Models for Efficient Timed Verification

Francois Laroussinie

LSV / ENS de Cachan — CNRS UMR 8643

Monterey Workshop - “Composition of embedded systems”

Model checking

System Properties

Formalizing step

Model checking

We want. ..
e Expressive models: communication, variables, timing
constraints, probabilities. ..

e Expressive specification languages: natural, powerful,
intuitive. ..

Model checking

We want. . .

e Expressive models: communication, variables, timing
constraints, probabilities. ..

e Expressive specification languages: natural, powerful,
intuitive. ..

AND EFFICIENT ALGORITHM !

Main limit of model checking = state explosion problem

State explosion problem

An example: a “protocol”. ..

State explosion problem

An example: a “protocol”. ..

QO
©)

(4) a sender

State explosion problem

An example: a “protocol”. ..

Q0 @

a buffer
3

(4) a sender

State explosion problem

An example: a “protocol”. ..

Q0 @

a buffer
3

(4) a sender

a receiver

State explosion problem

An example: a “protocol”. ..

Q0 @

a buffer
3

a sender
a server
a

receiver

State explosion problem

An example: a “protocol”. ..

@ 0 oo

a buffer
3

a sender
a server
a

receiver

State explosion problem

An example: a “protocol”. ..

o ®
(3

(4) a sender

a buffer

a server

a receiver

State explosion problem

State explosion problem

This has motivated
e symbolic methods

e heuristics:

e on-the-fly algorithms
e acceleration

e partial order

° ...

e abstraction

Model checkers exist and they work rather nicely !

Verification of compositions of embedded systems

Two difficulties:

e the composition. . .

e Usually we need to address verification of quantitative aspects:

e timing constraints (Real-time systems)
e probabilities

® costs

e data

)

Verification of compositions of embedded systems

Two difficulties:

e the composition. . .

e Usually we need to address verification of quantitative aspects:

e timing constraints (Real-time systems)
e probabilities

® costs

e data

)

Each one may induce a complexity blow-up.

This can be measured by the structural complexity of verification
problems: for ex. the composition and the state explosion problem.

State explosion problem

This state explosion holds for synchronized systems, systems with
boolean variables, 1-safe Petri nets etc.

— These are “non-flat” systems.

In practice, a model S is described as a non-flat system (whose
operational semantics is a “flat” transition system T)

State explosion problem

This state explosion holds for synchronized systems, systems with
boolean variables, 1-safe Petri nets etc.

— These are “non-flat” systems.

In practice, a model S is described as a non-flat system (whose
operational semantics is a “flat” transition system T)

Complexity of model checking non-flat systems

Model checking TE® "non-flat syst.” = @
Reachability NLOGSPACE-C PSPACE-C
CTL model checking P-C PSPACE-C
AF p-calculus P-C EXPTIME-C

(Papadimitriou, Vardi, Kupferman, Wolper, Rabinovich,...)

Challenge

Define new formalisms to model and verify the embedded systems,
with. ..

e timing constraints

probabilities

costs, dynamic variables

extended specification languages

Challenge

Define new formalisms to model and verify the embedded systems,
with. ..

e timing constraints

probabilities

costs, dynamic variables

extended specification languages

request = AF grant

request = AF_, grant

request = P~ o.9F <200 grant
request = (Agt;)Ps0.9F <200 grant

Challenge

Define new formalisms to model and verify the embedded systems,
with. ..

e timing constraints

probabilities

costs, dynamic variables

extended specification languages

request = AF grant

request = AF_, grant

request = P~ o.9F <200 grant
request = (Agt;)Ps0.9F <200 grant

without increasing (too much) the complexity !

Efficient timed model-checking

obj: find timed models and timed specification languages for which
verification can be done efficiently.

— To model simply timed systems
— To use to abstract complex timed systems

— To combine with other quantitative extensions

Outline

@ Timed specification languages

© Timed models
@ Discrete-time models
@ Timed automata

© Conclusion

@ Timed specification languages

© Timed models
@ Discrete-time models
@ Timed automata

© Conclusion

Classical verification problems

Reachability of a control state

e §~ &7 : (bi)simulation, etc.

L(S) C L(S) ? : language inclusion

(S|AT) + reachability : testing automata

e S E ® with ® a temporal logic formula : model checking

Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With CTL: AG (problem -~ AF aIarm)

Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With CTL: AG (problem -~ AF aIarm)

Timed properties:

“Any problem is followed by an alarm in at most 10 time units”

Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With CTL: AG (problem -~ AF aIarm)

Timed properties:

“Any problem is followed by an alarm in at most 10 time units”

With TCTL:

AG (problem = AF<1o alarm)

Timed CTL

We use TCTL whose formulae are built from:

e atomic propositions in Prop (For ex. Alarm, Problem, ...)

e boolean combinators (A, V/, =), and

e temporal operators tagged with timing constraints: E_U._._
and A _U._._with ~e {<,<,=,> >} and c € N.

