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Introduction

» Federated architectures have lead to
high numbers of deployed nodes and
communication networks

— dedicated distributed computer
systems for individual application
subsystems (e.g., comfort, multi-
media, powertrain, passive
safety domain in a car)

— “1 Function — 1 ECU” design
philosophy

» As aresult integrated architectures are °
gaining more and more momentum
(e.g., IMA, AUTOSAR, DECOS)
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Introduction (2)

» System complexity in distributed embedded real-time
systems causes increasing cost of design, verification,
integration and maintenance

» Time-triggered networks widely accepted as
communication infrastructure for safety-critical applications
(e.g., aerospace, currently introduced in automotive
domain)

» Foundation for integrated system architectures that
improve resource utilization, coordination of application
subsystem, and complexity management

Recal-Ti 4
Syshems
m‘@




Technische Universitat Wien

Federated and Integrated Architectures

» Federated architectures provide each application
subsystem with its own dedicated computer system

— Natural separation of application subsystems
— Complexity control
— Fault isolation between computer systems
— Service optimization
 Integrated architectures support multiple application
subsystems within a single distributed computer system
— Reduced hardware cost
— Dependability
— Flexibility
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Challenge in Moving Towards the
Integrated Architectural Paradigm

e Inherent application complexity

e Accidental complexity through integration-induced interference
between application subsystems

— example: integration of two CAN-based application
subsystems

— invalidation of prior services

CAN CAN CAN
Node Node Node

CAM CAM CAM
lode lof

CAN CAN CAM
Node Node Node
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Temporal Composability

» Divide-and-conquer strategies reduce the mental effort for
understanding large systems using subsystems that can be
developed and analyzed in isolation

* Requirement of a framework for smooth integration and reuse of
independently developed components is heeded in order to
increase the level of abstraction in the design process

* Notion of composability refers to the stability of component
properties across integration

» Temporal composability
— instantiation of the general notion of composability
— temporal correctness is not refuted by the system integration
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DECOS Architecture Sopieatior

DA

» Distributed Application Sub-

systems (DASS) O capsuiaion v.“r't'uif’

— nearly independent e —
distributed subsystem

— exploit specific platform

services
» A DAS consists of a number of N
5 0 5 P Time-Triggered
jobs interacting cooperatively Core Architecture
2 Hiding of implementation details from
L Vll’tual network aS the the applicaft.ion‘Ilhereltjyt.exle?]di.ng the
communication infrastructure of (e.9. TTPIC, Tme.Triggered Etheme)
a DAS
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Fault Hypothesis — Hardware Faults

e Fault containment region:

— complete node computer
due to shared physical
resources (e.g., processor,
memory, power supply,
oscillator)

— communication channel

e Failure mode assumption:
— arbitrary node failure

— no spontaneous generation
of correct frames by a
communication channel
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Fault Hypothesis — Software Faults

* Fault containment region: |,
— jobs
— system software
considered to be free of
design faults

e Failure mode assumption:
— communication system:
arbitrary value and
timing message failures
— execution environment:
arbitrary timing and
value failures

T

Hardware fault dimension

Node Computer 1
Job [
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Job E

Node Computer Z
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Encapsulation in the DECOS

Architecture

» Computational resources and communication
resources

— partitions within a node computer with hardware
support (e.g., multi-core processors) and
software support (e.g., operating system)

— virtual networks with guaranteed temporal
properties (bandwidths, latencies)

» Temporal partitioning and spatial partitioning
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Virtual Networks

* Overlay network on top of a time-triggered physical network

* Communication according to requirements of a particular DAS
(e.g., bandwidth, control paradigm)

» Time-triggered virtual networks for safety-critical DASs
— periodic broadcast of state messages
— bounded latency and jitter

* Event-triggered virtual networks for non safety-critical DASs
— sporadic exchange of event messages
— emulation of existing event-triggered protocols (e.g. CAN)
— flexibility
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Realization of Virtual Networks
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Partitioning of Comm. Resources

» Sender-centric view: non interference of the message transmissions
between sender jobs, while abstracting over interference between
message transmissions from the same sender job.

» Separate input ports
— independent queuing delays
— no spatial interference

Component i Component k Component s

DAS n DAS n DAS n DAS n DAS m DAS m
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Partitioning of Comm. Resources (2)

Protection of statically reserved slots in the underlying TDMA scheme

— Protection between nodes by
time-triggered communication

protocol (e.g., local or central [ JobOofA | Job1lofA | Job2ofA | --- |
guardian in TTP or FlexRay)
— Protection within a node, e.g., [ DASA | DASB | DASC | --- |
using virtual network
middleware [ Criticality 0 | Criticality 1 | Criticality 2 | -+ |
* encapsulation of criticality
domains by protecting [ [Node0 [Nodel [ -- [Node2[Node3[ [t
criticality-domain slots ~ "
+ encapsulation of DAS by TDMA round

protecting DAS slots

 encapsulation of jobs by
protecting job slots
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Implementation and Experimental
Evaluation

e Prototype implementation of DECOS architecture
e Time-triggered communication protocol: Ethernet with TDMA scheme
e Evaluation of partitioning at communication system using 20,000 testruns

