
Models for Efficient Timed Verification

François Laroussinie

LSV / ENS de Cachan – CNRS UMR 8643

Monterey Workshop - “Composition of embedded systems”

Model checking

System

? ϕ

Properties

Formalizing step

Model checking

We want. . .

• Expressive models: communication, variables, timing
constraints, probabilities. . .

• Expressive specification languages: natural, powerful,
intuitive. . .

Model checking

We want. . .

• Expressive models: communication, variables, timing
constraints, probabilities. . .

• Expressive specification languages: natural, powerful,
intuitive. . .

AND EFFICIENT ALGORITHM !

Main limit of model checking = state explosion problem

State explosion problem

An example: a “protocol”. . .

State explosion problem

An example: a “protocol”. . .

1 2

3

4 a sender

State explosion problem

An example: a “protocol”. . .

1 2

3

4 a sender

1 2

a buffer

State explosion problem

An example: a “protocol”. . .

1 2

3

4 a sender

1 2

a buffer

1

2 a receiver

State explosion problem

An example: a “protocol”. . .

1 2

3

4 a sender

1 2

a buffer

1

2 a receiver

1

23

a server

State explosion problem

An example: a “protocol”. . .

1 2

3

4 a sender

1 2

a buffer

1

2 a receiver

1

23

a server

State explosion problem

An example: a “protocol”. . .

1 2

3

4 a sender

1 2

a buffer

1

2 a receiver

1

23

a server

1 2 1 2

1

2

State explosion problem

4122 4112 4223 4111 4212

4213 4121

4221

4113

4222

4211 4123

1122 1112 1223 1111

12121213 1121

1221

1113

1222

1211 1123

3213

3221

3211

3223

3222

3212

State explosion problem

This has motivated

• symbolic methods

• heuristics:

• on-the-fly algorithms
• acceleration
• partial order
• . . .

• abstraction

• . . .

Model checkers exist and they work rather nicely !

Verification of compositions of embedded systems

Two difficulties:

• the composition. . .

• Usually we need to address verification of quantitative aspects:

• timing constraints (Real-time systems)
• probabilities
• costs
• data
• . . .

Verification of compositions of embedded systems

Two difficulties:

• the composition. . .

• Usually we need to address verification of quantitative aspects:

• timing constraints (Real-time systems)
• probabilities
• costs
• data
• . . .

Each one may induce a complexity blow-up.

This can be measured by the structural complexity of verification
problems: for ex. the composition and the state explosion problem.

State explosion problem

This state explosion holds for synchronized systems, systems with
boolean variables, 1-safe Petri nets etc.

→ These are “non-flat” systems.

In practice, a model S is described as a non-flat system (whose
operational semantics is a “flat” transition system T)

State explosion problem

This state explosion holds for synchronized systems, systems with
boolean variables, 1-safe Petri nets etc.

→ These are “non-flat” systems.

In practice, a model S is described as a non-flat system (whose
operational semantics is a “flat” transition system T)

Complexity of model checking non-flat systems

Model checking T |= Φ ”non-flat syst.” |= Φ

Reachability NLOGSPACE-C PSPACE-C

CTL model checking P-C PSPACE-C

AF µ-calculus P-C EXPTIME-C

(Papadimitriou, Vardi, Kupferman, Wolper, Rabinovich,. . .)

Challenge

Define new formalisms to model and verify the embedded systems,
with. . .

• timing constraints

• probabilities

• costs, dynamic variables

• . . .

• extended specification languages

Challenge

Define new formalisms to model and verify the embedded systems,
with. . .

• timing constraints

• probabilities

• costs, dynamic variables

• . . .

• extended specification languages

• request ⇒ AF grant
• request ⇒ AF<200 grant
• request ⇒ P>0.9F<200 grant
• request ⇒ 〈Agt1〉P>0.9F<200 grant

Challenge

Define new formalisms to model and verify the embedded systems,
with. . .

• timing constraints

• probabilities

• costs, dynamic variables

• . . .

• extended specification languages

• request ⇒ AF grant
• request ⇒ AF<200 grant
• request ⇒ P>0.9F<200 grant
• request ⇒ 〈Agt1〉P>0.9F<200 grant

without increasing (too much) the complexity !

Efficient timed model-checking

obj: find timed models and timed specification languages for which
verification can be done efficiently.

