
How to create an Agent in IEEE-11073-PHD

October 22, 2012

1 Introduction

This document gives you a brief idea about how we created an IEEE-11073
compatible agent following the specification. The example code for the
agents which we have created comes packaged with the Open Health Connec-
tor(OHC) framework. This framework which is based on publish-subscribe
design pattern provides a plug and play platform for the agent which can
register its capabilities with the EventHandler to subscribe for the specific
data types. When the OHC platform receives the data corresponding to the
registered capabilities, it publishes the received data to the agent who has
subscribed its capabilities.

Outline The remainder of this article is organized as follows. Section 2
gives account of the IEEE-11073-PHD protocol and its motivation. We
have provided with how to read and interpret the specification for the Pulse
Oximeter Agent based on IEEE-11073 protocol in Section 3. Finally, Sec-
tion 4 we give directions about how we have created the agent based on
Java.

2 IEEE 11073- PHD Specification

ISO and IEEE 11073 standards enable communication between medical
devices and external computer systems. This standard and corresponding
IEEE 11073-104zz standards address a need for a simplified and optimized
communication approach for personal health devices, which may or may not

1



be regulated devices. These standards align with, and draw upon, the ex-
isting clinically focused standards to provide easy management of data from
either a clinical or personal health device.

Agents (e.g., blood pressure monitors, weighing scales, and pedometers)
collect information about a person (or persons) and transfer the information
to a manager (e.g., cell phone, health appliance, or personal computer) for
collection, display, and possible later transmission. The manager may also
forward the data to remote support services for further analysis. The infor-
mation is available from a range of domains including disease management,
health and fitness, or aging independently applications.

The communication path between agent and manager is assumed to be a
logical point-to-point connection. Generally, an agent communicates with a
single manager at any point in time. A manager may communicate with mul-
tiple agents simultaneously using separate point-to-point connections. The
primary concentration is the interface and data exchange between the agents
and manager. However, this interface cannot be created in isolation by ig-
noring the remainder of the solution space. Remaining cognizant of the
entire system helps to ensure that data can reasonably move from the agents
all the way to the remote support services when necessary. This path may
include converting the data format, exchange protocols, and transport proto-
cols across different interfaces. Much of the standardization effort is outside
of the scope of the Personal Health Devices Working Group; however, align-
ing all standardization efforts allows data to flow seamlessly through the
overall set of systems.

The application layers are, for the most part, not specific to any par-
ticular transport. Where necessary, this standard identifies assumptions that
require direct support by a transport or a shim layer above the transport.
This approach allows support for various transports. The definition of the
transports is outside the scope of this standard and the working group. Above
the transport layer is the Optimized Exchange Protocol (described in the
IEEE 11073 standard). This protocol consists of two aspects: the applica-
tion layer services and the definition of the data exchange protocol between
agents and managers. The application layer services provide the protocol for
connection management and reliable transfer of actions and data between
agent and manager. The data exchange protocol defines the commands,
agent configuration information, data format, and overall protocol. The Op-

2



timized Exchange Protocol provides the basis to support any type of agent.
For a specific device type, the reader is directed to the device specialization
for that agent to understand the capabilities of the device and its implemen-
tation according to this standard. The device specialization indicates which
aspects of this standard to comprehend and where further information to
implement the device is found.

Above the exchange protocol are device specializations that describe
specific details relative to the particular agent (e.g., blood pressure monitor,
weighing scale, or pedometer). The specializations describe the details of
how these agents work and act as a detailed description for creating a specific
type of agent. Additionally, they provide reference to a related standard for
further details. The standard numbers reserved for device specializations
range from IEEE Std 11073-10401 through IEEE Std 11073-10499, inclusive.
When the collection of standards is being referenced, the term IEEE 11073-
104zz is used where zz could be any number in the range from 01 to 99,
inclusive.

Some device specializations describe broad categories of device types
(e.g., the IEEE Std 11073-10441 models device types that promote cardio-
vascular activity such as step counters or exercise cycles). Other device
specializations have a narrow focus on a single device type (e.g., IEEE Std
11073-10408 models thermometers). Specializations that address one or de-
fine more than one device types may also define profiles. A profile further
constrains the model defined in a specialization to increase interoperabil-
ity (e.g., the step counter profile utilizes a limited portion of the IEEE Std
11073-10441). The ISO/IEEE P11073-00103 [B8] technical report describes
the overall personal health space with further definition of the underlying
use cases and usage models.

This standard imports information from ISO/IEEE 11073-10201:2004
[B13] and ISO/IEEE 11073-20101:2004 [B14] as normative annexes. If there
is a discrepancy between these standards, this standard takes priority. Be-
cause of the reuse of constructs from these standards, some of the names
appear to be more clinically focused [e.g., medical device system (MDS) in-
stead of personal health device system]; however, to maintain consistency,
the traditional names have been preserved.