Experiment Contro ,'_;-5,' Ethernel (Management 1 Network): \ Ethernef Switcl
Workstatior ' Disabled During Real time Comm / 100 Mbps
|
: - ] : Five Integrated Node Computers
: I | Soekris 480’ Single Board Compute
| I
. ;|2 Job | Job Joh

<
k
a

A

M—
Programmabl |‘ TDMA controlled Ethernei: y Ethernet Multiport Repeatei
Power Supply Real time Communication 100 Mbps
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Automotive Example

» SAE classification of in-vehicle networks based on performance

+ Instances of all four network classes in present-day luxury cars
(e.g., BMW? series, Volkswagen Phaeton)

 BMW?7 series
— multiple class A networks (LIN fieldbuses)
— two class B networks (peripheral CAN and body CAN)
— one class C network (powertrain CAN with 500 kbps)
— two class D networks for multimedia (MOST) and safety functions

(Byteflight)
Network Class | Exemplary Protocols| Bandwidth | Exemplary Application Domains
Class A LIN < 10 kbps sensor/actuator access

Class B CAN 10kbps-125kbps |comfort domain

Class C CAN 125kbps-1Mbps |powertrain domain

Class D FlexRay, Byteflight > 1 Mbps multimedia, X-by-wire
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Mapping to an Integrated Architecture
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Temporal Requirements

* Performance:
— minimum bandwidth
» 2 class B (e.g., for comfort domain)
» 1 class C (e.g., for powertrain domain)
e 2class D (e.g., for multimedia and X-by-wire)
— maximum latencies
e 10 ms to 100 ms in the comfort domain
* in the order of ms in the powertrain domain
* reaction time of 5 ms for safety functions realized with class D networks
* Encapsulation:

— temporal partitioning to guarantee temporal properties (i.e. bandwidths,
latencies, variability of latencies)

— temporal partitioning between DASs
— temporal partitioning within DASs
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+ Sporadic and periodic message .
transmissions controlled by Tm:
— minimum interarrival time - maximurn randort
— random interval with uniform am fierve
distribution for sporadic msgs. O O s se0s
2m:
. \(\
¢ Probe job m:
— comfort subsystem (virtual 1 250( 500( 7500 10001 testrun
network with 125 kbps) 300 kbps
— increasing bandwidth utilization 2"
: kbpe i I !
» Reference jobs P t‘;z il
— invariant minimum interarrival 132 kbps '/ /
time and random interval LR oy’ bandwidt
! - " 6€ kbps utilization
— 50% bandwidth utilization - e
0 kbps

250( 5001 7501 10001 testrur
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Experimental Results: Latencies for
Messages from Probe Job
(&) Transmission behavior 3 S
of probe job complying =
with bandwidth limit 00 s
— latencies approx.
4ms 5300
— no omission failures
(b) Transmission behavior "
of probe job exceeding
the bandwidth limit 4301
— message omissions i
— increased latencies w0 - o e e
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Latencies for Messages of Reference Jobs
e Transmission latencies
independent from — o jobs on no
behavior of probe job B
3500 Lok ot
e Variability for sporadic —
message transmissions ey e
due to random message 20t
interarrival times s eSS
2500 500C 750C 1000C  testru
e Latency determined by s
hase relationship G
Between sender and e /
receiver node s 7/
« Performance require- s
ments (<5ms) satisfied =
250C 500C 7500 1000C  testru
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Experimental Results: Bandwidth

e Bandwidth of reference .
jobs independent from
behavior of probe job .

X-by-wire (Jobs 7-9)

Multimedia (Jobs 0-1)

» Variability for sporadic X-by-vire (Jobs 0-6)
message a _—I\Powertrain (All Jobs) and
- ) 10 —~ Multimedia (Jobs 2-4)
transmissions due to —— Comfort a1 2o Y
random m essage i Comfort B (Jobs 1-9)
interarrival times 5 Diagnosis (Al Jobs)
» Performance F Comiorts (1ob0)
. = Disturbance Jol
reqUIrementS w.r.t ' 1 zsbo 5060 7500 10000
SAE classification s
satisfied
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Conclusion

* Increasing importance of integrated architectures
facilitating correctness-by-construction

— growing complexity of distributed embedded real-time
systems

— avoid accidental complexity in integrated architectures

» Encapsulation of communication resources key technology
for temporal composability

» Prototype implementation of DECOS architecture based on
a time-triggered communication protocol demonstrates

— competitive performance with
— rigid temporal and spatial encapsulation

Rexcal-T 24
Sysfems
Sroup

12



