
 – High level of feedback sharing and density = greater accuracy.
 – Persistent ID: 1 client, many services
THANK YOU!