3



3 Pulse Oximeter using IEEE 11073-PHD

3.1 Pulse Oximeter Device Specializations

In the context of personal health devices in the ISO/IEEE 11073 family of
standards, a pulse oximeter, also called an oximeter, provides a noninvasive
estimate of functional oxygen of arterial haemoglobin (SpO2) from a light
signal interacting with tissue, by using the time-dependent changes in tissue
optical properties that occur with pulsatile blood flow. Applying the Beer-
Lambert law of light absorption through such an arterial network, the fraction
of oxygenation of arterial haemoglobin can be estimated. This estimate,
normally expressed as a percentage by multiplying that fraction by 100, is
known as SpO2. Occasionally, this estimate may be referenced as information
applicable to pulse oximetry.

3.2 Device Types

Pulse oximeter systems with applicability in the personal health space may
take on a variety of configurations and sensor compositions, and their configu-
rations have suitability in different personal health application spaces. Pulse
oximeter equipment comprises a pulse oximeter monitor, a pulse oximeter
probe, and a probe cable extender, if provided. Some oximeters are all-in-
one assemblies, where the optical probe, processing, and display components
are in a single package. Other oximeters may consist of separate sensor and
processing/display components. Still others may place the sensor and signal
processing in one component, and send that information into an external
component for display and storage. In addition, other configurations may
add storage capability into the system. This implies that different informa-
tion models may be best suited for each particular device configuration.

3.3 Device Configurations

Although agents typically have a static configuration, it is permissible and
desirable for an agent to support multiple configurations, one of which would
be active at any given time. Pulse oximeters may have a rich set of fea-
tures that can be combined into a collection of different configurations, one
of which can be selected by the manager during configuration. Two general
categories of configurations exist. The first category is known as the set of

4



standard configurations. These are intended to describe a relatively limited
feature set of a single device specialization, which have predefined configu-
ration ID codes. Managers may be pre-loaded with these configurations, in
which case the configuration process is eliminated and immediate operation
is allowed. The second category involves the set of extended configurations.
These configurations are more flexible in that they may include concepts
particular to one or more device specializations or include other features as
defined in this standard

4 How to create a simple PulseOximeter Agent?

The process of creating an agent involves three steps of :

4.1 Association

1. The version of the association procedure used by the agent shall be set
to assoc-version1 (i.e., assocversion = 0x80000000).

2. The DataProtoList structure element of the data protocol identifier
shall be set to data-proto-id-20601 (i.e., data-proto-id = 0x5079).

3. The data-proto-info field shall contain a PhdAssociationInformation
structure, which shall contain the following parameter values

4. The version of the data exchange protocol shall be set to protocol-
version1 (i.e., protocol-version = 0x80000000).

5. At least the MDER shall be supported (i.e., encoding-rules = 0x8000).

6. The version of the nomenclature used shall be set to nom-version1 (i.e.,
nomenclature-version = 0x80000000).

7. The functional-units field may have the test association bits set, but
shall not have any other bits set.

8. The system-type field shall be set to sys-type-agent (i.e., system-type
= 0x00800000).

5



9. The system-id field shall be set to the value of the System-Id attribute
of the MDS object of the agent. The manager may use this field to
determine the identity of the pulse oximeter with which it is associating
and, optionally, to implement a simple access restriction policy.

10. The dev-config-id field shall be set to the value of the Dev-Configuration-
Id attribute of the MDS object of the agent.

4.2 Configurtion

4.2.1 General

The agent enters the Configuring state if it receives an Association Response
of accepted-unknown-config. In this case, the configuration procedure as
specified in IEEE Std 11073-20601-2008 shall be followed. The following
subclauses specify the configuration notification and response messages for
a pulse oximetry agent with standard configuration ID 0x0190. Normally, a
manager would already know the standard configuration. However, for the
purposes of our example, it does not.

4.2.2 Standard Configuration

The agent performs the configuration procedure using a Remote Operation
Invoke — Confirmed Event Report message with an mdc config event to
send its configuration to the manager (see IEEE Std 11073-20601-2008). The
ConfigReport structure is used for the event-info field.

4.3 Operation

4.3.1 General

Measurement data and status information are communicated from the pulse
oximetry agent during the Operating state. If not stated otherwise, the
operating procedure for a pulse oximetry agent of this standard shall be as
specified in IEEE Std 11073-20601-2008.

4.3.2 GET pulse oximeter MDS attributes

If the manager leaves the attribute-id-list field in the roiv-cmip-get service
message empty, the pulse oximetry agent shall respond with a rors-cmip-get

6



service message in which the attribute-list contains a list of all implemented
attributes of the MDS object. If the manager requests specific MDS ob-
ject attributes, indicated by the elements in attribute-id-list, and the agent
supports this capability, the pulse oximetry agent shall respond with a rors-
cmip-get service message in which the attribute-list contains a list of the
requested attributes of the MDS object that are implemented. It is not re-
quired for a pulse oximetry agent to support this capability. If this capability
is not implemented, the pulse oximetry agent shall respond with a Remote
Operation Error Result (roer) service message (see IEEE Std 11073-20601-
2008) with the error-value field set to no-such-action(9).

