Vv

Service-Oriented Architectures for
Networked Embedded Sensor
Systems

Institute for Software Integrated Syste
Vanderbilt University

Xenofon Koutsoukos

Manish Kushwaha, Isaac Amundson, Sandeep Neema, Janos Sztipanovits

10/16/2006 Monterey '06

V Outline

= Challenges of programming wireless sensor networks
= QASIS: A service-oriented architecture
= Programming framework

= Programming model
Object-centric
Ambient-aware

= Integration of resource-constrained SNs with Web
services

= Middleware
= Experimental results
= Research challenges

10/16/2006 Monterey '06

E? Programming Challenges

= Limited resources
Memory, bandwidth, and power supply

= Dynamic network behavior
Communication failure, node dropout, mobility

= Scalability
10s of nodes to 1000s of nodes

= Heterogeneity

Sensor nodes, satellite imaging systems, meteorological stations,
PDAs, security cameras

Rapidly evolving hardware architectures

How do we program a system composed of a large number of
heterogeneous, volatile, resource-constrained devices?

10/16/2006 Monterey '06

E? Programming Models and Abstractions

= Virtual machine
Mate, Magnet

= Mobile agents
Impala, Agilla
= Database
TinyDB, Cougar, SINA, DsWare
= Macroprogramming
Kairos, Abstract Region, Abstract Task Graph
= Service-oriented
SONGS, CodeBlue, Milan
= Object-centric
EnviroTrack

10/16/2006 Monterey '06

E? Integrating Heterogeneous SNs

= Service-oriented architecture
= Loosely-coupled modular, and autonomous services
= Well-defined interfaces
= Published, discovered, and invoked over the network

10/16/2006 Monterey '06

V Programming Framework

DASIS: ogmmming Teehone

Domain Deployment

Plan

Domain Service
| Development

Object-Code

SR I
= =

— o o
LY LAY e

= Separation of concerns
= Application domain services
= Middleware services

10/16/2006 Monterey '06

Vv

= SN applications that can be
described by dataflow such as
tracking, gesture recognition,
etc.

= Each activity is implemented
as a service

= Applications are described as
service graphs

= (Object-centric programming
= Ambient-awareness

= Globally asynchronous locally
synchronous (GALS) model of
computation

OASIS: A Service-oriented
Architecture

Target Object

10/16/2006 Monterey '06

OASIS at Run-time

© T

Vv

= Sensor network
monitors environment
for target

= When target is
detected:
Elect object owner

Locate services In
network

Execute application

10/16/2006 Monterey '06

E? Object-Centric Programming -

= Application development from the view point
of the phenomenon under observation

= Application is driven by the phenomenon

= Phenomenon is represented as a unique
logical object
= Benefits
Focus on the object

No global network model
Scalability
Heterogeneity

10/16/2006 Monterey '06

E? Service-Oriented Architecture

= Services

Modular, autonomous, with
well-defined interfaces

Published, discovered, and
invoked over the network

= Service graph

Application functionality
described as dataflow

= Service constraints
Determine the allocation of
services to nodes

= Globally Asynchronous,
Locally Synchronous (GALS)
model of computation

10/16/2006 Monterey '06

V Ambient-Awareness

= Dynamic network behavior
Communication failure
Node dropout
Mobility
= Uncertainty of the physical phenomenon monitored

= Dynamic service discovery
New service provider must be selected quickly and efficiently
Must satisfy constraints specified in the service graph

= An application capable of adapting to the environment in
such a manner is said to be ambient-aware

10/16/2006 Monterey '06

E? Dynamic Service Configuration

= Service Discovery

= Service graph cannot
be executed until its
constituent services are
located in the network

= Passive service
discovery

= Composition
= Constraint satisfaction
= Binding

10/16/2006 Monterey '06

Multi-hop Routing

= Similar to Dynamic Source Routing (DSR)

4

Adjusted for the OASIS architecture 1
= Message types requiring routing ‘ 6

information €
Service discovery reply messages
AN
// N
_ N
Ve AN

Service binding messages)
Service access messages P J
7/ AN

= Each node contains a NextHop table e \

/s AN
Specifies the next node on the path to 7 h
final destination Node Manager

Table is filled dynamically by examining NextHop
the headers of received messages Table Dest | Next

If table does not contain a requested L
destination
» A next-hop guess is made

= Based on which neighbor is closest to the physical
location of destination node

5

a| | W|N
a| b~ W NN

10/16/2006 Monterey '06

V Multi-hop Service Discovery

= Object Node floods network with a service request
message up to MAX_HOP number of hops

= Nodes receiving a request
Forward message
Start timer
= Timeout is inversely proportional to distance from Object Node
= When timer expires

Create service discovery reply message containing:
= Provided services on present node
= Services included in reply messages received from other nodes

Send service reply message to the Object Node

10/16/2006 Monterey '06

E? Service Graph Constraints @

Constraint

a.provider.z > 1 average(provider.power) > 85 over {a,b,c}

a.provider.id # 143 different(provider.id) over {a,b}

l

Prune design

. Backtrack for
space to satisfy

: : first feasible —><Solution founoD
atomic constraints :
solution

|

Design space
empty?

