Parameter-Invariant Monitor Design for Cyber-Physical Systems:

Part 3 – Implementation of Parameter-Invariant Monitors

James Weimer, Oleg Sokolsky, Insup Lee

Recall CPS Applications

Recall the Monitor Design Problem

Design a binary test between:

- H₀: null hypothesis

– H₁: event hypothesis

- Performance constraints
 - bound false positive rate
 - maximize true positive rate

	H _o is true	H ₁ is true
test claims H ₀	correct non- detection	missed detection
test claims H ₁	false positive	true positive

- Module 1 covered the fundamentals of parameter invariance:
 - LRT, GLRT, MI, and PAIN
- Module 2 covered the design of parameter invariant monitors:
 - general form: $\mathbf{y} = \mathbf{H} \mathbf{ heta} + \sigma \mathbf{n}$
- This module presents the implementation of PAIN monitors
 - real-world applications

Outline

- Meal detection in type I diabetics
 - unknown linear time invariant systems
- Critical pulmonary shunt detection in infants
 - detection in structured linear systems with unknown parameters
- Building actuator fault detection
 - signal detection in unknown networked systems

Outline

- Meal detection in type I diabetics
 - unknown linear time invariant systems
- Critical pulmonary shunt detection in infants
 - detection in structured linear systems with unknown parameters
- Building actuator fault detection
 - signal detection in unknown networked systems

Meal Detection in Type I Diabetics

Meal Detection in Type I Diabetics

Meal Monitor Design Problem

- hypothesis testing problem:
 - · window of w measurements
 - test meal impulse happening in window d₁ or d₂
 - use the 2-sided PAIN approach
 - allows for the case where all hypotheses are incorrect
- What is the relationship between events and measurements?
 - i.e. What is the physical model?

Sequential Monitoring/Detection

Sequential Monitoring of sequential events

Physiological Modeling

- FDA accepted model
 - 12 states, 30 physiological parameters (unknown)
 - non-linear
- Bergman model 5 states, linear unknown physiological parameters

- test signals sequential ranges of hypothesized meal times
- disturbances:
 - reported meals = impulse at a time (amount unknown, effect unknown)
 - insulin = impulse at a time (amount known, effect unknown)
- measurements
 - plasma glucose

PAIN monitor for Meal Detection

PAIN Meal Monitor Evaluation

- Generated 10,000 random virtual patients
 - parameters selected from a convex set of FDA-suggested physiological ranges
- Simulated each patient for 20 meals
 - using FDA-accepted T1DM simulator (maximal model, non-linear)
- Compared to prominent approaches in literature
 - Dassau et al. → Kalman, then rate-of-change (RoC) thresholding
 - Lee et al. → a priori specified FIR filter, then RoC thresholding
 - Harvey et al. → multi-stage filter, then RoC thresholding
- Evaluate on the criteria:
 - false positive rate vs. true positive rate
 - time-to-detection (when correct)
 - number of false positives per patient

PAIN Meal Monitor Performance

PAIN Meal Monitor Performance

PAIN Meal Monitor Performance

Summary: Detection with Unknown LTI models

- Sequential detection with sequential inputs is powerful
 - works very well for meal-detection
 - dominates rate-of-change approaches in literature
- Diabetic meal detection is not a new problem (over 15 years old)
 - No classical "machine learning" solution in literature
 - why? ... possibly because of physiological variability between patients
- What if the system has some structure which can be exploited?

Outline

- Meal detection in type I diabetics
 - unknown linear time invariant systems
- Critical pulmonary shunt detection in infants
 - detection in structured linear systems with unknown parameters
- Building actuator fault detection
 - signal detection in unknown networked systems

Detecting Critical Pulmonary Shunts in Infants

Both lungs participating in pulmonary exchange

One lung participating in pulmonary exchange

PRECISE

Critical Pulmonary Shunt Detection Problem

- Option A: hypothesize the shunt as an input
 - use the unknown LTI system monitor (as before)
- Option B: build a "structured" model of the dynamics when:
 - a shunt is present
 - a shunt is not present
- Both options require some model information
 - where does this come from?