4.3.3 Measurement Data Transmission

Measurement data transfer for a pulse oximetry agent of this standard may
be initiated by either the agent or the manager (see agent- and manager-
initiated measurement data transmission in IEEE Std 11073- 20601-2008).
To limit the amount of data being transported within an APDU, the pulse
oximetry agent shall not include more than 25 temporarily stored measure-
ments in a single event report. If more than 25 pending measurements are
available for transmission, they may be sent either using multiple event re-
ports or by incorporating a persistent store facility. If multiple oximetry
measurements are available, up to 25 measurements should be transmitted
within a single event report. Alternatively, they may be transmitted using
a single event report for each oximetry measurement. However, the former
strategy is recommended to reduce overall message size and power consump-
tion.

5 How to read an IEEE specification for an

agent and use the JAC compiler to get Java

attribute classes?

1. Suppose we want to create a corresponding Java code for the MDS
attribute of SystemModel which comes under the Configuration phase.

2. We start by referring to the IEEE 11073-PHD spec which gives us the
ASN.1 data strucuture format.

7



3. We can see that it is a sequence of two Octet String type of data types.

4. Start by creating a text file containing the data strucuture for the
SystemModel.

5. Now for every enclosed data structure which is not a primary data
type in ASN.1 we will write the corresponding structures for every
such secondary data strucuture, until it has been decomposed to a
data structure which consists of primary data types.

6. Now compile the text file using the open-source JAC compiler to get
the corresponding Java classes

7. Now we can start by putting values in the data fields of the created
Java classes.

8. For whichever datatypes which are not primary, we will first need to
create the objects for those secondary data fields and then initialize the
data fields with these objects.

9. Now we have to add the switch statements for the corresponding types
in the AVA Type class for creating the objects of the classes dynami-
cally.So in case of SystemModel attribute which we are trying to imple-
ment we will add a switch statement for the corresponding ID which is
2344 is this case. These IDs can be searched in the nomenclature code
for IEEE 11073-PHD.

10. They can then be assigned to the parent classes of primary data types
like sequence, sequenceof or integer and then we cast to the specific
classes while filling up the data structures in the main program.

11. This has been implemented because the JAC compiler does not support
the ANY type of data structure which can be assigned any data type
based on the nomenclature code.

12. We have only supported the attributes corresponding to the nomencla-
ture codes which are used in the six agents which we have implemented.

13. For extending the support for other attributes, we recommend to refer
the IEEE 11073 document and add the switch cases for corresponding
data fields.

8



14. This technique to dynamically cast to the child classes of primary data
types like Integer, sequence and sequenceOf is adopted for whatever
datatypes which have this ANY data type defined as an enclosed field.

15. Now for fixing the byte output streams which inherently seem to be
encoded in the BER format, which as we know is a superset of DER
encoding rules, but it seems that the Continua Manager which we are
using in order to verify that our agent is compatible with the IEEE
11073 standard, supports only DER encoding format.

16. So we have to fix the output streams for definite encoding in which we
do not write the length of the written data field on the stream and just
write the values.

17. The version of JAC compiler which we are providing with the Open
Health Connector project has the primary data types fixed for the
DER encoding formats.

18. Now for every data type of primary type sequenceOf we have to add
some code to the BERConstruct class. We could have added this code
for the parent class of SequenceOf but it seems that the IEEE 11073
specification does not use this code for every child class of SequenceOf
data type.

19. So for every child SequenceOf class we will have to check whether we
need to write the total length of the enclosed data types on the byte
output stream and then add the corresponding code to write the total
length in the writeElement method of the BerConstruct class of the
JAC Compiler for case of SequenceOf.

6 Future work

Though we were successful in implementing the essential basic features of
the IEEE 11073-PHD standard and create a compatible agent, the protocol
is too intensive to be implemented as an example. So we have made an effort
to solely implement only those attribute classes which are required by the
agents which come packaged along with the OHC framework. Also, the agent
maintains a finite state machine which is useful for reliable communication.
This involves reading the sequence numbers of received responses from the

9



manager and keeping a track for them. But for the purposes of giving a
simpler example code, we have stopped at implementing only the essential
features of this FSM required to communicate with the manager. The reader
who is interersted in further extending the project to support a FSM can
refer to the device specialization of the agent and use the directions given
above.

References

1. IEEE 11073-PHD Standard

2. IEEE 11703-PHD specification for Pulse Oximeter

10


