Models for Efficient Timed Verification

François Laroussinie

LSV / ENS de Cachan - CNRS UMR 8643

Monterey Workshop - "Composition of embedded systems"

We want...

- Expressive models: communication, variables, timing constraints, probabilities...
- Expressive specification languages: natural, powerful, intuitive...

We want...

- Expressive models: communication, variables, timing constraints, probabilities...
- Expressive specification languages: natural, powerful, intuitive...

AND EFFICIENT ALGORITHM !

Main limit of model checking = state explosion problem

This has motivated

- symbolic methods
- heuristics:
 - on-the-fly algorithms
 - acceleration
 - partial order
 - . . .
- abstraction
- . . .

Model checkers exist and they work rather nicely !

Verification of compositions of embedded systems

Two difficulties:

- the composition...
- Usually we need to address verification of quantitative aspects:
 - timing constraints (Real-time systems)
 - probabilities
 - costs
 - data
 - . . .

Verification of compositions of embedded systems

Two difficulties:

- the composition...
- Usually we need to address verification of quantitative aspects:
 - timing constraints (Real-time systems)
 - probabilities
 - costs
 - data
 - ...

Each one may induce a complexity blow-up.

This can be measured by the structural complexity of verification problems: for ex. the composition and the state explosion problem.

This state explosion holds for synchronized systems, systems with boolean variables, 1-safe Petri nets etc.

 \rightarrow These are "non-flat" systems.

In practice, a model S is described as a non-flat system (whose operational semantics is a "flat" transition system T)

This state explosion holds for synchronized systems, systems with boolean variables, 1-safe Petri nets etc.

 \rightarrow These are "non-flat" systems.

In practice, a model S is described as a non-flat system (whose operational semantics is a "flat" transition system T)

Complexity of model	t systems	
Model checking	$\mathcal{T}\models \Phi$	"non-flat syst." $\models \Phi$
Reachability	NLOGSPACE-C	PSPACE-C
CTL model checking	P-C	PSPACE-C
AF μ -calculus	P-C	EXPTIME-C

(Papadimitriou, Vardi, Kupferman, Wolper, Rabinovich,...)

Challenge

Define new formalisms to model and verify the embedded systems, with. . .

- timing constraints
- probabilities
- costs, dynamic variables
- . . .
- extended specification languages

Challenge

Define new formalisms to model and verify the embedded systems, with. . .

- timing constraints
- probabilities
- costs, dynamic variables
- . . .
- extended specification languages
 - request \Rightarrow AF grant
 - request \Rightarrow AF_{<200} grant
 - request $\Rightarrow \mathbb{P}_{>0.9} F_{<200}$ grant
 - request $\Rightarrow \langle Agt_1 \rangle \mathbb{P}_{>0.9} F_{<200}$ grant

Challenge

Define new formalisms to model and verify the embedded systems, with. . .

- timing constraints
- probabilities
- costs, dynamic variables
- . . .
- extended specification languages
 - request \Rightarrow AF grant
 - request \Rightarrow AF_{<200} grant
 - request $\Rightarrow \mathbb{P}_{>0.9} F_{<200}$ grant
 - request $\Rightarrow \langle Agt_1 \rangle \mathbb{P}_{>0.9} F_{<200}$ grant

without increasing (too much) the complexity !

obj: find timed models and timed specification languages for which verification can be done efficiently.

- \rightarrow To model simply timed systems
- \rightarrow To use to abstract complex timed systems
- \rightarrow To combine with other quantitative extensions

Outline

Timed specification languages

Timed models
 Discrete-time models
 Timed to the second second

Timed automata

Outline

Timed specification languages

2 Timed models • Discrete-time models • Timed automata

3 Conclusion

Classical verification problems

- Reachability of a control state
- $\mathcal{S} \sim \mathcal{S}'$? : (bi)simulation, etc.
- $L(S) \subseteq L(S)$? : language inclusion
- $(S|A_T)$ + reachability : testing automata
- $S \models \Phi$ with Φ a temporal logic formula : model checking

Temporal properties:

"Any problem is followed by an alarm"

With CTL:
$$AG(problem \Rightarrow AF alarm)$$

Temporal properties:

"Any problem is followed by an alarm"

With CTL:
$$AG(problem \Rightarrow AF alarm)$$

Timed properties:

"Any problem is followed by an alarm in at most 10 time units"

Temporal properties:

"Any problem is followed by an alarm"

With CTL:
$$AG(problem \Rightarrow AF alarm)$$

Timed properties:

"Any problem is followed by an alarm in at most 10 time units"

With **T**CTL:

$$\mathsf{AG}\left(\text{ problem } \Rightarrow \text{ } \mathsf{AF}_{\leq 10} \text{ alarm} \right)$$

We use TCTL whose formulae are built from:

- atomic propositions in Prop (For ex. Alarm, Problem, ...)
- boolean combinators (\land , \lor , \neg), and
- temporal operators tagged with timing constraints: $E_-U_{\sim c^-}$ and $A_-U_{\sim c^-}$ with $\sim \in \{<, \leq, =, \geq, >\}$ and $c \in \mathbb{N}$.
- + all the standard abbreviations: $AG_{\sim c}$, $AF_{\sim c}$ etc.

