
Monterey Workshop 2006 October 16-18, 2006 - Paris, France

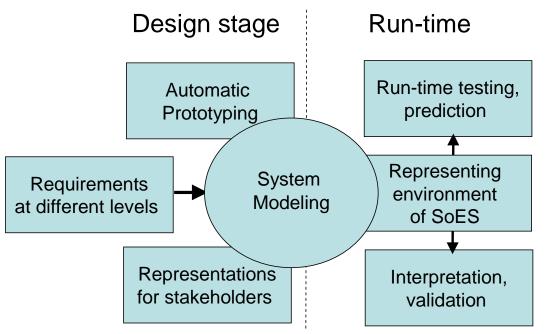
Reliability and Flexibility Properties of Models for Design and Run-time Analysis

Manuel Rodríguez National Research Council

Jointly with Luqi, V. Ivanchenko, V. Berzins

Naval Postgraduate School Monterey, CA USA

Introduction


- Large variety of methods, models and assisting tools for software development and analysis
- Systems of Embedded Systems (SoES) require new capabilities
 - Shortcoming of existing tools: poor means for representing system interactions, concurrency, interoperability and scalability
 - SoES needs modeling of the system and the environment (e.g., physical devices)
- Review of modeling paradigms and how they affect properties of SoES
 - Trade-off between reliability and flexibility
 - Documentation Driven Development (DDD) & Agent Based System (ABS)

- Model-driven development & analysis
- Documentation driven approach
 - Documentation Driven Development (DDD)
- Agent Based Systems (ABS)
- Conclusions

- Model-driven development & analysis
- Documentation driven approach
 Documentation Driven Development (DDD)
- Agent Based Systems (ABS)
- Conclusions

Model-driven development & analysis

- SoES needs a framework to connect constraints to a large variety of requirements
 - Task complexity, multiplicity of SW/HW platforms and protocols
- Model-driven development
 - Suitable paradigm applied to both design and run-time analysis

Model-driven development & analysis

- System design
 - Multi-level representation of requirements
 - Software elements for different stakeholders at different degrees of detail
 - Imposing constraints of various scopes and automatic prototyping
- Run-time analysis
 - E.g.: testing, prediction, interpretation of results
 - Simplified model of interactions to limit number of behaviors
 - Architectural models oriented to interactions and behaviors are preferred to structure-oriented architectures
 - Managing complexity facilitates dynamic analyses as testing

- Model-driven development & analysis
- Documentation driven approach
 - Documentation Driven Development (DDD)
- Agent Based Systems (ABS)
- Conclusions

Documentation driven approach

- Documentation plays a key role in software development
 - Informal/formal representations
- Open challenges in documentation technology
 - Information consistency across development phases
 - Increase of intellectual burden on stakeholders
 - Need for transformations
 - Inefficient support for complex real-time systems
- Example: Sensor-network based systems
 - System requirements are constantly changing
 - Success depends on being able to accommodate requirements changes and system extensions to address emerging requirements
 - This flexibility should not compromise the system dependability
- Documentation Driven Development (DDD) addresses these problems

Documentation Driven Development (DDD)

- DDD features
 - Documentation structured into computational and design models
 - Models and simulations included in documentation
 - Automated decision support and representation in multiple formats
 - Computer-aided design tools driven by documentation
 - Promptly adaptation to new requirements and support for diverse stakeholders, while preserving highconfidence and timing constraints
 - Agility of software development and support for partial automation

Documentation Driven Development (DDD)

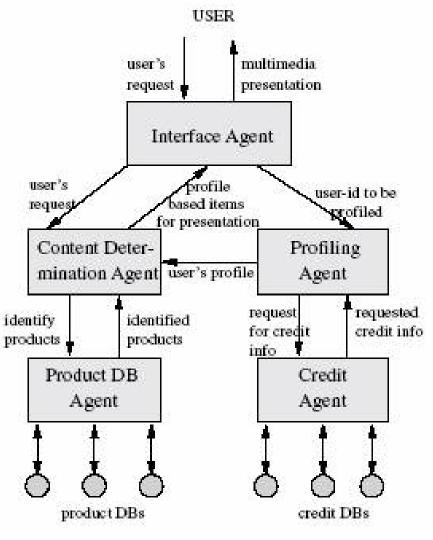
- Classification of information
 - For tools
 - E.g.: mathematical notations, design languages, programming languages, system models, requirements/design specifications, ontologies, source code, test cases, databases, etc.
 - For humans
 - E.g.: natural language text annotations, decision tables, spread sheets, computed attributes. Also video, audio/clips, live simulations, queries, etc.
- DDD divided into:
 - Document Management System (DMS)
 - Process Measurement System (PMS)

Documentation Driven Development (DDD)

- Documentation Management System
 - Create, organize, monitor, analyze, manipulate, and display docs
 - Record documentation (reqs. specs, models, design rationale, stakeholder inputs, project management information, etc.)
 - Extract relevant information from all development phases
 - Provides a Documentation Repository, Representation Converters, and Transition Drivers
- Process Measurement System
 - Obtain necessary information from the documentation repository
 - Metrics & measurement models
 - Measure system's high confidence properties
 - Assess the effort and success probability of the project
 - Monitor changes in system requirements
 - Analysis results presented to developers and users as feedback

- Model-driven development & analysis
- Documentation driven approach
 Documentation Driven Development (DDD)
- Agent Based Systems (ABS)
- Conclusions

- Different definitions
 - Behavioral vs. structural based
 - Structural (IMPACT)
 - Set of data types, action constraints and integrity constraints
 - Set of API functions and actions implemented in any language
 - Notion of concurrency and program
 - Behavioral (DARPA)
 - Autonomously accomplish objectives
 - Adapt to the environment
 - Cooperate to achieve common goals


Software Engineering Automation Center, Naval Postgraduate School

October 16-18, 2006

- Advantages for SoES
 - Clear mapping between agents and physical entities/concepts
 - Simple and well defined information exchange
 - Universal character of agent services
- Example of application: software testing
 - Usually done in multidimensional space and thus computationally difficult
 - Agents can help by autonomously performing well defined and simple actions and tasks to effectively cope with the system dimensionality

- ABS achievements
 - Rich mathematical foundations
 - Can be built on legacy data/code and specialized data structures
 - Dynamic (can couple arbitrary actions)
 - Open (can interact with other agent platforms)
 - Security (can make other applications more secure)
 - Intelligence
 - Collaboration with other agents, creation of plans, reasoning about time and uncertainty, decision-making, etc.
 - Heterogeneous information integration
 - Rapid creation/deployment

- Examples of agents
 - Meta agent programs
 - Reasoning about other agents states and future actions
 - Temporal agent programs
 - Commitments over time (may reason about the past)
 - Probabilistic agent programs
 - Decisions in the presence of uncertainty
 - Secure agent programs
 - Information exchange between secured parties

Conclusions

- Reliability and flexibility properties of DDD and ABS
 - DDD oriented to design with emphasis on hierarchical representations
 - ABS oriented to model performance with emphasis on interactions and behaviors
- Benefits
 - DDD posses some redundancy that makes it robust in case of requirements conflict or uncertainty/incomplete information
 - ABS handles uncertainty as incomplete information (probabilistic reasoning, system of beliefs)
 - Suitable for upgrading through automatic prototyping (DDD) and rewriting of agents (ABS) without changing the overall system
- All these properties make DDD and ABS well suited for SoES design and analysis