+ all the standard abbreviations: AG.., AF. etc.

Timed CTL

We use TCTL whose formulae are built from:

e atomic propositions in Prop (For ex. Alarm, Problem, ...)

e boolean combinators (A, V/, =), and

e temporal operators tagged with timing constraints: E_U._._
and A _U._._with ~e {<,<,=,> >} and c € N.

+ all the standard abbreviations: AG.., AF. etc.

sEEoUcp < Jp=p -p" € Exec(s)withs 2 s and
Time(p') ~ cand s’ E ¥,
ands” = gforalls <, s" <, ¢

Outline

© Timed models
@ Discrete-time models
@ Timed automata

Questions

Studying timing constraints & complexity

Two problems:
@ Are there simpler models — with discrete time — for which
model checking can be efficient ?

® Are there classes of Timed Automata which allow efficient
model checking ?

Timed transition systems

= a transition system 4+ a notion of time
= used to define the semantics of real-time systems

Let T be a time domain: N, Ry or Q.

Timed transition system

T = <57507_>7 />
e S is an (possibly infinite) set of states, sp € S

e 5CSxTxS
e | : S — 2PrP . assigns atomic propositions to states

Timed transition systems

= a transition system 4+ a notion of time
= used to define the semantics of real-time systems

Let T be a time domain: N, Ry or Q.

Timed transition system

T =(S,s,—,1)
e S is an (possibly infinite) set of states, sp € S
e 5CSxTxS
e | : S — 2PrP . assigns atomic propositions to states

Every finite run o in 7 has a finite duration Time(o).

Outline

© Timed models
@ Discrete-time models

Simple models for timed verification

It is possible to use classical Kripke structures as timed models.

There is no inherent concept of time: time elapsing is encoded by
events.

For example:

e each transition = one time unit (Emerson et al.)
e or: a “tick” proposition labels states where one t.u. elapses.

Timed model checking can be efficient (polynomial-time) !

Durational Transition Graphs extend these models without loosing
efficiency.

Durational Transition Graph

[0,00)
Wait for
Pincode.

[0,00)

[10;15]

[50,110] o

amount

Money+card

Durational Transition Graph

T=N

A durational transition graph Sis (Q, R, /) where
e Qis a (finite) set of states,
e RC Q xZ x Q is a total transition relation with duration
e |1 Q — 2P™P |abels every state with a subset of Prop.

7T = set of intervals “[n, m]" or “[n,00)” (with n,m € N)

q] g’ : “moving from g to ¢’ takes some duration d in [n, m].”

Two semantics are possible. ..

Two semantics for DTGs

Consider the run: Init_State 2> New_Card > Wait_for_Pin C. 2 ..

Two semantics for DTGs

Consider the run: Init_State 2> New_Card > Wait_for_Pin C. 2 ..

e Jump semantics:

e date: 0 ~~ Init_State
e date: 15 ~» New_Card no intermediary states !
° ...

P Simple semantics, no extra states.
© Not always natural. Difficult to synchronize two DTGs.

Two semantics for DTGs

Consider the run: Init_State 2> New_Card > Wait_for_Pin C. 2 ..

e Jump semantics:

e date: 0 ~~ Init_State
e date: 15 ~» New_Card no intermediary states !
° ...

P Simple semantics, no extra states.
© Not always natural. Difficult to synchronize two DTGs.

e Continuous semantics:

date: 0...14 ~- Init_state
date: 15 ~» New_card
date: 15...34 ~~ Wait_for_Pin_C

jump vs continuous semantics

jump vs continuous semantics

jump vs continuous semantics

(g, i) : “i time units have already been spent in ¢"

Outline

© Timed models

@ Timed automata

Timed Automata — Example

A = an automaton (locations and transitions) + clocks

true, b, x :=0 x <10, b, x =0

Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R;)

Transitions: ¢ &2 V' € T with:

e g is the guard,

e a is the label,

e 1 is the set of clocks to be reset to 0

Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R;)
e g,a,I .

Transitions: £ == ¢' € T with:

e g is the guard,

e a is the label,
e r is the set of clocks to be reset to 0

Semantics:

A States: (¢, v) where v is a valuation for the clocks

Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R;)
e g,a,I .

Transitions: £ == ¢' € T with:

e g is the guard,

e a is the label,
e r is the set of clocks to be reset to 0

Semantics:
A States: (¢, v) where v is a valuation for the clocks

A Action transition:

0 . 3082 e A
V4 ooV iff ’
(€:v) =4 (£, v) {v):g, v = v[r < 0]

Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R;)

Transitions: ¢ &2 V' € T with:

e g is the guard,

e a is the label,

e 1 is the set of clocks to be reset to 0

Semantics:
A States: (¢, v) where v is a valuation for the clocks

A Action transition: ‘
0 . 8 e A
l 0oV iff ’
(V) =a (V) {v):g, vi=v[r Q0]
A Delay transition:
VteRy, (6v) 5 (v +t) iff VO< ¢ <t v+t = Inv(l)

Model checking for TA

A defines an infinite timed transition system.