Timed CTL

We use TCTL whose formulae are built from:

- atomic propositions in Prop (For ex. Alarm, Problem, ...)
- boolean combinators (\land , \lor , \neg), and
- temporal operators tagged with timing constraints: E _ U_{~c}and A _ U_{~c}- with ~∈ {<, ≤, =, ≥, >} and c ∈ N.

+ all the standard abbreviations: $AG_{\sim c}$, $AF_{\sim c}$ etc.

 $s \models \mathsf{E}\varphi \mathsf{U}_{\sim c}\psi \iff \exists \rho = \rho' \cdot \rho'' \in Exec(s) \text{ with } s \stackrel{\rho'}{\Rightarrow} s' \text{ and}$ $\underset{\mathsf{Time}(\rho') \sim c \text{ and } s' \models \psi, \\ \text{and } s'' \models \varphi \text{ for all } s <_{\rho} s'' <_{\rho} s'$

Outline

Timed specification languages

Timed models Discrete-time models Timed automata

3 Conclusion

Studying timing constraints & complexity

Two problems:

- Are there simpler models with discrete time for which model checking can be efficient ?
- 2 Are there classes of Timed Automata which allow efficient model checking ?

Timed transition systems

- = a transition system + a notion of time
- \Rightarrow used to define the semantics of real-time systems
- Let $\mathbb T$ be a time domain: $\mathbb N,$ $\mathbb R_+$ or $\mathbb Q_+.$

Timed transition system

 $\mathcal{T} = \langle S, s_0,
ightarrow, I
angle$

- S is an (possibly infinite) set of states, $s_0 \in S$
- $\rightarrow \subseteq S \times \mathbb{T} \times S$
- $I: S \rightarrow 2^{\mathsf{Prop}}$: assigns atomic propositions to states

Timed transition systems

- = a transition system + a notion of time
- \Rightarrow used to define the semantics of real-time systems
- Let $\mathbb T$ be a time domain: $\mathbb N,$ $\mathbb R_+$ or $\mathbb Q_+.$

Timed transition system

 $\mathcal{T} = \langle S, s_0, \rightarrow, I \rangle$

- S is an (possibly infinite) set of states, $s_0 \in S$
- $\rightarrow \subseteq S \times \mathbb{T} \times S$
- $I: S \rightarrow 2^{\mathsf{Prop}}$: assigns atomic propositions to states

Every finite run σ in T has a finite duration Time(σ).

Outline

Timed specification languages

Timed models
 Discrete-time models
 Timed automata

3 Conclusion

It is possible to use classical Kripke structures as timed models.

There is no inherent concept of time: time elapsing is encoded by events.

For example:

- each transition = one time unit (Emerson et al.)
- or: a "tick" proposition labels states where one t.u. elapses.

Timed model checking can be efficient (polynomial-time) !

Durational Transition Graphs extend these models without loosing efficiency.

Durational Transition Graph

Durational Transition Graph

 $\mathbb{T}=\mathbb{N}$

A durational transition graph S is $\langle Q, R, I \rangle$ where

- Q is a (finite) set of *states*,
- $R \subseteq Q \times \mathcal{I} \times Q$ is a total transition relation with duration
- $I: Q \rightarrow 2^{\text{Prop}}$ labels every state with a subset of Prop.

 $\mathcal{I}=$ set of intervals "[n,m]" or " $[n,\infty)$ " (with $n,m\in\mathbb{N}$)

 $q \xrightarrow{[n,m]} q'$: "moving from q to q' takes some duration d in [n, m]." Two semantics are possible...

Two semantics for DTGs

Consider the run: Init_State $\xrightarrow{15}$ New_Card $\xrightarrow{0}$ Wait_for_Pin C. $\xrightarrow{20}$...

Two semantics for DTGs

Consider the run: Init_State $\xrightarrow{15}$ New_Card $\xrightarrow{0}$ Wait_for_Pin C. $\xrightarrow{20}$...

- Jump semantics:
 - date: $0 \rightsquigarrow Init_State$
 - date: $15 \rightsquigarrow \text{New}_Card$
 - . . .

no intermediary states !

- \oplus Simple semantics, no extra states.
- ⊖ Not always natural. Difficult to synchronize two DTGs.

