Models for Efficient Timed Verification

François Laroussinie

LSV / ENS de Cachan – CNRS UMR 8643

Monterey Workshop - “Composition of embedded systems”
Model checking

System \rightarrow \text{Formalizing step} \rightarrow \text{Properties}

\{ ? \} \models \phi
We want...

- **Expressive models**: communication, variables, timing constraints, probabilities...
- **Expressive specification languages**: natural, powerful, intuitive...
Model checking

We want...

- **Expressive models**: communication, variables, timing constraints, probabilities.
- **Expressive specification languages**: natural, powerful, intuitive.

AND EFFICIENT ALGORITHM!

Main limit of model checking = state explosion problem
State explosion problem

An example: a “protocol”…
State explosion problem

An example: a “protocol”…

![Diagram](attachment:image.png)
State explosion problem

An example: a “protocol”…

1

2

3

4

a buffer

a sender
State explosion problem

An example: a “protocol”…

A sender

A buffer

A receiver
State explosion problem

An example: a “protocol”…

A sender

A buffer

A receiver

A server
State explosion problem

An example: a “protocol”…
State explosion problem

An example: a “protocol”…

- A sender
- A buffer
- A receiver
- A server
State explosion problem
State explosion problem

This has motivated

- symbolic methods
- heuristics:
 - on-the-fly algorithms
 - acceleration
 - partial order
 - ...
- abstraction
- ...

Model checkers exist and they work rather nicely!
Verification of compositions of embedded systems

Two difficulties:

- the composition...

- Usually we need to address verification of quantitative aspects:

 - timing constraints (Real-time systems)
 - probabilities
 - costs
 - data
 - ...

Verification of compositions of embedded systems

Two difficulties:

- the composition . . .

- Usually we need to address verification of quantitative aspects:
 - timing constraints (Real-time systems)
 - probabilities
 - costs
 - data
 - . . .

Each one may induce a complexity blow-up.

This can be measured by the structural complexity of verification problems: for ex. the composition and the state explosion problem.
This state explosion holds for synchronized systems, systems with boolean variables, 1-safe Petri nets etc.

These are “non-flat” systems.

In practice, a model S is described as a non-flat system (whose operational semantics is a “flat” transition system T).
State explosion problem

This state explosion holds for synchronized systems, systems with boolean variables, 1-safe Petri nets etc.

→ These are “non-flat” systems.

In practice, a model S is described as a non-flat system (whose operational semantics is a “flat” transition system T)

Complexity of model checking non-flat systems

<table>
<thead>
<tr>
<th>Model checking</th>
<th>$T \models \Phi$</th>
<th>”non-flat syst.” $\models \Phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reachability</td>
<td>NLOGSPACE-C</td>
<td>PSPACE-C</td>
</tr>
<tr>
<td>CTL model checking</td>
<td>P-C</td>
<td>PSPACE-C</td>
</tr>
<tr>
<td>AF μ-calculus</td>
<td>P-C</td>
<td>EXPTIME-C</td>
</tr>
</tbody>
</table>

(Papadimitriou, Vardi, Kupferman, Wolper, Rabinovich, . . .)
Challenge

Define new formalisms to model and verify the embedded systems, with...

- timing constraints
- probabilities
- costs, dynamic variables
- ...
- extended specification languages
Challenge

Define new formalisms to model and verify the embedded systems, with...

- timing constraints
- probabilities
- costs, dynamic variables
- ...

- extended specification languages

- request \Rightarrow ΔF grant
- request \Rightarrow $\Delta F < 200$ grant
- request \Rightarrow $P > 0.9 F < 200$ grant
- request \Rightarrow $\langle \text{Agt}_1 \rangle P > 0.9 F < 200$ grant
Challenge

Define new formalisms to model and verify the embedded systems, with...

- timing constraints
- probabilities
- costs, dynamic variables
- ...

- extended specification languages
 - request \Rightarrow AF grant
 - request \Rightarrow $\text{AF}_{<200}$ grant
 - request \Rightarrow $\mathbb{P}_{>0.9} F_{<200}$ grant
 - request \Rightarrow $\langle \text{Agt}_1 \rangle \mathbb{P}_{>0.9} F_{<200}$ grant

without increasing (too much) the complexity!
Efficient timed model-checking

obj: find timed models and timed specification languages for which verification can be done efficiently.

