Parameter-Invariant Monitor Design for Cyber-Physical
Systems:
Part 3 — Implementation of Parameter-Invariant Monitors
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Recall CPS Applications

-,
=TT PPl 0 § S
- - )
.- .- W™ [Ceiling] ™
- - Cu e o .
. LU N
e c Wy = \
u . Quma
(ol
U Qe+ Ques
Que  Quae W/ ﬁT.Mﬁm-|
\‘ N Qw2 Qunl2
W

We | W | 1M T

4 -y WA r‘( WMA-PWA AN T
olar - - z 1, 10, 1N,
Imadiation A[Ev’;‘:l:‘" . h c —_t n:umnl
)
] lcw B s oo "Waia)
’ s Wy =

Today’s Forecast

34

:o i e Cornbu

»-uh»u 30 A
u.n [ uuu a5 ‘
-2 ' 4| * ' - ’

um»au
Ragid City 3

L
o s
San Fravsincs

23 Dec S000 1534 OMT /2 Dec 2000 3424 PMEST

o 2 PRECISE



Recall the Monitor Design Problem

* Design a binary test between:
— H, : null hypothesis

— H; : event hypothesis Hy is true

test claims H, correct non-
detection

H, is true

* Performance constraints
— bound false positive rate
— maximize true positive rate

test claims H, true positive

* Module 1 covered the fundamentals of parameter invariance:
— LRT, GLRT, MlI, and PAIN

* Module 2 covered the design of parameter invariant monitors:
— general form: y = HO 4+ on

This module presents the implementation of PAIN monitors
— real-world applications
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Outline

* Meal detection in type | diabetics
— unknown linear time invariant systems

e Critical pulmonary shunt detection in infants

— detection in structured linear systems with unknown parameters

* Building actuator fault detection

— signal detection in unknown networked systems
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Outline

* Meal detection in type | diabetics
— unknown linear time invariant systems
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Meal Detection in Type | Diabetics

Meals

Sensor: Continuous
Glucose Monitor

Actuator: Insulin Pump
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Meal Detection in Type | Diabetics
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Meal Monitor Design Problem

A Meal Detection Scenario Example

160
140 § —=—CGM Data
Vv Insulin Bolus
120 A Meal
100 | | | |
2100 2120 2140 2160 2180 2200 2220
Simulation Time (minutes)

* hypothesis testing problem:
* window of w measurements

* test meal impulse happening in window d, or d,

e use the 2-sided PAIN approach
allows for the case where all hypotheses are incorrect

What is the relationship between events and measurements?
* i.e. What is the physical model?
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Sequential Monitoring/Detection

* Seguential Monitoring of sequential events

actual event

> time

sequence of decisions

..

decision
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Physiological Modeling

* FDA accepted model
» 12 states, 30 physiological parameters (unknown)
* non-linear

* Bergman model -5 states, linear — unknown physiological parameters
* 5% order model

Plasma Glucose ——— [~ ( f) D3

i“- D¢ (f) <4—— Meal Input

% m(t)| =

u (l‘) <4—— Insulin Input

Plasma Insulin  ——p- ](t)

* test signals —sequential ranges of hypothesized meal times
e disturbances:
* reported meals = impulse at a time (amount unknown, effect unknown)
* insulin = impulse at a time (amount known, effect unknown)
* measurements
e

e plasma glucose
=3 Penn. .
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PAIN monitor for Meal Detection

A Meal Detection Scenario Example
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PAIN Meal Monitor Evaluation

* Generated 10,000 random virtual patients
* parameters selected from a convex set of FDA-suggested physiological ranges

* Simulated each patient for 20 meals
* using FDA-accepted T1DM simulator (maximal model, non-linear)

* Compared to prominent approaches in literature
* Dassau et al. 2 Kalman, then rate-of-change (RoC) thresholding
* Lee et al. =2 a priori specified FIR filter, then RoC thresholding
* Harvey et al. 2 multi-stage filter, then RoC thresholding

e Evaluate on the criteria:
* false positive rate vs. true positive rate
* time-to-detection (when correct)
* number of false positives per patient
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PAIN Meal Monitor Performance

near-perfect performance

)
T * 99.1% true positive rate
I5 * 0.9% false positive rate
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PAIN Meal Monitor Performance
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PAIN Meal Monitor Performance
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Summary : Detection with Unknown LTI models