→ To model simply timed systems

→ To use to abstract complex timed systems

→ To combine with other quantitative extensions

Outline

1 Timed specification languages

2 Timed models
Discrete-time models
Timed automata

3 Conclusion

Outline

1 Timed specification languages

2 Timed models
Discrete-time models
Timed automata

3 Conclusion

Classical verification problems

• Reachability of a control state

• S ∼ S ′ ? : (bi)simulation, etc.

• L(S) ⊆ L(S) ? : language inclusion

• (S|AT) + reachability : testing automata

• S |= Φ with Φ a temporal logic formula : model checking

Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With CTL: AG
(

problem ⇒ AF alarm
)

Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With CTL: AG
(

problem ⇒ AF alarm
)

Timed properties:

“Any problem is followed by an alarm in at most 10 time units”

Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With CTL: AG
(

problem ⇒ AF alarm
)

Timed properties:

“Any problem is followed by an alarm in at most 10 time units”

With TCTL:

AG
(

problem ⇒ AF≤10 alarm
)

Timed CTL

We use TCTL whose formulae are built from:

• atomic propositions in Prop (For ex. Alarm, Problem, . . .)

• boolean combinators (∧, ∨, ¬), and

• temporal operators tagged with timing constraints: E U∼c

and A U∼c with ∼∈ {<,≤,=,≥, >} and c ∈ N.

+ all the standard abbreviations: AG∼c , AF∼c etc.

Timed CTL

We use TCTL whose formulae are built from:

• atomic propositions in Prop (For ex. Alarm, Problem, . . .)

• boolean combinators (∧, ∨, ¬), and

• temporal operators tagged with timing constraints: E U∼c

and A U∼c with ∼∈ {<,≤,=,≥, >} and c ∈ N.

+ all the standard abbreviations: AG∼c , AF∼c etc.

s |= EϕU∼cψ ⇔ ∃ρ = ρ′ · ρ′′ ∈ Exec(s) with s
ρ′
⇒ s ′ and

Time(ρ′) ∼ c and s ′ |= ψ,

and s ′′ |= ϕ for all s <ρ s ′′ <ρ s ′

Outline

1 Timed specification languages

2 Timed models
Discrete-time models
Timed automata

3 Conclusion

Questions

Studying timing constraints & complexity

Two problems:

1 Are there simpler models – with discrete time – for which
model checking can be efficient ?

2 Are there classes of Timed Automata which allow efficient
model checking ?

Timed transition systems

= a transition system + a notion of time
⇒ used to define the semantics of real-time systems

Let T be a time domain: N, R+ or Q+.

Timed transition system

T = 〈S , s0,→, l〉

• S is an (possibly infinite) set of states, s0 ∈ S

• →⊆ S × T× S

• l : S → 2Prop : assigns atomic propositions to states

Timed transition systems

= a transition system + a notion of time
⇒ used to define the semantics of real-time systems

Let T be a time domain: N, R+ or Q+.

Timed transition system

T = 〈S , s0,→, l〉

• S is an (possibly infinite) set of states, s0 ∈ S

• →⊆ S × T× S

• l : S → 2Prop : assigns atomic propositions to states

Every finite run σ in T has a finite duration Time(σ).

Outline

1 Timed specification languages

2 Timed models
Discrete-time models
Timed automata

3 Conclusion

Simple models for timed verification

It is possible to use classical Kripke structures as timed models.

There is no inherent concept of time: time elapsing is encoded by
events.

For example:

• each transition = one time unit (Emerson et al.)

• or: a “tick” proposition labels states where one t.u. elapses.

Timed model checking can be efficient (polynomial-time) !

Durational Transition Graphs extend these models without loosing
efficiency.

Durational Transition Graph

Init
state

New
Card

Read
code

Wait for
Pincode.

Code
OK

Ask
amount

Money+card

Bad
code

Return
card

[7,45]

0
0

[25,50] [25,50]

[0,7]

[50,110]

[5,10]

10

[10;15]

[0,∞)

[0,∞)

[0,366]

Durational Transition Graph

T = N

A durational transition graph S is 〈Q,R, l〉 where

• Q is a (finite) set of states,

• R ⊆ Q × I ×Q is a total transition relation with duration

• l : Q → 2Prop labels every state with a subset of Prop.