→ To model simply timed systems

→ To use to abstract complex timed systems

→ To combine with other quantitative extensions
Outline

1. Timed specification languages

2. Timed models
 - Discrete-time models
 - Timed automata

3. Conclusion
Outline

1. Timed specification languages

2. Timed models
 - Discrete-time models
 - Timed automata

3. Conclusion
Classical verification problems

- Reachability of a control state
- \(S \sim S' \) : (bi)simulation, etc.
- \(L(S) \subseteq L(S) \) : language inclusion
- \((S|A_T) + \) reachability : testing automata
- \(S \models \Phi \) with \(\Phi \) a temporal logic formula : model checking
Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With \textbf{CTL}:

\[\text{AG} \left(\text{problem} \Rightarrow \text{AF alarm} \right) \]
Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With CTL: $\text{AG} \left(\text{problem} \Rightarrow \text{AF alarm} \right)$

Timed properties:

“Any problem is followed by an alarm in at most 10 time units”
Timed properties

Temporal properties:

“Any problem is followed by an alarm”

With CTL:

\[\text{AG} \left(\text{problem} \Rightarrow \text{AF alarm} \right) \]

Timed properties:

“Any problem is followed by an alarm in at most 10 time units”

With TCTL:

\[\text{AG} \left(\text{problem} \Rightarrow \text{AF}_{\leq 10} \text{ alarm} \right) \]
We use TCTL whose formulae are built from:

- atomic propositions in Prop (For ex. Alarm, Problem, ...)
- boolean combinators (\(\land, \lor, \neg\)), and
- temporal operators tagged with timing constraints: \(E _ U_{\sim c}\) and \(A _ U_{\sim c}\) with \(\sim \in \{<, \leq, =, \geq, >\}\) and \(c \in \mathbb{N}\).

+ all the standard abbreviations: \(AG_{\sim c}, AF_{\sim c}\) etc.
We use *TCTL* whose formulae are built from:

- atomic propositions in Prop (For ex. *Alarm*, *Problem*, ...)
- boolean combinators (\land, \lor, \neg), and
- temporal operators tagged with timing constraints: $E_{\sim}U_{\sim}c$ and $A_{\sim}U_{\sim}c$ with $\sim \in \{<, \leq, =, \geq, >\}$ and $c \in \mathbb{N}$.

+ all the standard abbreviations: $AG_{\sim}c$, $AF_{\sim}c$ etc.

\[
s \models E\varphi U_{\sim}c \psi \iff \exists \rho = \rho' \cdot \rho'' \in \text{Exec}(s) \text{ with } s \xrightarrow{\rho'} s' \text{ and } \text{Time} (\rho') \sim c \text{ and } s' \models \psi, \\
\text{and } s'' \models \varphi \text{ for all } s <_{\rho} s'' <_{\rho} s'
\]
1 Timed specification languages

2 Timed models
 - Discrete-time models
 - Timed automata

3 Conclusion
Questions

Studying timing constraints & complexity

Two problems:

1. Are there simpler models – with discrete time – for which model checking can be efficient?
2. Are there classes of Timed Automata which allow efficient model checking?
Timed transition systems

= a transition system + a notion of time
⇒ used to define the semantics of real-time systems

Let \mathbb{T} be a time domain: \mathbb{N}, \mathbb{R}_+ or \mathbb{Q}_+.

Timed transition system

$\mathcal{T} = \langle S, s_0, \rightarrow, l \rangle$

- S is an (possibly infinite) set of states, $s_0 \in S$
- $\rightarrow \subseteq S \times \mathbb{T} \times S$
- $l : S \rightarrow 2^{\text{Prop}}$: assigns atomic propositions to states
Timed transition systems

= a transition system + a notion of time
⇒ used to define the semantics of real-time systems

Let \mathbb{T} be a time domain: \mathbb{N}, \mathbb{R}_+ or \mathbb{Q}_+.

Timed transition system

$\mathcal{T} = \langle S, s_0, \rightarrow, I \rangle$

- S is an (possibly infinite) set of states, $s_0 \in S$
- $\rightarrow \subseteq S \times \mathbb{T} \times S$
- $I : S \rightarrow 2^{\text{Prop}}$: assigns atomic propositions to states

Every finite run σ in \mathcal{T} has a finite duration $\text{Time}(\sigma)$.
Outline

1 Timed specification languages

2 Timed models
 - Discrete-time models
 - Timed automata

3 Conclusion
It is possible to use classical Kripke structures as timed models. There is no inherent concept of time: time elapsing is encoded by events.

