
Monterey Workshop, Paris - 2006, October 17 1DTSI

Component models for embedded systems:
from UML to Autosar

François Terrier

with contributions from
Sylvain Robert, Ansgar Radermacher, Frédéric Loiret

CEA-List

francois.terrier@cea.fr

Monterey Workshop, Paris - 2006, October 17 2DTSI

Local context of researchs

Usine Logicielle

@

Design and control of complex systems

Multi domain tools for Model Driven Engineering
Heterogeneity & interoperability management

Usine Logicielle

@

Design and control of complex systems

Models

Verification,
testing,

co-simulation

Heterogeneous modeling
Formalisms

Bridges MARTE
UML RTEDSL Plug

EMF
Reposit.

Scilab

Action
Language

DSL Plug
Scade

Formalisms
Bridges

UML2
Meta
M

Model
transfortation

language

Execution infrastructure built through generation & libraries
Integration of fault tolerance services

Container

Component

www.usine-logicielle.org

NUM@TEC

AUTOMOTIVE
NUM@TEC

AUTOMOTIVE Research program on embedded systems
for automotive & transportation

AUTOMOTIVEAUTOMOTIVE

Requirement
modeling,

traceability
& ADL

Execution
platform and

design for
Safety

Performance
analysis
on OSEK
plateform

Heterogenous
system

simulation

Usine Logicielle

@
Automotive instanciation

Design and control of complex systems www.numatec-automotive.com

Monterey Workshop, Paris - 2006, October 17 6DTSI

UML & Component model

… Starting with a UML profile for RT!

Monterey Workshop, Paris - 2006, October 17 7DTSI

Building a MDE tool chain for RTES

a conceptual framework
a development process and method,
a set to software engineering tools
an execution platform

to assist in developing applications from requirements to deployment

Req.
documents

Accord|UML

Preliminary
analysis rules

Prototyper Spec.
valider

System
Analyst

System
Analyst

PAM DAM

Validation
Model

Prototype
Model

Testing
Model

Accord|UML

Detailed analysis
rules

Accord|UML

Validation rules

Accord|UML

Testing rules

Accord|UML

Prototyping rules

• UML and profile based approach
UML models
Modelling rules

• UML 2.0 Profiles
For RTE concepts

• Tools to support methodology
Automated refinement
Pattern appliance
Model validation

• Dedicated RT Kernel
Code generation

Monterey Workshop, Paris - 2006, October 17 8DTSI

Introduce High level concepts
RealTimeObject: extend UML active object aRealTimeObject

Selection &
concurrency

control

Attributes

ope_1
signal_1
...

taskMethod
code

Memory
space

UML stereotype

Chose way to model RealTimeObject behavior
Use of protocol state machines (now in UML2, see DIPES’2000…)

Off On

C

initReg[cptVit->getSpeed()=<30]
/display("ON");

stopReg/display("OFF");

tm(100)/tgSpeed = cptVit->getSpeed();

[carSpeed=<30]/display("OFF");

/delta=k1*atan(tgSpeed-cuSpeed);
mot->sendCmd(coupleVariation);

tgSpeed :
intinitReg()
stopReg()

Regulator

LogicLogic AlgorithmicAlgorithmic&

Method behavior
Algorithmic parts

start_ maintainSp()

/ endOf_maintainSp()

Begin

End

carSpeed = cptVit->getSpeed();
delta=k1*atan(tgSpeed-cuSpeed);
mot->sendCmd(coupleVariation);

Regulator

+tgSpeed : integer
+initReg()
+stopReg()
+maintainSp()

Off On
initReg()

stopReg()

maintainSp()

Class behavior-Control logic (protocol of use)

Monterey Workshop, Paris - 2006, October 17 9DTSI

Fix execution model
Specify queue management policy
Specify signal management
Specify concurrency constraints
…

Refine UML protocol
statemachines

Attach selection criteria on each message in the queue

RealTimeFeature

Declare constraints instead to implement them for
implementation/platform independence purpose…

