

Conclusion and Future Work

Insup Lee

Computer and Information Science University of Pennsylvania

ONR MURI N00014-07-1-0907 Review Meeting November 4, 2009

Summary

- Develop semantic basis that integrates Policy-based Trust Management (PTM) and Reputation-based Trust Management (RTM)
 - Develop a QTM (Quantitative Trust Management) platform
 - Implement prototype (QuanTM) and experimentally evaluate
- Extend PTM systems
 - Permission to speak
 - Dynamic Trust Management
 - Coordinated Policy Enforcement
- Improve RTM systems
 - Develop evaluation metrics and extensible simulator
 - Identify attack models

11/4/09

 Design a highly effective and resilient RTM/FM framework

Engineering

Proposed work

- PTM: Extensions to PTM
- RTM: Extensions to RTM
- QTM: Integration into QTM
- Distributed TM
- QTM Applications

PTM: Extensions to PTM

- Develop and harden policy languages and mechanisms for
 - dynamic, multi-layered, fine-grained access control
 - sophisticated control of delegation
 - logic for reasoning with uncertainty
 - logic for reasoning with degrees of trust
- Refine architecture and system further
 - Explore performance/scalability, effectiveness, overhead tradeoff

RTM: Extensions to RTM

- Compute reputations in the context of
 - correlations between corrupted nodes (shared bad files, for example)
 - adversary (BOT Master) recruiting nodes dynamically
 - collusion between bad nodes
 - targeted attacks by bad nodes

RTM: Spatio-Temporal Reputation

- Generalize and Formalize
 - Insight for general model?
 - Picking spatial groupings
 - Distance functions in non-IPspace situations?
 - Output values
 - Probabilistic characterization
 - Normalization considerations
- Case studies
 - Wikipedia
 - Facebook
- Connection to homophily in social networks

RTM: Reputations and Games

- Model adversaries as economic agents
- Define and analyze reputations using gametheoretic machinery
- Build mechanisms and incentives that will encourage agents to behave properly while maximizing social welfare
- Codify optimal (self-interested) behavior as policy and integrate with policy-based trust management
- Reconcile economics view with real systems where do we get payoffs, strategy lists from?

Integration into QTM

- New insight:
 - Computation of the trust value on the TDG has a straightforward mapping to Datalog query evaluation
- NDlog (Network Datalog) is a novel system for distributed query evaluation that can provide a platform for efficient QTM systems
- Future tasks:
 - NDlog encoding of TDG evaluation
 - Integration with reputation databases

QTM: "permission to speak"

- L_{PS} can be used as an alternative to Keynote in the QuanTM architecture
 - L_{PS} evalutation is based on a logic programming framework
- New insight:
 - Tighter integration with NDlog-based QTM will yield more efficient policy evaluation
- Future tasks:
 - Define quantitative semantics for L_{PS}
 - Implement NDlog-based L_{PS} access control

Distributed TM

- Integrate with QTM
 - Particularly important in federated environments (e.g., dynamically composable SOAs)
- Efficiency of implementation; systems issues
- Large-scale case study
- Investigate the use of reactive mechanisms
 - Global coordination of dynamic defenses
- Investigate the use of active deception
 - Possible integration in NCR (National Cyber Range)

Applications of QTM

- SIE (Security Information Exchange)
- BGP (Border Gateway Protocol)
- CPS (Cyber Physical Systems)
- Cloud Computing

QTM for SIE (Security Information Exchange)

- Goal: develop dynamic trust management systems for Internet principals and services
 - E.g., IP addresses, DNS domains/servers, BGP/AS, etc.
 - Avoid connections to/from malicious/fraudulent elements on the Internet
- Progress thus far
 - Build an infrastructure, SIE, for collecting real-time Internet security information (GT)
 - Operational; data sources for dynamic trust management
 - SIE data used for studies of
 - Dynamic IP reputation using DNS data (GT)
 - Spatial-temporal reputation of IP from spam and WIKIPEDIA data (Penn)
 - Economics and games (Penn)
- Future work
 - Integrate IP reputation work at GT and Penn, in particular, GT can use the more formal and rigorous reputation models developed by Penn
 - Incorporate ideas of economics and games in reputation scoring to incentivize good behaviors

Securing BGP

- Protocol for exchanging information between Autonomous Systems (AS) on how to reach specific destinations. Based on exchange of IP Prefixes
- Acceptance of BGP update packet and forwarding it depends upon custom policies
- Principal vulnerability of BGP it does not check if:
 - Router introducing prefixes own them
 - Router is using the AS number allocated to it
- Current approaches for securing BGP
 - Approach1:
 - Use PKI in the prefix address allocation hierarchy to bind as prefix to AS and AS to organization
 - Expensive (signature and validation needs) and modified BGP
 - Approach 2:
 - Use inter-domain route validation servers (IRV) at ASes which can be used to query the address and path associations
 - IPSec based communication security
- Given the flexibility provided by the policy space in BGP, network-level security is not sufficient as there is not way to prevent router misbehavior at the policy level

QTM-BGP

- Goal
 - Use QTM to secure BGP without modifying BGP
- Potential Approach
 - Add trust and reputation to BGP policy specification
 - Compute reputation of BGP update (e.g., u1, u2) based on reputation of AS in the path
 - Compute AS reputation (e.g., r1, r2, r3, r4) based on
 - feedback obtained from IRV (Interdomain Route Validation) query mechanism
 - · receiver's own experience of past behavior
- Experimental platform
 - Coding QTM-BGP on declarative network simulation toolkit RapidNet (uses Datalog like language) for prototyping

Rep (u1) = fn (r2,r1,r3) Rep (u2) = fn(r2, r4)

> @r5 choose <u>max (</u>Rep(u1), Rep(u2))

11/4/09

QTM for CPS (Cyber Physical Systems)

- Integrate cyber and physical trusts
 - Interactions between cyber and physical systems
- Issues
 - Authentication/provenance of physical stimuli
 - Environmental uncertainty
- PTM for physical systems
- RTM for physical systems
- Case studies
 - Voting machines
 - Emergency management

QTM in the Cloud

- Trust Between...
 - Client \rightarrow Service
 - Client \rightarrow Service Provider
 - Service \rightarrow Service
 - Federated Services, etc.
- Cloud Challenges
 - Migration and virtualization means reputation must be very dynamic
 - How to combine & valuate hardware/ service/client-level metrics?
 - Maintaining security guarantees across diverse architecture
- Why QTM?
 - High level of feedback sharing and density = greater accuracy.
 - Persistent ID: 1 client, many services

THANK YOU!