* Sequential detection with sequential inputs is powerful

— works very well for meal-detection
— dominates rate-of-change approaches in literature

* Diabetic meal detection is not a new problem (over 15 years old)

— No classical “machine learning” solution in literature
— why? ... possibly because of physiological variability between patients

* What if the system has some structure which can be exploited?
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Outline

e Critical pulmonary shunt detection in infants

— detection in structured linear systems with unknown parameters
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Detecting Critical Pulmonary Shunts in Infants

One lung participating in

Both lungs participating in .
- . Shunt : pulmonary exchange

pulmonary exchange
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Critical Pulmonary Shunt Detection Problem

e Option A: hypothesize the shunt as an input
— use the unknown LTI system monitor (as before)

e Option B: build a “structured” model of the dynamics when:
— ashuntis present
— ashuntis not present

* Both options require some model information
— where does this come from?
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Compartmental Modeling

* Option A: hypothesize the shunt as an input (use LTI approach)
— requires little domain expertise

* Qualitative heuristic for option A: add dimension(s) to the LTI model when:
— physical separation (+1 per degree separation)
— time-delay (+1 per unit delay)
— test signal is not “really” an impulse (+ model_order_needed)

— critical shunt detection: model order =4
 diffusion = +1, circulation delay = +2, sustained event 2> + 1

* Concept extends beyond physiology
— networks (degree of separation)
— any dynamically coupled linkage
* e.g. fluid transfer in automotive transmission

Penn Apply 2-sided PAIN monitor as before

Engineering
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Compartmental Modeling

* Option B: build a structured model of the dynamics
— requires significant domain expertise
f no shunt dynamics
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PAIN Critical Shunt Monitor Evaluation

* 209 human patients considered (all children)
* 61 patients experiencing with potential critical shunts
e annotations are unreliable
e 148 patients without a shunt

 Compare the following approaches
* dd-PAIN; = option A with trained thresholds
* PAIN,,,s = option B without trained thresholds
* dd-PAIN,,, = option B with trained thresholds
* GLRT,,ys = physiology based GLRT with trained thresholds

* Evaluate on the criteria:
» false positive rate variability between patients (false positive rate vs. patient)
e using patients without a shunt
» predictive capability of the detector (true positive rate vs. time)
e using patients with a shunt
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Critical Shunt Monitor Performance
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trained option B is the “best”
trained option A is still good
GLRT has wide variance in false positive rate across patients
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Summary : Detection in Structured Linear Systems

* Improved performance achievable by including physical model knowledge
— sequential detection of sequential events approach still can be useful

 GLRT can not bound the false positive rate in all applications
— e.g. critical shunt detection
— statement generalizes to other classical data-driven approaches
* e.g. detection/classification via ARMAX features

* Are there any physical model invariances that are easy to exploit?
— Doesn’t require domain knowledge to build a model.
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Outline

* Building actuator fault detection
— signal detection in unknown networked systems
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Detecting Building Actuator Faults
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Building Actuator Fault Detection Problem

e Test signals:
* H,:applied actuator voltage
* H,:aconstant voltage
* captures “zero” applied voltage (electrical failure)
* captures stuck in a position (mechanical failure)

* Dynamics are well approximated by a network system

* dynamics has a unit eigenvalue corresponding to sum of values in network
e anatural invariant to dynamics

* still has unknown model error
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Building Fault Detector Performance

* near constant false alarm rate, detection rate improves with time
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Summary: Detection in Unknown Networked Dynamics

* Exploiting natural invariances can be useful
— reduction in model error

 Many other “systems” are well approximated by networked dynamics
— power transmission dynamics
— epidemics
— social dynamics
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Closing Remarks and Insight

e parameter-invariant monitoring is a structured approach to monitor design
that addresses variability in CPS applications.
— can address some difficulties with classical monitor design

* The general form presented herein is not the only statistic:
— statistics to deal with missing measurements
— cases when parts of the model are known
e e.g. model error is known

* Machine learning + Parameter Invariant statistics
— use parameter invariant techniques to generate feature

* invariant to variability
— learn the best classifier over the parameter invariant features

* can boost performance

* Seeall our work at: https://rtg.cis.upenn.edu/parameter-invariant.html
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