Monterey Workshop, Paris - 2006, October 17 10DTSI

Building complete models
Separate control (object life cycle) from data processing:

Control mechanisms are modeled using state machines
Data processing actions are modeled using UML activity diagrams

• Require addition of explicit notations and some basic actions
Mathematical actions are modeled using MathML language syntax

• Accord|ALproposes two formalisms
A textual (edited in the model)
A graphic based on UML activity diagram

In the profile, each action is defined by 3 elements + examples:
semantics, textual notation (in EBNF), graphic notation

Ada like
SDL like

….

Java like

Monterey Workshop, Paris - 2006, October 17 11DTSI

Modeling rules for preliminary model definition

Interactions with the developed system seen as a black box

Focuss on use case definition
and collaboration specifications

Monterey Workshop, Paris - 2006, October 17 12DTSI

Assistance and automation:
generation (& trace) of the detailed model squeleton

Monterey Workshop, Paris - 2006, October 17 13DTSI

Model translation into formal model
Behavior analysis through symbolic execution

Formal analysis of system
behavior from its

UML model

Monterey Workshop, Paris - 2006, October 17 14DTSI

Feedback for behaviour representation

Test sequences
automatically generated
and imported in modeler

Monterey Workshop, Paris - 2006, October 17 15DTSI

UML for RTES: a set of ongoing actions

Formalise
an action
language

UML 2

MOF

XMI

Executable
UML

foundation

Autosar 2

Time model
(clock/synchr)
Characteristics

Ressources

Aligment
of timing

infos

Monterey Workshop, Paris - 2006, October 17 16DTSI

Overview of the tool set

Component Based Execution infrastructure
built through generation & libraries

UM
L back

bone

UML2
MetaM

MARTE

Accord1 prof

Action
Lang. Ed.

Comp. ADL prof.

Platform
models

Code,
wrapper

generator

Fo
rm

al
 te

ch
ni

qu
es

Test
generation

Scheduling
analysis

Requirement
validation

Sched. prof
Accordn prof

Test. prof

Req. prof

Method
support

EMF
Reposit.

Monterey Workshop, Paris - 2006, October 17 17DTSI

Component diagram

Model the system architecture identifying

• Modular and replaceable parts of a system
Content is encapsulated
Can be replaced during design time or execution time

• Provided and required interface describing:
Some structural points (attributes, associations, …)
Its behaviour (operation, reception, state-machine, …)

• Two possible views
Extern (“black box”): contract of use, visible behaviour
Intern (“white box”)

Shows elements being purely intern to the component (« private »)
Shows how behaviour defined by the interface are implemented

• Connexion mechanisms
Interface dependencies (association, use, realization)

Monterey Workshop, Paris - 2006, October 17 18DTSI

UML 2.0 Interface
Specify operation, signal, attribute, behaviour

No instances (~abstract class)

“Provided” realized by a classifier (Class, Component…)
A classifier can realize several interfaces

Required used by a classifier

« Interface »
Starter

start()
stop()
« reception »
OnOff
maxSp: float

Starter Display

« component »
SpeedRegulator

Figure2: condensed notation

Provided Providedprovided
operation

provided
signal

reaction

provided
data

Monterey Workshop, Paris - 2006, October 17 19DTSI

Interface can have constraint of use
• Conformance between Interface / Realisation

protocol state-machine conformance
State invariant, pre- and post-conditions of interface

protocol apply on realization state-machineTorqueManager

+start()
+stop()

« reception »
+OnOff

+maxSp: float

-calcTorque()

-targetSp: float

waiting

running

start
stop

OnOff

OnOff

{protocol}

calcTorque

New states,
transitions,
operations,
receptions
are allowed

« Interface »
Starter

start()
stop()
« reception »
OnOff
maxSp: float

waiting

running

start
stop

OnOff

OnOff

{protocol} Possible formal interpretation:
- Real. state Inv. ⇒ Interf. state Inv.
- For each mapped operation

