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We want. . .

• Expressive models: communication, variables, timing
constraints, probabilities. . .

• Expressive specification languages: natural, powerful,
intuitive. . .

AND EFFICIENT ALGORITHM !

Main limit of model checking = state explosion problem
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State explosion problem

This has motivated

• symbolic methods

• heuristics:

• on-the-fly algorithms
• acceleration
• partial order
• . . .

• abstraction

• . . .

Model checkers exist and they work rather nicely !
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Verification of compositions of embedded systems

Two difficulties:

• the composition. . .

• Usually we need to address verification of quantitative aspects:

• timing constraints (Real-time systems)
• probabilities
• costs
• data
• . . .

Each one may induce a complexity blow-up.

This can be measured by the structural complexity of verification
problems: for ex. the composition and the state explosion problem.
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State explosion problem

This state explosion holds for synchronized systems, systems with
boolean variables, 1-safe Petri nets etc.

→ These are “non-flat” systems.

In practice, a model S is described as a non-flat system (whose
operational semantics is a “flat” transition system T )

Complexity of model checking non-flat systems

Model checking T |= Φ ”non-flat syst.” |= Φ

Reachability NLOGSPACE-C PSPACE-C

CTL model checking P-C PSPACE-C

AF µ-calculus P-C EXPTIME-C

(Papadimitriou, Vardi, Kupferman, Wolper, Rabinovich,. . . )
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Challenge

Define new formalisms to model and verify the embedded systems,
with. . .

• timing constraints

• probabilities

• costs, dynamic variables

• . . .

• extended specification languages

• request ⇒ AF grant
• request ⇒ AF<200 grant
• request ⇒ P>0.9F<200 grant
• request ⇒ 〈Agt1〉P>0.9F<200 grant

without increasing (too much) the complexity !



Efficient timed model-checking

obj: find timed models and timed specification languages for which
verification can be done efficiently.

→ To model simply timed systems

→ To use to abstract complex timed systems

→ To combine with other quantitative extensions
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Classical verification problems

• Reachability of a control state

• S ∼ S ′ ? : (bi)simulation, etc.

• L(S) ⊆ L(S) ? : language inclusion

• (S|AT ) + reachability : testing automata

• S |= Φ with Φ a temporal logic formula : model checking
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Temporal properties:

“Any problem is followed by an alarm”

With CTL: AG
(

problem ⇒ AF alarm
)

Timed properties:

“Any problem is followed by an alarm in at most 10 time units”

With TCTL:

AG
(

problem ⇒ AF≤10 alarm
)



Timed CTL

We use TCTL whose formulae are built from:

• atomic propositions in Prop (For ex. Alarm, Problem, . . . )

• boolean combinators (∧, ∨, ¬), and

• temporal operators tagged with timing constraints: E U∼c

and A U∼c with ∼∈ {<,≤,=,≥, >} and c ∈ N.

+ all the standard abbreviations: AG∼c , AF∼c etc.



Timed CTL

We use TCTL whose formulae are built from:

• atomic propositions in Prop (For ex. Alarm, Problem, . . . )

• boolean combinators (∧, ∨, ¬), and

• temporal operators tagged with timing constraints: E U∼c

and A U∼c with ∼∈ {<,≤,=,≥, >} and c ∈ N.

+ all the standard abbreviations: AG∼c , AF∼c etc.

s |= EϕU∼cψ ⇔ ∃ρ = ρ′ · ρ′′ ∈ Exec(s) with s
ρ′
⇒ s ′ and

Time(ρ′) ∼ c and s ′ |= ψ,

and s ′′ |= ϕ for all s <ρ s ′′ <ρ s ′
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Questions

Studying timing constraints & complexity

Two problems:

1 Are there simpler models – with discrete time – for which
model checking can be efficient ?

2 Are there classes of Timed Automata which allow efficient
model checking ?



Timed transition systems

= a transition system + a notion of time
⇒ used to define the semantics of real-time systems

Let T be a time domain: N, R+ or Q+.

Timed transition system

T = 〈S , s0,→, l〉

• S is an (possibly infinite) set of states, s0 ∈ S

• →⊆ S × T× S

• l : S → 2Prop : assigns atomic propositions to states



Timed transition systems

= a transition system + a notion of time
⇒ used to define the semantics of real-time systems

Let T be a time domain: N, R+ or Q+.

Timed transition system

T = 〈S , s0,→, l〉

• S is an (possibly infinite) set of states, s0 ∈ S

• →⊆ S × T× S

• l : S → 2Prop : assigns atomic propositions to states

Every finite run σ in T has a finite duration Time(σ).
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Simple models for timed verification

It is possible to use classical Kripke structures as timed models.

There is no inherent concept of time: time elapsing is encoded by
events.

For example:

• each transition = one time unit (Emerson et al.)

• or: a “tick” proposition labels states where one t.u. elapses.

Timed model checking can be efficient (polynomial-time) !

Durational Transition Graphs extend these models without loosing
efficiency.
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Durational Transition Graph

T = N

A durational transition graph S is 〈Q,R, l〉 where

• Q is a (finite) set of states,

• R ⊆ Q × I ×Q is a total transition relation with duration

• l : Q → 2Prop labels every state with a subset of Prop.