Compartmental Modeling

- Option A: hypothesize the shunt as an input (use LTI approach)
 - requires little domain expertise
- Qualitative heuristic for option A: add dimension(s) to the LTI model when:
 - physical separation (+1 per degree separation)
 - time-delay (+1 per unit delay)
 - test signal is not "really" an impulse (+ model_order_needed)
 - critical shunt detection: model order = 4
 - diffusion \rightarrow +1, circulation delay \rightarrow +2, sustained event \rightarrow +1
- Concept extends beyond physiology
 - networks (degree of separation)
 - any dynamically coupled linkage
 - e.g. fluid transfer in automotive transmission

PRECISE

Compartmental Modeling

- Option B: build a structured model of the dynamics
 - requires significant domain expertise

$$\begin{bmatrix} x^{L}(k) \\ x^{R}(k) \end{bmatrix} = \begin{bmatrix} \frac{\alpha}{V(k)} & \frac{\alpha}{V(k)} \\ \frac{\alpha}{V(k)} & \frac{\alpha}{V(k)} \end{bmatrix} \begin{bmatrix} x^{L}(k-\kappa) \\ x^{R}(k-\kappa) \end{bmatrix} + \begin{bmatrix} \frac{2\alpha}{V(k)} & n^{L}(k) \\ \frac{2\alpha}{V(k)} & n^{R}(k) \end{bmatrix} \begin{bmatrix} \mu \\ \sigma \end{bmatrix}$$
$$y(k) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x^{L}(k) \\ x^{R}(k) \end{bmatrix}$$

diffusion coefficient

$$\mathcal{H}_j: \ \mathbf{y} = \mathbf{H}_j \theta + \sigma_j \mathbf{n} \quad \theta = \begin{bmatrix} \alpha \\ \alpha \mu \end{bmatrix}$$

$$\left[\begin{array}{c} x^{NS}(k) \\ x^{S}(k) \end{array} \right] = \left[\begin{array}{cc} \frac{\alpha}{2V(k)} & \frac{\alpha}{2V(k)} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right] \left[\begin{array}{c} x^{NS}(k-\kappa) \\ x^{S}(k-\kappa) \end{array} \right] + \left[\begin{array}{cc} \frac{\alpha}{V(k)} & n^{NS}(k) \\ 1 & 0 \end{array} \right] \left[\begin{array}{c} \mu \\ \sigma \end{array} \right]$$

$$y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x^{NS}(k) \\ x^{S}(k) \end{bmatrix}$$

shunt dynamics

- pros: potential gains in performance
- cons: difficult to design

PAIN Critical Shunt Monitor Evaluation

- 209 human patients considered (all children)
 - 61 patients experiencing with potential critical shunts
 - annotations are unreliable
 - 148 patients without a shunt
- Compare the following approaches
 - dd-PAIN_{TS} → option A with trained thresholds
 - PAIN_{PHYS} → option B without trained thresholds
 - dd-PAIN_{PHYS} → option B with trained thresholds
 - GLRT_{PHYS} → physiology based GLRT with trained thresholds
- Evaluate on the criteria:
 - false positive rate variability between patients (false positive rate vs. patient)
 - using patients without a shunt
 - predictive capability of the detector (true positive rate vs. time)
 - using patients with a shunt

Critical Shunt Monitor Performance

- trained option B is the "best"
- · trained option A is still good
- GLRT has wide variance in false positive rate across patients

Summary: Detection in Structured Linear Systems

- Improved performance achievable by including physical model knowledge
 - sequential detection of sequential events approach still can be useful

- GLRT can not bound the false positive rate in all applications
 - e.g. critical shunt detection
 - statement generalizes to other classical data-driven approaches
 - e.g. detection/classification via ARMAX features
- Are there any physical model invariances that are easy to exploit?
 - Doesn't require domain knowledge to build a model.

Outline

- Meal detection in type I diabetics
 - unknown linear time invariant systems
- Critical pulmonary shunt detection in infants
 - detection in structured linear systems with unknown parameters
- Building actuator fault detection
 - signal detection in unknown networked systems

Detecting Building Actuator Faults

Building Actuator Fault Detection Problem

- Test signals:
 - H₀: applied actuator voltage
 - H₁: a constant voltage
 - captures "zero" applied voltage (electrical failure)
 - captures stuck in a position (mechanical failure)
- Dynamics are well approximated by a network system
 - dynamics has a unit eigenvalue corresponding to sum of values in network
 - a natural invariant to dynamics
 - still has unknown model error

Building Fault Detector Performance

near constant false alarm rate, detection rate improves with time

Summary: Detection in Unknown Networked Dynamics

- Exploiting natural invariances can be useful
 - reduction in model error
- Many other "systems" are well approximated by networked dynamics
 - power transmission dynamics
 - epidemics
 - social dynamics

Closing Remarks and Insight

- parameter-invariant monitoring is a structured approach to monitor design that addresses variability in CPS applications.
 - can address some difficulties with classical monitor design
- The general form presented herein is not the only statistic:
 - statistics to deal with missing measurements
 - cases when parts of the model are known
 - e.g. model error is known
- Machine learning + Parameter Invariant statistics
 - use parameter invariant techniques to generate feature
 - invariant to variability
 - learn the best classifier over the parameter invariant features
 - can boost performance
- See all our work at: https://rtg.cis.upenn.edu/parameter-invariant.html

