

Exposing Trust Assumptions in Distributed Policy Enforcement

Angelos D. Keromytis Columbia University

DTM – Motivation

- Distributed system defenses built as "islands"
 - Forced to make assumptions re: topology, other defenses ...
 - Locally correct, globally incorrect security enforcement
 - Assumptions fail or are exploited by attackers!
- Our work is motivated by real security incidents experienced first hand
 - "Pushing Boulders Uphill: The Difficulty of Network Intrusion Recovery"
 Michael E. Locasto, Matthew Burnside, and Darrell Bethea. In Proceedings of the 23rd Large Installation System Administration (LISA) Conference. November 2009, Baltimore, MD.
- DTM forces these assumptions in the open, allowing systems to verify them continuously

Dynamic Trust Management

- A COOPERATIVE and DYNAMIC policy evaluation infrastructure that will enable such critical capabilities as:
 - Adaptation to dynamic service availability
 - Complex situational dynamics (e.g., differentiating between bot-net and physical attacks on infrastructure).
- **BENEFITS** of a Dynamic Trust Management approach
 - Flexible and robust control of authorizations in complex distributed systems such as the DoD/IC GIG
 - The ability to define policies for scalable decentralized defense against emergent cyber-threats by rapid adaptation of resource access limits.

Specific Tasks (Years 1-3)

Develop language for expressing DTM policies

 "Arachne: Integrated Enterprise Security Management"
 Matthew Burnside and Angelos D. Keromytis. In Proceedings of the 8th Annual IEEE SMC Information Assurance Workshop (IAW), pp. 214 - 220. June 2007, West Point, NY.

Design DTM architecture

 "Asynchronous Policy Evaluation and Enforcement"
 Matthew Burnside and Angelos D. Keromytis. In Proceedings of the 2nd Computer Security Architecture Workshop (CSAW), pp. 45 - 50. October 2008, Fairfax, VA.

Collaborative/Distributed policy enforcement

- "F3ildCrypt: End-to-End Protection of Sensitive Information in Web Services"
 Matthew Burnside and Angelos D. Keromytis. In Proceedings of the 12th Information Security Conference (ISC), pp. 491 506. September 2009, Pisa, Italy.
- "Path-based Access Control for Enterprise Networks"
 Matthew Burnside and Angelos D. Keromytis. In Proceedings of the 11th Information Security Conference (ISC), pp. 191 203. Taipei, Taiwan, September 2008.

Medium-size case study

In progress at Columbia CS Department

Contributions

- Framework for integrating all types of defenses
- Proof of feasibility
 - Prototype, preliminary performance, security analysis
- Initial exploration of design options
- Education (GRA training, coursework integration)
- Outreach (collaboration with Symantec)

11/04/09

Overall Approach

- Define policies that take into consideration system-wide context
 - Extend security mechanisms to emit contextual information (continuous or event-based)
 - Distribute information to interested components
- Integrate IDS/ADS, access control, reaction
- Challenges:
 - Accuracy (extracting data from noise)
 - Complexity (defining policies)
 - Performance (scale with users, system, events)

Arachne

- ARACHNE is a system for the coordinated distribution and evaluation of a system-wide policy on different nodes
 - Several prototype systems for enterprise-level security have been developed
- GOAL: Integrate a variety of different, diverse security mechanisms and policy expression methods
 - Achieve enhanced protection over any individual method
 - Allow exchange of information between different mechanisms (Eliminate the possibility of "locally correct" but globally wrong decisions
 - Capture trade-offs between amount of global context, scalability, etc.

ONR MURI Review

Arachne

- Simple publish-subscribe backend
 - Policies consume and produce events, may revisit decisions based on new information
 - "Sessions" group related components
 - Graph-based policies, can be learned and refined

Other work

- Path-based policy enforcement
 - Simplification of Arachne (weaker properties, higher performance), well suited for web SOAs

- Selective data protection in web SOAs
 - Limit data theft/leakage risks by using web client as vantage point that encrypts data to specific SOA components
- Study of Rogue Antivirus sites (with Symantec)

Lessons Learned

- Coordinated defenses appear to be feasible
- Writing policies from scratch is hard
 - Exposing assumptions requires people to think about what assumptions they are making
 - Not always obvious!
- Learning interaction policies is promising

- Someone still needs to define component policies

- Performance does not appear to be show-stopper
- Accuracy remains to be seen (current focus)

Outreach and Education

- Integrated material into COMS W4180 course
- 2 invited talks (beyond conference talks) and 1 panel
- Main Ph.D. GRA now working for NSA
- Working with Symantec to determine modus operandi of rogue AV sites (and why users trust them)
 - Preliminary results published in the October 2009 Interim Symantec Threat Report (ISTR)

"Gone Rogue: An Analysis of Rogue Security Software Campaigns" Marc Cova, Corrado Leita, Olivier Thonnard, Marc Dacier, and Angelos D. Keromytis. To appear in the Proceedings of the 5th European Conference on Computer Network Defense (EC2ND). November 2009, Milan, Italy. (Invited paper)

ONR MURI Review

Future Directions

- Continue work on refining architecture and system
 - Explore performance/scalability, effectiveness, overhead tradeoffs
- Integrate with QTM
 - Particularly important in federated systems (e.g., dynamically composable SOAs)
- Large-scale case study

Future Directions

- Investigate the use of reactive mechanisms
 Global coordination of dynamic defenses
- Investigate the use of active deception

 Possible integration into NCR

11/04/09

Expected Contributions in Years 4 & 5

- Proof of feasibility
 - Experimentation in real environment
- Exploration of design and implementation space
- Use of active defenses and deceit
 - Can we challenge attackers' (trust) assumptions?

Summary

- Exploring systems that allow (and require) explicit assumption (trust) declarations
- All deliverables on track (or done) for Years 1-3
- Interesting new directions and capabilities to be explored in Years 4-5