For example:

- each transition = one time unit (Emerson et al.)
- or: a “tick” proposition labels states where one t.u. elapses.

Timed model checking can be efficient (polynomial-time)!

Durational Transition Graphs extend these models without loosing efficiency.
Durational Transition Graph

- **Init state**
 - Transition: [0,∞)
 - Duration: [7,45]
 - Transitions:
 - To **New Card**: [25,50]
 - To **Wait for Pincode**: [0,∞)

- **New Card**
 - Duration: [25,50]
 - Transitions:
 - To **Wait for Pincode**: [25,50]
 - To **Code OK**: [25,50]

- **Wait for Pincode**
 - Duration: [25,50]
 - Transitions:
 - To **Read code**: [25,50]
 - To **Bad code**: [0,7]

- **Read code**
 - Transition: [0,∞)
 - Duration: [10;15]
 - Transitions:
 - To **Bad code**: [0,7]
 - To **Return card**: [5,10]

- **Code OK**
 - Duration: [0,7]
 - Transitions:
 - To **Ask amount**: [0,7]

- **Ask amount**
 - Duration: [0,7]
 - Transitions:
 - To **Wait for Pincode**: [0,7]

- **Return card**
 - Duration: [5,10]
 - Transitions:
 - To **Wait for Pincode**: [0,7]

- **Money+card**
 - Duration: [0,366]
 - Transitions:
 - To **Init state**: [0,∞)
 - To **New Card**: [50,110]
\(\mathbb{T} = \mathbb{N} \)

A durational transition graph \(S \) is \(\langle Q, R, I \rangle \) where

- \(Q \) is a (finite) set of states,
- \(R \subseteq Q \times I \times Q \) is a total transition relation with duration
- \(I : Q \rightarrow 2^{\text{Prop}} \) labels every state with a subset of \(\text{Prop} \).

\(I = \) set of intervals “\([n, m]\)” or “\([n, \infty)\)” (with \(n, m \in \mathbb{N} \))

\(q \xrightarrow{[n,m]} q' : \) “moving from \(q \) to \(q' \) takes some duration \(d \) in \([n, m] \).”

Two semantics are possible...
Two semantics for DTGs

Consider the run: $\text{Init_State} \xrightarrow{15} \text{New_Card} \xrightarrow{0} \text{Wait_for_Pin\ C.} \xrightarrow{20} \ldots$
Two semantics for DTGs

Consider the run: $\text{Init_State} \overset{15}{\rightarrow} \text{New_Card} \overset{0}{\rightarrow} \text{Wait_for_Pin \ C} \overset{20}{\rightarrow} \ldots$

- **Jump** semantics:
 - date: 0 \leadsto Init_State
 - date: 15 \leadsto New_Card no intermediary states!
 - \ldots

⊕ Simple semantics, no extra states.
 Nodo always natural. Difficult to synchronize two DTGs.
Two semantics for DTGs

Consider the run: Init_State $\xrightarrow{15}$ New_Card $\xrightarrow{0}$ Wait_for_Pin_C. $\xrightarrow{20}$...

- **Jump** semantics:
 - date: 0 \leadsto Init_State
 - date: 15 \leadsto New_Card no intermediary states!
 - ...

 ⊞ Simple semantics, no extra states.
 ⊞ Not always natural. Difficult to synchronize two DTGs.

- **Continuous** semantics:
 - date: 0...14 \leadsto Init_state
 - date: 15 \leadsto New_card
 - date: 15...34 \leadsto Wait_for_Pin_C
 - ...

jump vs continuous semantics
jump vs continuous semantics

DTG S

jump sem. of S:
jump vs continuous semantics

DTG S

jump sem. of S:

$q, 0$ \(\xrightarrow{1} q, 1\) \(\xrightarrow{1} q, 2\) \(\xrightarrow{1} q, 3\) \(\xrightarrow{1} \ldots\)

(q, i) : “i time units have already been spent in q”

continuous sem. of S:

$(q, 0)$ \(\xrightarrow{1} q, 1\) \(\xrightarrow{1} q, 2\) \(\xrightarrow{1} q, 3\) \(\xrightarrow{1} \ldots\)

(q, i) : “i time units have already been spent in q”
Outline

1 Timed specification languages

2 Timed models
 - Discrete-time models
 - Timed automata

3 Conclusion
\[A = \text{an automaton (locations and transitions) } + \text{clocks} \]
Timed automata - definition [Alur & Dill]