I = set of intervals “[n,m]” or “[n,∞)” (with n,m ∈ N)

q
[n,m]
−−→ q′ : “moving from q to q′ takes some duration d in [n,m].”

Two semantics are possible. . .

Two semantics for DTGs

Consider the run: Init State
15
−→ New Card

0
−→ Wait for Pin C.

20
−→ . . .

Two semantics for DTGs

Consider the run: Init State
15
−→ New Card

0
−→ Wait for Pin C.

20
−→ . . .

• Jump semantics:

• date: 0 Init State
• date: 15 New Card no intermediary states !
• . . .

⊕ Simple semantics, no extra states.
	 Not always natural. Difficult to synchronize two DTGs.

Two semantics for DTGs

Consider the run: Init State
15
−→ New Card

0
−→ Wait for Pin C.

20
−→ . . .

• Jump semantics:

• date: 0 Init State
• date: 15 New Card no intermediary states !
• . . .

⊕ Simple semantics, no extra states.
	 Not always natural. Difficult to synchronize two DTGs.

• Continuous semantics:

• date: 0 . . . 14 Init state
• date: 15 New card
• date: 15 . . . 34 Wait for Pin C
• . . .

jump vs continuous semantics

q

r

s

DTG S

[2;4]

[3;3] [1;2]

[0;0]

jump vs continuous semantics

q

r

s

DTG S

[2;4]

[3;3] [1;2]

[0;0]

q

r

s

jump sem. of S:

3
2

4

3
1

2

0

jump vs continuous semantics

q

r

s

DTG S

[2;4]

[3;3] [1;2]

[0;0]

q

r

s

jump sem. of S:

3
2

4

3
1

2

0 q, 0 q, 1 q, 2 q, 3

r , 0

s, 0 s, 1

continuous sem. of S:

1
1 1

1

1
1

1
0

1

1

1

(q, i) : “i time units have already been spent in q”

Outline

1 Timed specification languages

2 Timed models
Discrete-time models
Timed automata

3 Conclusion

Timed Automata – Example

A = an automaton (locations and transitions) + clocks

OFF ON
x ≤ 10

x = 10, i , −

true, b, x := 0
x < 10, b, x := 0

Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R+)

Transitions: `
g ,a,r
−→ `′ ∈ T with:

• g is the guard,
• a is the label,
• r is the set of clocks to be reset to 0

Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R+)

Transitions: `
g ,a,r
−→ `′ ∈ T with:

• g is the guard,
• a is the label,
• r is the set of clocks to be reset to 0

Semantics:

N States: (`, v) where v is a valuation for the clocks

Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R+)

Transitions: `
g ,a,r
−→ `′ ∈ T with:

• g is the guard,
• a is the label,
• r is the set of clocks to be reset to 0

Semantics:

N States: (`, v) where v is a valuation for the clocks

N Action transition:

(`, v)
0
−→a (`′, v ′) iff

{

∃ `
g ,a,r
−−→ `′ ∈ A,

v |= g , v ′ = v [r ← 0]

Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R+)

Transitions: `
g ,a,r
−→ `′ ∈ T with:

• g is the guard,
• a is the label,
• r is the set of clocks to be reset to 0

Semantics:

N States: (`, v) where v is a valuation for the clocks

N Action transition:

(`, v)
0
−→a (`′, v ′) iff

{

∃ `
g ,a,r
−−→ `′ ∈ A,

v |= g , v ′ = v [r ← 0]
N Delay transition:

∀t ∈ R+, (`, v)
t
−→ (`, v + t) iff ∀0 ≤ t ′ ≤ t, v + t ′ |= Inv(`)

Model checking for TA

A defines an infinite timed transition system.

Decision procedures are based on the region graph technique
(Alur, Courcoubetis, Dill)

From A and Φ, one defines an equivalence ≡A,Φ s.t.:

• v ≡A,Φ v ′ ⇒
(

(`, v) |= Φ iff (`, v ′) |= Φ
)

• R+
X
/≡A,Φ

is finite

A region = An equivalence class of ≡A,Φ

We can reduce A |= Φ to
(

A× R+
X
/≡A,Φ

)

|= Φ

. . . and use a standard model checking algorithm.

Model checking for TA

A defines an infinite timed transition system.