Interf. Pre ⇒ Real. Pre
Real. Post ⇒ Interf. Post

Monterey Workshop, Paris - 2006, October 17 20DTSI

Connectors
• Delegation connector links interfaces

of a component with contained parts

Display
Starter

« component »
SpeedRegulator

SpM_I

DispSp

« component »
SpeedSensorManager

TorqueManager

mySSM 0..1

Used to model behaviour
implementation in nested
components
Implementation conformity required

• Assembly connector links
required and provided interfaces

Conformity of the interfaces required

Starter Display

« component »
SpeedRegulator

« component »
RegulatorScreen

Implicit assembly connector

Monterey Workshop, Paris - 2006, October 17 21DTSI

Ports

• Ports to structure usages of the interfaces

Display

Starter

« component »
SpeedRegulator

SpM_I

DispSp

« component »
SpeedSensorManager

TorqueManager

mySSM 0..1

ErrorOut

ErrorIn

• Ports making explicit communication links

« component »
SpeedRegulator

« component »
RegulatorScreen

{CCM RPC}

Monterey Workshop, Paris - 2006, October 17 22DTSI

• From Models to Implementation:
Use of a MW component model

Monterey Workshop, Paris - 2006, October 17 23DTSI

A CCM component and its container

• Principle of CCM component definition

IDL
interface
descr.

CCM
Component

Life cycle management

Event
sink

Receptacles

Event
source

Facets

Attributes
componentMgt

CIDL
component
deployment
descr.

• CCM component model

Monterey Workshop, Paris - 2006, October 17 24DTSI

Container/Component model

• Container associated to component aims to
Localise functional product upgrade in the component
Localise dependencies to platforms in the container
Provide acces to infrastructure services

Execution Infrastructure

Component

Container

Component

• Separation of concerns:
business logic
'technical' properties

• Explicit description of:
provided services to other components
requested services from other components

Containers are provided as part of the infrastructure
Based on descriptors move from programmatic to declarative
Easier deployment and reuse, needed for reconfiguration

Monterey Workshop, Paris - 2006, October 17 25DTSI

Containter limitation on interactions

• CCM interactions extensions:
Complex RTE interactions (Streaming, Event passing with priorities,
Buffering, Various pub/sub, Deferred synchronous call, Blackboard)
Modular, extensible interactions

• Make interactions independent from CORBA
Embedded Constrained HW platforms

• Have minimal impact on CCM
Reuse of existing items

• Methodological benefits:
Interactions management peculiar to business domain
Expertise capitalization

Monterey Workshop, Paris - 2006, October 17 26DTSI

Introducing connectors: C3M
Component-Container-Connector Model

• Software entity managing inter-components interaction:
May be considered as part of the container
Fragmented
Communication layer specific to the connector
(potentially) complex intermediary processing

Node A

container

component

Node B

container

component

Communication layer – connector specific (e.g. OSEKcom)

Interaction Connector

Client connector
fragment

Server connector
fragment

Monterey Workshop, Paris - 2006, October 17 27DTSI

Introducing connectors: C3M

• Conceptual mapping with UML components

Node A

container

component

Node B

container

component
Interaction Connector

Client connector
fragment

Server connector
fragment

« component » « component »

{Genric: Deleyed synchronous} {Domain: “Aloha” protocol}

Communication layer – connector specific (e.g. OSEKcom)

Monterey Workshop, Paris - 2006, October 17 28DTSI

Illustration with the OSEK platform

• Execution infrastructure for highly constrained
hardware platforms

an operating system (OSEK-OS)
multi-tasking operating system
highly static, all resources declared at compile time (OIL file)

coupled with a communication environment (OSEK-COM)
simple message-based communication

From CCM to OSEK: Mapping a (highly dynamic) component-
based approach (CCM) on a basic (and highly static) RT/OS!