\(\mathcal{A} = \text{an automaton (locations and transitions)} + \text{clocks} \)

Clocks progress synchronously with time (Time domain = \(\mathbb{R}_+ \))

Transitions: \(\ell \xrightarrow{g,a,r} \ell' \in T \) with:

- \(g \) is the guard,
- \(a \) is the label,
- \(r \) is the set of clocks to be reset to 0
\[A = \text{an automaton (locations and transitions) + clocks} \]

Clocks progress synchronously with time (Time domain = \(\mathbb{R}_+ \))

Transitions: \(\ell \xrightarrow{g,a,r} \ell' \in T \) with:
- \(g \) is the guard,
- \(a \) is the label,
- \(r \) is the set of clocks to be reset to 0

Semantics:

▲ States: \((\ell, v)\) where \(v \) is a valuation for the clocks
$A = \text{an automaton (locations and transitions) } + \text{ clocks}$

Clocks progress synchronously with time (Time domain = \mathbb{R}_+)

Transitions: $\ell \xrightarrow{g,a,r} \ell' \in T$ with:
• g is the guard,
• a is the label,
• r is the set of clocks to be reset to 0

Semantics:

▲ States: (ℓ, v) where v is a valuation for the clocks

▲ Action transition:
$(\ell, v) \xrightarrow{a} (\ell', v') \iff \exists \ell \xrightarrow{g,a,r} \ell' \in A, v \models g, v' = v[r \leftarrow 0]$
Timed automata - definition [Alur & Dill]

\[A = \text{an automaton (locations and transitions) + clocks} \]

Clocks progress synchronously with time (Time domain = \(\mathbb{R}_+ \))

Transitions: \(\ell \xrightarrow{g,a,r} \ell' \in T \) with:
- \(g \) is the guard,
- \(a \) is the label,
- \(r \) is the set of clocks to be reset to 0

Semantics:

▲ States: \((\ell, v)\) where \(v \) is a valuation for the clocks

▲ Action transition:
\[(\ell, v) \xrightarrow{a} (\ell', v') \iff \begin{cases} \exists \ell \xrightarrow{g,a,r} \ell' \in A, \\ v \models g, \quad v' = v[r \leftarrow 0] \end{cases} \]

▲ Delay transition:
\[\forall t \in \mathbb{R}_+, (\ell, v) \xrightarrow{t} (\ell, v + t) \iff \forall 0 \leq t' \leq t, v + t' \models \text{Inv}(\ell) \]
Model checking for TA

\mathcal{A} defines an **infinite** timed transition system.

Decision procedures are based on the **region graph** technique (Alur, Courcoubetis, Dill)

From \mathcal{A} and Φ, one defines an equivalence $\equiv_{\mathcal{A},\Phi}$ s.t.:

- $\nu \equiv_{\mathcal{A},\Phi} \nu' \Rightarrow \left((\ell, \nu) \models \Phi \text{ iff } (\ell, \nu') \models \Phi \right)$

- $\mathbb{R}_+^x/\equiv_{\mathcal{A},\Phi}$ is finite

A **region** = An equivalence class of $\equiv_{\mathcal{A},\Phi}$

We can reduce $\mathcal{A} \models \Phi$ to $\left(\mathcal{A} \times \mathbb{R}_+^x/\equiv_{\mathcal{A},\Phi} \right) \models \Phi$

...and use a standard model checking algorithm.
Model checking for TA

\(\mathcal{A} \) defines an infinite timed transition system.

Decision procedures are based on the region graph technique (Alur, Courcoubetis, Dill)

From \(\mathcal{A} \) and \(\Phi \), one defines an equivalence \(\equiv_{\mathcal{A},\Phi} \) s.t.:

1. \(v \equiv_{\mathcal{A},\Phi} v' \Rightarrow (\ell, v) \models \Phi \iff (\ell, v') \models \Phi \)
2. \(\mathbb{R}_+^X/\equiv_{\mathcal{A},\Phi} \) is finite

A region = An equivalence class of \(\equiv_{\mathcal{A},\Phi} \)

We can reduce \(\mathcal{A} \models \Phi \) to \((\mathcal{A} \times \mathbb{R}_+^X/\equiv_{\mathcal{A},\Phi}) \models \Phi \)

...and use a standard model checking algorithm.