Two semantics for DTGs

Consider the run: Init_State $\xrightarrow{15}$ New_Card $\xrightarrow{0}$ Wait_for_Pin C. $\xrightarrow{20}$...

- Jump semantics:
 - date: $0 \rightsquigarrow Init_State$
 - date: $15 \rightsquigarrow \text{New}_Card$
 - . . .

no intermediary states !

 \oplus Simple semantics, no extra states.

 \ominus Not always natural. Difficult to synchronize two DTGs.

- <u>Continuous</u> semantics:
 - date: $0 \dots 14 \rightsquigarrow \text{Init_state}$
 - date: 15 \rightsquigarrow New_card
 - date: 15...34 → Wait_for_Pin_C
 - . . .

jump vs continuous semantics

jump vs continuous semantics

jump vs continuous semantics

(q, i): "i time units have already been spent in q"

Outline

Timed specification languages

Timed models Discrete-time models Timed automata

 $\mathcal{A}=$ an automaton (locations and transitions) + clocks

 $\mathcal{A} =$ an automaton (locations and transitions) + clocks Clocks progress synchronously with time (Time domain = \mathbb{R}_+)

Transitions:
$$\ell \xrightarrow{g,a,r} \ell' \in T$$
 with:

- g is the guard,
- a is the label,
- *r* is the set of clocks to be reset to 0

 $\mathcal{A} =$ an automaton (locations and transitions) + clocks Clocks progress synchronously with time (Time domain = \mathbb{R}_+)

Transitions:
$$\ell \xrightarrow{g,a,r} \ell' \in T$$
 with:

- g is the guard,
- a is the label,
- *r* is the set of clocks to be reset to 0

Semantics:

States: (ℓ, v) where v is a valuation for the clocks

 $\mathcal{A} =$ an automaton (locations and transitions) + clocks Clocks progress synchronously with time (Time domain = \mathbb{R}_+)

Transitions:
$$\ell \xrightarrow{g,a,r} \ell' \in T$$
 with:

- g is the guard,
- a is the label,
- r is the set of clocks to be reset to 0

Semantics:

A States: (ℓ, v) where v is a valuation for the clocks

▲ Action transition:

$$(\ell, v) \xrightarrow{0}{\rightarrow}_{a} (\ell', v') \quad \text{iff} \quad \left\{ \begin{array}{l} \exists \, \ell \xrightarrow{g, a, r}{\rightarrow} \, \ell' \in \mathcal{A}, \\ v \models g, \quad v' = v[r \leftarrow 0] \end{array} \right.$$

 $\mathcal{A} =$ an automaton (locations and transitions) + clocks Clocks progress synchronously with time (Time domain = \mathbb{R}_+)

Transitions:
$$\ell \xrightarrow{g,a,r} \ell' \in T$$
 with:

- g is the guard,
- a is the label,
- r is the set of clocks to be reset to 0

Semantics:

States: (ℓ, v) where v is a valuation for the clocks

▲ Action transition:

$$(\ell, v) \xrightarrow{0}{\rightarrow}_{a} (\ell', v') \quad \text{iff} \quad \begin{cases} \exists \, \ell \xrightarrow{g, a, r}{\rightarrow} \ell' \in \mathcal{A}, \\ v \models g, \quad v' = v[r \leftarrow 0] \end{cases}$$

▲ Delay transition:

 $\forall t \in \mathbb{R}_+\text{, } (\ell, \nu) \xrightarrow{t} (\ell, \nu + t) \text{ iff } \forall 0 \leq t' \leq t, \ \nu + t' \models \texttt{Inv}(\ell)$

Model checking for TA

 \mathcal{A} defines an infinite timed transition system.

Decision procedures are based on the region graph technique (Alur, Courcoubetis, Dill)

From \mathcal{A} and Φ , one defines an equivalence $\equiv_{\mathcal{A},\Phi}$ s.t.:

•
$$v \equiv_{\mathcal{A}, \Phi} v' \Rightarrow ((\ell, v) \models \Phi \text{ iff } (\ell, v') \models \Phi)$$

• $\mathbb{R}^{X}_{+/\equiv_{\mathcal{A},\Phi}}$ is finite

A region = An equivalence class of $\equiv_{\mathcal{A}, \Phi}$

We can reduce $\mathcal{A} \models \Phi$ to $\left(\mathcal{A} \times \mathbb{R}^{X}_{+/\equiv_{\mathcal{A},\Phi}}\right) \models \Phi$...and use a standard model checking algorithm.

Model checking for TA

 \mathcal{A} defines an infinite timed transition system.