I = set of intervals “[n,m]” or “[n,∞)” (with n,m ∈ N)

q
[n,m]
−−→ q′ : “moving from q to q′ takes some duration d in [n,m].”

Two semantics are possible. . .
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Two semantics for DTGs

Consider the run: Init State
15
−→ New Card

0
−→ Wait for Pin C.

20
−→ . . .

• Jump semantics:

• date: 0 Init State
• date: 15 New Card no intermediary states !
• . . .

⊕ Simple semantics, no extra states.
	 Not always natural. Difficult to synchronize two DTGs.

• Continuous semantics:

• date: 0 . . . 14  Init state
• date: 15  New card
• date: 15 . . . 34  Wait for Pin C
• . . .
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Timed Automata – Example

A = an automaton (locations and transitions) + clocks

OFF ON
x ≤ 10

x = 10, i , −

true, b, x := 0
x < 10, b, x := 0
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• r is the set of clocks to be reset to 0
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Timed automata - definition [Alur & Dill]

A = an automaton (locations and transitions) + clocks

Clocks progress synchronously with time (Time domain = R+)

Transitions: `
g ,a,r
−→ `′ ∈ T with:

• g is the guard,
• a is the label,
• r is the set of clocks to be reset to 0

Semantics:

N States: (`, v) where v is a valuation for the clocks

N Action transition:

(`, v)
0
−→a (`′, v ′) iff

{

∃ `
g ,a,r
−−→ `′ ∈ A,

v |= g , v ′ = v [r ← 0]
N Delay transition:

∀t ∈ R+, (`, v)
t
−→ (`, v + t) iff ∀0 ≤ t ′ ≤ t, v + t ′ |= Inv(`)



Model checking for TA

A defines an infinite timed transition system.

Decision procedures are based on the region graph technique
(Alur, Courcoubetis, Dill)

From A and Φ, one defines an equivalence ≡A,Φ s.t.:

• v ≡A,Φ v ′ ⇒
(

(`, v) |= Φ iff (`, v ′) |= Φ
)

• R+
X
/≡A,Φ

is finite

A region = An equivalence class of ≡A,Φ

We can reduce A |= Φ to
(

A× R+
X
/≡A,Φ

)

|= Φ

. . . and use a standard model checking algorithm.



Model checking for TA

A defines an infinite timed transition system.

Decision procedures are based on the region graph technique
(Alur, Courcoubetis, Dill)

From A and Φ, one defines an equivalence ≡A,Φ s.t.:

• v ≡A,Φ v ′ ⇒
(

(`, v) |= Φ iff (`, v ′) |= Φ
)

• R+
X
/≡A,Φ

is finite

A region = An equivalence class of ≡A,Φ

We can reduce A |= Φ to
(

A× R+
X
/≡A,Φ

)

|= Φ

. . . and use a standard model checking algorithm.

! The size of R+
X
/≡A,Φ

is in O(|X |! ·M |X |) !
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The region abstraction

0 1 2 3 x

1

2

y X = {x , y}

Mx = 3 and My = 2

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

successor by delay transition:

Ix =]1; 2[, Iy = [2; 2]

• “compatibility” between regions and constraints x ∼ k and
y ∼ k

• “compatibility” between regions and time elapsing



An example [AD 90’s]

0 1 x

1
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Complexity of timed verification

• Reachability in TA is PSPACE-C (Alur & Dill)

• Reachability in TA with three clocks is PSPACE-C
(Courcoubetis & Yannakakis)

• Reachability in TA with constants in {0, 1} is PSPACE-C
(Courcoubetis & Yannakakis)

• Model checking Timed CTL over TA is PSPACE-C (Alur,
Courcoubetis & Dill)

• Model checking AF Timed µ-calculus over TA is EXPTIME-C
(Aceto & Laroussinie)

(

But tools (Kronos, UppAal) exist and have been applied

successfully for verifying industrial case studies.
)



One/two clock timed automata

[LMS2004]

1 Model checking TCTL on 1C-TA is PSPACE-complete.

2 Reachability in 1C-TA is NLOGSPACE-complete.

3 Model checking TCTL≤,≥ on 1C-TA is P-complete.

1 Reachability in 2C-TA is NP-hard.

2 Model checking CTL on 2C-TA is PSPACE-complete.
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Conclusion

discrete time dense time

DTG
0/1
−→ DTG [LMS06] 1C-TA 2C-TA TA [ACD93]

[LST03] jump cont. [LMS04] [LMS04] [CY92]

Reachability NLOGSPACE-C NP-hard PSPACE-C

TCTL≤,≥ P-complete PSPACE-C

TCTL P-compl. ∆p
2 PSPACE-complete

TCTLc PSPACE-complete



Conclusion

• No efficient algorithm for ”TCTL+clocks”.

• As soon as there are two clocks, a complexity blow-up occurs
for any verification problem.

• For TCTL, model-checking may be efficient only for the
simple DTGs with durations in {0, 1}.

• For TCTL≤,≥, it is possible to have efficient model-checking
algorithm for any kind of DTG and 1C-TA.

• The previous result can be extended to probabilistic timed
systems (Probabilistic DTG and 1-clock Probabilistic TA).
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