! The size of \(\mathbb{R}_+^X/\equiv_{\mathcal{A},\Phi} \) is in \(O(|X|! \cdot M^{|X|}) \)!
The region abstraction

\[X = \{x, y\} \]

\[M_x = 3 \text{ and } M_y = 2 \]
The region abstraction

- “compatibility” between regions and constraints $x \sim k$ and $y \sim k$

$X = \{x, y\}$

$M_x = 3$ and $M_y = 2$
The region abstraction

$X = \{x, y\}$

$M_x = 3$ and $M_y = 2$

- “compatibility” between regions and constraints $x \sim k$ and $y \sim k$
- “compatibility” between regions and time elapsing
The region abstraction

- "compatibility" between regions and constraints $x \sim k$ and $y \sim k$
- "compatibility" between regions and time elapsing

$X = \{x, y\}$
$M_x = 3$ and $M_y = 2$
The region abstraction

- "compatibility" between regions and constraints $x \sim k$ and $y \sim k$
- "compatibility" between regions and time elapsing

$X = \{x, y\}$
$M_x = 3$ and $M_y = 2$
The region abstraction

$X = \{ x, y \}$

$M_x = 3$ and $M_y = 2$

region defined by

$I_x =]1; 2[\), $I_y =]0; 1[\)

$\{ x \} < \{ y \}$

- “compatibility” between regions and constraints $x \sim k$ and $y \sim k$
- “compatibility” between regions and time elapsing
The region abstraction

\[X = \{x, y\} \]
\[M_x = 3 \text{ and } M_y = 2 \]

Region defined by
\[I_x =]1; 2[\text{, } I_y =]0; 1[\]
\[\{x\} < \{y\} \]

Successor by delay transition:
\[I_x =]1; 2[\text{, } I_y = [2; 2] \]

- “compatibility” between regions and constraints \(x \sim k \) and \(y \sim k \)
- “compatibility” between regions and time elapsing
An example [AD 90’s]
Complexity of timed verification

- Reachability in TA is **PSPACE-C** (Alur & Dill)
- Reachability in TA with three clocks is **PSPACE-C** (Courcoubetis & Yannakakis)
- Reachability in TA with constants in \{0, 1\} is **PSPACE-C** (Courcoubetis & Yannakakis)
- Model checking **Timed CTL** over TA is **PSPACE-C** (Alur, Courcoubetis & Dill)
- Model checking **AF Timed \(\mu \)-calculus** over TA is **EXPTIME-C** (Aceto & Laroussinie)

\(\text{(But tools (Kronos, UppAal) exist and have been applied successfully for verifying industrial case studies.)} \)
One/two clock timed automata

1. Model checking $TCTL$ on 1C-TA is PSPACE-complete.
2. Reachability in 1C-TA is NLOGSPACE-complete.
3. Model checking $TCTL_{\leq, \geq}$ on 1C-TA is P-complete.

1. Reachability in 2C-TA is NP-hard.
2. Model checking CTL on 2C-TA is PSPACE-complete.
Outline

1. Timed specification languages

2. Timed models
 - Discrete-time models
 - Timed automata

3. Conclusion
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>discrete time</th>
<th>dense time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTG $^{0/1}$</td>
<td>DTG [LMS06]</td>
<td>1C-TA [LMS04]</td>
</tr>
<tr>
<td>[LST03]</td>
<td>jump / cont.</td>
<td>2C-TA [LMS04]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA [ACD93]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[CY92]</td>
</tr>
<tr>
<td>Reachability</td>
<td>NLOGSPACE-C</td>
<td>NP-hard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSPACE-C</td>
</tr>
<tr>
<td>$TCTL_{\leq,\geq}$</td>
<td>P-complete</td>
<td>PSPACE-C</td>
</tr>
<tr>
<td>$TCTL$</td>
<td>P-compl.</td>
<td>Δ_2^p</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSPACE-complete</td>
</tr>
<tr>
<td>$TCTL_c$</td>
<td></td>
<td>PSPACE-complete</td>
</tr>
</tbody>
</table>
• No efficient algorithm for "TCTL+clocks".
• As soon as there are two clocks, a complexity blow-up occurs for any verification problem.
• For TCTL, model-checking may be efficient only for the simple DTGs with durations in \{0, 1\}.

• For TCTL\(_{\leq, \geq}\), it is possible to have efficient model-checking algorithm for any kind of DTG and 1C-TA.
• The previous result can be extended to probabilistic timed systems (Probabilistic DTG and 1-clock Probabilistic TA).