Decision procedures are based on the region graph technique
(Alur, Courcoubetis, Dill)

From A and Φ, one defines an equivalence ≡A,Φ s.t.:

• v ≡A,Φ v ′ ⇒
(

(`, v) |= Φ iff (`, v ′) |= Φ
)

• R+
X
/≡A,Φ

is finite

A region = An equivalence class of ≡A,Φ

We can reduce A |= Φ to
(

A× R+
X
/≡A,Φ

)

|= Φ

. . . and use a standard model checking algorithm.

! The size of R+
X
/≡A,Φ

is in O(|X |! ·M |X |) !

The region abstraction

0 1 2 3 x

1

2

y X = {x , y}

Mx = 3 and My = 2

The region abstraction

0 1 2 3 x

1

2

y X = {x , y}

Mx = 3 and My = 2

• “compatibility” between regions and constraints x ∼ k and
y ∼ k

The region abstraction

0 1 2 3 x

1

2

y X = {x , y}

Mx = 3 and My = 2

•
•

• “compatibility” between regions and constraints x ∼ k and
y ∼ k

• “compatibility” between regions and time elapsing

The region abstraction

0 1 2 3 x

1

2

y X = {x , y}

Mx = 3 and My = 2

•
•

• “compatibility” between regions and constraints x ∼ k and
y ∼ k

• “compatibility” between regions and time elapsing

The region abstraction

0 1 2 3 x

1

2

y X = {x , y}

Mx = 3 and My = 2

• “compatibility” between regions and constraints x ∼ k and
y ∼ k

• “compatibility” between regions and time elapsing

The region abstraction

0 1 2 3 x

1

2

y X = {x , y}

Mx = 3 and My = 2

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

• “compatibility” between regions and constraints x ∼ k and
y ∼ k

• “compatibility” between regions and time elapsing

The region abstraction

0 1 2 3 x

1

2

y X = {x , y}

Mx = 3 and My = 2

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

successor by delay transition:

Ix =]1; 2[, Iy = [2; 2]

• “compatibility” between regions and constraints x ∼ k and
y ∼ k

• “compatibility” between regions and time elapsing

An example [AD 90’s]

0 1 x

1

y

Complexity of timed verification

• Reachability in TA is PSPACE-C (Alur & Dill)

• Reachability in TA with three clocks is PSPACE-C
(Courcoubetis & Yannakakis)

• Reachability in TA with constants in {0, 1} is PSPACE-C
(Courcoubetis & Yannakakis)

• Model checking Timed CTL over TA is PSPACE-C (Alur,
Courcoubetis & Dill)

• Model checking AF Timed µ-calculus over TA is EXPTIME-C
(Aceto & Laroussinie)

(

But tools (Kronos, UppAal) exist and have been applied

successfully for verifying industrial case studies.
)

One/two clock timed automata

[LMS2004]

1 Model checking TCTL on 1C-TA is PSPACE-complete.

2 Reachability in 1C-TA is NLOGSPACE-complete.

3 Model checking TCTL≤,≥ on 1C-TA is P-complete.

1 Reachability in 2C-TA is NP-hard.

2 Model checking CTL on 2C-TA is PSPACE-complete.

Outline

1 Timed specification languages

2 Timed models
Discrete-time models
Timed automata

3 Conclusion

Conclusion

discrete time dense time

DTG
0/1
−→ DTG [LMS06] 1C-TA 2C-TA TA [ACD93]

[LST03] jump cont. [LMS04] [LMS04] [CY92]

Reachability NLOGSPACE-C NP-hard PSPACE-C

TCTL≤,≥ P-complete PSPACE-C

TCTL P-compl. ∆p
2 PSPACE-complete

TCTLc PSPACE-complete

Conclusion

• No efficient algorithm for ”TCTL+clocks”.

• As soon as there are two clocks, a complexity blow-up occurs
for any verification problem.

• For TCTL, model-checking may be efficient only for the
simple DTGs with durations in {0, 1}.

• For TCTL≤,≥, it is possible to have efficient model-checking
algorithm for any kind of DTG and 1C-TA.

• The previous result can be extended to probabilistic timed
systems (Probabilistic DTG and 1-clock Probabilistic TA).

	Introduction
	Outline
	Timed specification languages
	Timed models
	Discrete-time models
	Timed automata

	Conclusion