Decision procedures are based on the region graph technique (Alur, Courcoubetis, Dill)

From \mathcal{A} and Φ , one defines an equivalence $\equiv_{\mathcal{A},\Phi}$ s.t.:

•
$$v \equiv_{\mathcal{A}, \Phi} v' \Rightarrow ((\ell, v) \models \Phi \text{ iff } (\ell, v') \models \Phi)$$

• $\mathbb{R}^{X}_{+/\equiv_{\mathcal{A},\Phi}}$ is finite

A region = An equivalence class of $\equiv_{\mathcal{A}, \Phi}$

We can reduce $\mathcal{A} \models \Phi$ to $\left(\mathcal{A} \times \mathbb{R}^{X}_{+/\equiv_{\mathcal{A},\Phi}}\right) \models \Phi$...and use a standard model checking algorithm.

! The size of $\mathbb{R}^{X}_{+/\equiv_{\mathcal{A},\Phi}}$ is in $O(|X|! \cdot M^{|X|})$!

$$X = \{x, y\}$$

 $M_x = 3$ and $M_y = 2$

$$X = \{x, y\}$$
$$M_x = 3 \text{ and } M_y = 2$$

• "compatibility" between regions and constraints $x \sim k$ and $y \sim k$

$$X = \{x, y\}$$
$$M_x = 3 \text{ and } M_y = 2$$

- "compatibility" between regions and constraints $x \sim k$ and $y \sim k$
- "compatibility" between regions and time elapsing

$$X = \{x, y\}$$
$$M_x = 3 \text{ and } M_y = 2$$

- "compatibility" between regions and constraints $x \sim k$ and $y \sim k$
- "compatibility" between regions and time elapsing

$$X = \{x, y\}$$
$$M_x = 3 \text{ and } M_y = 2$$

- "compatibility" between regions and constraints $x \sim k$ and $y \sim k$
- "compatibility" between regions and time elapsing

$$X = \{x, y\}$$
$$M_x = 3 \text{ and } M_y = 2$$

region defined by $I_x =]1; 2[, I_y =]0; 1[$ $\{x\} < \{y\}$

- "compatibility" between regions and constraints $x \sim k$ and $y \sim k$
- "compatibility" between regions and time elapsing

$$X = \{x, y\}$$
$$M_x = 3 \text{ and } M_y = 2$$

region defined by $I_x =]1; 2[, I_y =]0; 1[$ $\{x\} < \{y\}$

successor by delay transition: $I_x =]1; 2[, I_y = [2; 2]$

• "compatibility" between regions and constraints $x \sim k$ and $y \sim k$

"compatibility" between regions and time elapsing

An example [AD 90's]

Complexity of timed verification

- Reachability in TA is PSPACE-C (Alur & Dill)
- Reachability in TA with three clocks is PSPACE-C (Courcoubetis & Yannakakis)
- Reachability in TA with constants in {0,1} is PSPACE-C (Courcoubetis & Yannakakis)
- Model checking Timed CTL over TA is PSPACE-C (Alur, Courcoubetis & Dill)
- Model checking AF Timed μ-calculus over TA is EXPTIME-C (Aceto & Laroussinie)

(But tools (Kronos, UppAal) exist and have been applied successfully for verifying industrial case studies.)

```
[LMS2004]
```

- **1** Model checking *TCTL* on 1C-TA is PSPACE-complete.
- 2 Reachability in 1C-TA is NLOGSPACE-complete.
- **3** Model checking $TCTL_{\leq,\geq}$ on 1C-TA is P-complete.

- 1 Reachability in 2C-TA is NP-hard.
- **2** Model checking <u>CTL</u> on 2C-TA is PSPACE-complete.

Outline

Timed specification languages

2 Timed models
 • Discrete-time models
 • Timed automata

	discrete time			dense time			
	DTG $\xrightarrow{0/1}$	DTG [LMS06]		1C-TA	2C-TA	TA [ACD93]	
	[LST03]	jump	cont.	[LMS04]	[LMS04]	[CY92]	
Reachability	NLOGSPACE-C				NP-hard	PSPACE-C	
$TCTL_{\leq,\geq}$	P-complete				PSPACE-C		
TCTL	P-compl.	Δ_2^p	PSPACE-complete				
TCTL _c	PSPACE-complete						

Conclusion

- No efficient algorithm for "TCTL+clocks".
- As soon as there are two clocks, a complexity blow-up occurs for any verification problem.
- For *TCTL*, model-checking may be efficient only for the simple DTGs with durations in $\{0, 1\}$.
- For *TCTL*_{≤,≥}, it is possible to have efficient model-checking algorithm for any kind of DTG and 1C-TA.
- The previous result can be extended to probabilistic timed systems (Probabilistic DTG and 1-clock Probabilistic TA).