Decision procedures are based on the region graph technique
(Alur, Courcoubetis, Dill)

From A and ®, one defines an equivalence =4 ¢ s.t.:
cVZaoV = ((f, V) ff (0 V))zd))

X . g
o Ryj_,, is finite
A region = An equivalence class of =4 ¢

We can reduce A |= ¢ to (.A X R+7EA¢) = o
...and use a standard model checking algorithm.

Model checking for TA

A defines an infinite timed transition system.

Decision procedures are based on the region graph technique
(Alur, Courcoubetis, Dill)

From A and ®, one defines an equivalence =4 ¢ s.t.:
cv=a0v = ((LV) O (V)=o)
.]RJ;A,@ is finite

A region = An equivalence class of =4 ¢

We can reduce A |= ¢ to (.A X R+7EA¢) = o
...and use a standard model checking algorithm.

I The size of Ry7C isin O(|X|!- MIXT) |

The region abstraction

y X ={xy}
M, =3 and M, =2

The region abstraction

y X ={xy}
M, =3 and M, =2
2
1
0 1 2 3 X

e ‘“compatibility” between regions and constraints x ~ k and
y~k

The region abstraction

y X ={xy}
M, =3 and M, =2

I

e ‘“compatibility” between regions and constraints x ~ k and
y~k

e ‘“compatibility” between regions and time elapsing

The region abstraction

y X ={xy}
M, =3 and M, =2

V%

e ‘“compatibility” between regions and constraints x ~ k and
y~k

e ‘“compatibility” between regions and time elapsing

The region abstraction

y X ={xy}
M, =3 and M, =2
2
1
0 1 2 3 X

e ‘“compatibility” between regions and constraints x ~ k and
y~k

e ‘“compatibility” between regions and time elapsing

The region abstraction

y X ={xy}

My =3 and M, =2
2 region defined by

L =]1;2[, I, =]0; 1]
1 {x} <{»}
0 1 2 3 X

e ‘“compatibility” between regions and constraints x ~ k and
y~k

e ‘“compatibility” between regions and time elapsing

The region abstraction

y X ={xy}
M, =3 and M, =2

2 region defined by
L =]1;2[, I, =]0; 1]
1 {x} <{»}

successor by delay transition:

L =]1;2[, Iy = [2;2]

e ‘“compatibility” between regions and constraints x ~ k and
y~k

e ‘“compatibility” between regions and time elapsing

An example [AD 90's]

a, (y<1)?,y:=0

y 1 |
IL%__
” :4/ [
—
*=y=0 0 1 _)x
a a a b
e
b
5, 5 s b s,
O=y<x<1 y=0,x=1 ¥=0,x>1 l=y<x
i //
o)
s, 4 s, s, d s, Od
O<y<x<l O<y<l<x d l=y<x x>1,y>1

T

Complexity of timed verification

e Reachability in TA is PSPACE-C (Alur & Dill)

e Reachability in TA with three clocks is PSPACE-C
(Courcoubetis & Yannakakis)

e Reachability in TA with constants in {0,1} is PSPACE-C
(Courcoubetis & Yannakakis)

e Model checking Timed CTL over TA is PSPACE-C (Alur,
Courcoubetis & Dill)

e Model checking AF Timed p-calculus over TA is EXPTIME-C
(Aceto & Laroussinie)

(But tools (Kronos, UppAal) exist and have been applied

successfully for verifying industrial case studies.)

One/two clock timed automata

[LMS2004]

@® Model checking TCTL on 1C-TA is PSPACE-complete.

® Reachability in 1C-TA is NLOGSPACE-complete.

© Model checking TCTL< > on 1C-TA is P-complete.

@ Reachability in 2C-TA is NP-hard.

® Model checking CTL on 2C-TA is PSPACE-complete.

@ Timed specification languages

© Timed models
@ Discrete-time models
@ Timed automata

© Conclusion

Conclusion

discrete time dense time
DTG %2 | DTG [LMSo06] || 1C-TA | 2C-TA | TA [ACD93]
[LSTO3] jump | cont. || [LMS04] | [LMS04] [CY92]
Reachability NLOGSPACE-C NP-hard | PSPACE-C
TCTL< > P-complete PSPACE-C
TCTL P-compl. JAVY PSPACE-complete
TCTL, PSPACE-complete

Conclusion

e No efficient algorithm for " TCTL+clocks”.
e As soon as there are two clocks, a complexity blow-up occurs
for any verification problem.

e For TCTL, model-checking may be efficient only for the
simple DTGs with durations in {0, 1}.

e For TCTL< >, it is possible to have efficient model-checking
algorithm for any kind of DTG and 1C-TA.

e The previous result can be extended to probabilistic timed
systems (Probabilistic DTG and 1-clock Probabilistic TA).

	Introduction
	Outline
	Timed specification languages
	Timed models
	Discrete-time models
	Timed automata

	Conclusion