How preserving the CCM development process?

Monterey Workshop, Paris - 2006, October 17 29DTSI

Illustration with OSEK - Execution model

• Activities instead of components
Identification of activities (control flows) in application architecture

Basically linked to application entry points
Activities timing features description (e.g. end-to-end deadline)

• Mapping to tasks
Components are design-time development artifacts,

with no runtime counterpart
Component code is kept intact

Task2Task1

CF1

CF2

Monterey Workshop, Paris - 2006, October 17 30DTSI

Illustration with OSEK - Communications

• Each Interaction mechanism is realized by a
connector. Ex: synchronous call:

The connector fragment at caller side sends an event
The connector fragment at target side receives this event

Infinite
loop

TASK

WAIT EVENT

CLEAR EVENT

CALL ACTIVITY

C1

C2

providedasynchronous

Enqueue request
+ SetEvent required

Monterey Workshop, Paris - 2006, October 17 31DTSI

Illustration with OSEK - container services

C1

• Periodic activation:
Achieved through the use of
alarms and counters
Interaction with a timer module
(part of framework)

Alarm_C1
Period = P_C1

Callback

Timer

Periodic
increment

BaseCounter

Callback

Alarm_C2
Period = P_C

C2

Monterey Workshop, Paris - 2006, October 17 32DTSI

Illustration with OSEK – complete generation chain

C

IDL

C

IDLC

IDL

Architecture
Deployment

generated

make
file

OIL
Desc.

Container
SRC

Component
OBJ or LIB

(COTS)

Init.

Component
SRC

(App. specific)
CFG.

Generation tool

Compile and Link tool• Mapping from IDL to Embedded C++
• Connector gen. for asynch invocations
• Integrated into OSEK develop. Chain

• Achieved small footprint (1 component)
• component ROM : 2,71 kBytes RAM : 17 Bytes
• container ROM : 23,8 kBytes RAM : 1,43 kBytes

Application
CPU 1

Application
CPU 2

Application
CPU N…

Monterey Workshop, Paris - 2006, October 17 33DTSI

Conclusion

• The (MDE) process is similar
to several approaches such as (e.g.)

AADL & tools
Fractal / Think
Autosar + tools

Monterey Workshop, Paris - 2006, October 17 34DTSI

Component
interface

description
« Fractal IDL »

Component
deployment
description

“Fractal ADL”

MW&OS
generation

MW&OS
assembly

Monterey Workshop, Paris - 2006, October 17 35DTSI

Component
interface

description
« Autosar IDL »

Component
deployment
description

“Autosar ADL”

Autosar MW (RTE)
and task parameters

generation

Monterey Workshop, Paris - 2006, October 17 36DTSI

Starting action…

Fractal
C3M

UMLLwCCM

PolyORB OASISCEA

UML profile for RT-ADL

MARTEUML

Common component model

Think µCCM

PolyORB OASISCEA

Try to push some
convergence on
component Models
and technologies

	Component models for embedded systems: from UML to Autosar
	Local context of researchs
	UML & Component model
	Building a MDE tool chain for RTES
	Introduce High level concepts
	Fix execution model
	Building complete models
	Modeling rules for preliminary model definition
	Assistance and automation:generation (& trace) of the detailed model squeleton
	Model translation into formal modelBehavior analysis through symbolic execution
	Feedback for behaviour representation
	UML for RTES: a set of ongoing actions
	Overview of the tool set
	Component diagram
	UML 2.0 Interface
	Interface can have constraint of use
	Connectors
	Ports
	
	A CCM component and its container
	Container/Component model
	Containter limitation on interactions
	Introducing connectors: C3MComponent-Container-Connector Model
	Introducing connectors: C3M
	Illustration with the OSEK platform
	Illustration with OSEK - Execution model
	Illustration with OSEK - Communications
	Illustration with OSEK - container services
	Illustration with OSEK – complete generation chain
	Conclusion
	
	
	Starting action…

