
Reliability and Flexibility Properties Reliability and Flexibility Properties
of Models for Design and Runof Models for Design and Run--time time

AnalysisAnalysis

Monterey Workshop 2006Monterey Workshop 2006Monterey Workshop 2006
October 16October 16October 16---18, 2006 18, 2006 18, 2006 ––– Paris, FranceParis, FranceParis, France

Manuel Rodríguez
National Research Council

Jointly with Luqi, V. Ivanchenko, V. Berzins

Naval Postgraduate School
Monterey, CA

USA

2
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Introduction
• Large variety of methods, models and assisting tools for

software development and analysis
• Systems of Embedded Systems (SoES) require new

capabilities
– Shortcoming of existing tools: poor means for representing

system interactions, concurrency, interoperability and scalability
– SoES needs modeling of the system and the environment (e.g.,

physical devices)

• Review of modeling paradigms and how they affect
properties of SoES
– Trade-off between reliability and flexibility
– Documentation Driven Development (DDD) & Agent Based

System (ABS)

3
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Outline
• Model-driven development & analysis

• Documentation driven approach
– Documentation Driven Development (DDD)

• Agent Based Systems (ABS)

• Conclusions

4
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Outline
• Model-driven development & analysis

• Documentation driven approach
– Documentation Driven Development (DDD)

• Agent Based Systems (ABS)

• Conclusions

5
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Model-driven development & analysis
• SoES needs a framework to connect constraints to a

large variety of requirements
– Task complexity, multiplicity of SW/HW platforms and protocols

• Model-driven development
– Suitable paradigm applied to both design and run-time analysis

Automatic
Prototyping

Representations
for stakeholders

Requirements
at different levels

Run-time testing,
prediction

Interpretation,
validation

Representing
environment

of SoES

System
Modeling

Design stage Run-time

6
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Model-driven development & analysis
• System design

– Multi-level representation of requirements
– Software elements for different stakeholders at

different degrees of detail
– Imposing constraints of various scopes and automatic

prototyping
• Run-time analysis

– E.g.: testing, prediction, interpretation of results
– Simplified model of interactions to limit number of

behaviors
• Architectural models oriented to interactions and behaviors

are preferred to structure-oriented architectures
• Managing complexity facilitates dynamic analyses as testing

7
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Outline
• Model-driven development & analysis

• Documentation driven approach
– Documentation Driven Development (DDD)

• Agent Based Systems (ABS)

• Conclusions

8
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Documentation driven approach
• Documentation plays a key role in software development

– Informal/formal representations
• Open challenges in documentation technology

– Information consistency across development phases
– Increase of intellectual burden on stakeholders
– Need for transformations
– Inefficient support for complex real-time systems

• Example: Sensor-network based systems
– System requirements are constantly changing
– Success depends on being able to accommodate requirements

changes and system extensions to address emerging
requirements

– This flexibility should not compromise the system dependability
• Documentation Driven Development (DDD) addresses

these problems

9
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Documentation Driven Development (DDD)

• DDD features
– Documentation structured into computational and

design models
– Models and simulations included in documentation
– Automated decision support and representation in

multiple formats
– Computer-aided design tools driven by

documentation
– Promptly adaptation to new requirements and support

for diverse stakeholders, while preserving high-
confidence and timing constraints

– Agility of software development and support for partial
automation

10
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Documentation Driven Development (DDD)

– Classification of information
• For tools

– E.g.: mathematical notations, design languages,
programming languages, system models,
requirements/design specifications, ontologies, source
code, test cases, databases, etc.

• For humans
– E.g.: natural language text annotations, decision tables,

spread sheets, computed attributes. Also video,
audio/clips, live simulations, queries, etc.

– DDD divided into:
• Document Management System (DMS)
• Process Measurement System (PMS)

11
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Documentation Driven Development (DDD)

• Documentation Management System
– Create, organize, monitor, analyze, manipulate, and display docs
– Record documentation (reqs. specs, models, design rationale,

stakeholder inputs, project management information, etc.)
– Extract relevant information from all development phases
– Provides a Documentation Repository, Representation

Converters, and Transition Drivers

• Process Measurement System
– Obtain necessary information from the documentation repository
– Metrics & measurement models

• Measure system’s high confidence properties
• Assess the effort and success probability of the project
• Monitor changes in system requirements

– Analysis results presented to developers and users as feedback

12
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Outline
• Model-driven development & analysis

• Documentation driven approach
– Documentation Driven Development (DDD)

• Agent Based Systems (ABS)

• Conclusions

13
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Agent Based Systems (ABS)
• Different definitions

– Behavioral vs. structural based

– Structural (IMPACT)
• Set of data types, action constraints and integrity constraints

• Set of API functions and actions implemented in any
language

• Notion of concurrency and program

– Behavioral (DARPA)
• Autonomously accomplish objectives

• Adapt to the environment

• Cooperate to achieve common goals

14
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Agent Based Systems (ABS)

15
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Agent Based Systems (ABS)
• Advantages for SoES

– Clear mapping between agents and physical
entities/concepts

– Simple and well defined information exchange
– Universal character of agent services

• Example of application: software testing
– Usually done in multidimensional space and thus

computationally difficult
– Agents can help by autonomously performing well

defined and simple actions and tasks to effectively
cope with the system dimensionality

16
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Agent Based Systems (ABS)
• ABS achievements

– Rich mathematical foundations
– Can be built on legacy data/code and specialized

data structures
– Dynamic (can couple arbitrary actions)
– Open (can interact with other agent platforms)
– Security (can make other applications more secure)
– Intelligence

• Collaboration with other agents, creation of plans, reasoning
about time and uncertainty, decision-making, etc.

– Heterogeneous information integration
– Rapid creation/deployment

17
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Agent Based Systems (ABS)
• Examples of agents

– Meta agent programs
• Reasoning about other agents

states and future actions

– Temporal agent programs
• Commitments over time (may

reason about the past)

– Probabilistic agent programs
• Decisions in the presence of

uncertainty

– Secure agent programs
• Information exchange between

secured parties

18
October 16-18, 2006Software Engineering Automation Center, Naval Postgraduate School

Conclusions
• Reliability and flexibility properties of DDD and ABS

– DDD oriented to design with emphasis on hierarchical
representations

– ABS oriented to model performance with emphasis on interactions
and behaviors

• Benefits
– DDD posses some redundancy that makes it robust in case of

requirements conflict or uncertainty/incomplete information
– ABS handles uncertainty as incomplete information (probabilistic

reasoning, system of beliefs)
– Suitable for upgrading through automatic prototyping (DDD) and

rewriting of agents (ABS) without changing the overall system

• All these properties make DDD and ABS well suited for
SoES design and analysis