Prune design
space to satisfy
compositional
constraints

Design space
empty?

No solution)

(No solution)

10/16/2006 Monterey '06

V ENCLOSE Constraint

= Specifies spatial configuration of services
= ENCLOSE(L) over {a,b,c}

Location L must be surrounded by nodes providing service
instances a, b, and ¢

= L is surrounded by {a,b,c} if there is no line in the
plane that separates L from all of {a,b,c}

= Definition depends on domain

10/16/2006 Monterey '06

WWW Gateway

Vv

= Bridge between SN and
Internet e

= Translation of node- [
based byte sequence P
messages to XML-based
messages

Web service discovery 1 1

Service access and return
MESSages

= Transparent! ‘

Similar to any other node
in the network

10/16/2006 Monterey '06

E? Middleware Implementation

= Target platform
= Mica2 motes

= Implementation in galsC
= GALS extension of nesC

WWW Gateway
= Java
= Apache WS tools

Application Services

Service

Sl Discovery

Node Manager

TinyOS + TinyGALS

Sensor Network

Node In_box
Manager

Receiver

Application Service

Service Program Memory | Required RAM
(bytes) (bytes)
Node Manager 8500 367
Service Discovery 3858 313
Composer | Composer 8036 509
Object 3560 151
GALS queues and ports 702 1013
Total 40248 2820
Available 64000 4000

10/16/2006

Monterey '06

Case Study Illj

Motivation: Chemical cloud tracking

= @
enclose

end

LOCALIZE_TRACK NOTIFY
READ_TEMP .
dide WIND_VELOCITY
Simplified indoor experiment
500 T . . .
700! o = Tracking of moving heat
=2331
o — SenicessREAD TEMP Source
4] . =531 1
< 6 e rear e = Temperature sensors
= 40 _— | = Hypothetical wind velocity
S %0 o143 trajectary : (Web service)
= =233 .
i ggrwvﬁ:reazREAD_TEMP, oot ' = Kalman filter
100. LOCALIZE, NOTIFY power=2331]
; senvices=READ_TEMP

% 100 200 300 400 500 600 700 800
X-coordinate
10/16/2006 Monterey '06

Case Study: Results

Operation Response | Number of) 1 Woveloo
Time (ms) | messages = |
(worst case) 2.l
Service Discovery 4092 Service graph ﬁ 25}
(with Web service) size X ol
Neighborhood o
size =
® 10+
Service Discovery | 1400 Service graph T
(no Web service) size X ;
Neighborhood g bime Step =
Size
Constraint 15 0 LEALACS L LLE B
Satisfaction wal
Service graph 81 Service graph 5|
execution size o %
(no Web service) |
Web service 502 2 |
access — At
A5 | Wt wmdo |y
Localization 11 5 e Veodly
Service 44
Uy TR T N TR
- il
10/16/2006 Monterey '06

Scalability (1)

message transmissions with multihop service discovery
700 T T T T \ T T
—+— neighborhood size = 4
—&— neighborhood size = 8

800 -

500

400 -

300 -

number of messages

200 -

100 -

|
1 1.5 2 25 3 3.5 4 4.5 5 5.5 6

number of hops

10/16/2006 Monterey '06

Scalability (2)

discovered nodes with multihop service discovery
160 T T T T T T

neighborhood size = 4
neighborhood size = 8

140

120

100

number of discovered nodes

|
1 1.5 2 25 3 35 4 45 5 55 6
number of hops

10/16/2006 Monterey '06

Scalability (3)

multihop service discovery time
0.9 T T T T

neighborhood size = 4
neighborhood size = §

time (sec)

0.1 | | | | | | | | |

1 1.5 2 25 3 35 4 45 5 55 6
number of hops

10/16/2006 Monterey '06

Scalability (4)

multihop service discovery "discovery ratio"

55 T T T | T T | 1
—+— grid-1 (density = 4)
—&— random-1 (density = 5.66)
5+ +— grid-2 (density = 8)
—<— random-2 (density = 11.32)
5
G 45 4
f o
=
(4] |
o
S 4r =
ki
=
‘6
s 3.0 =
0
E #
=
£
g 3f i
o v
(]
?
g 2.5 o
‘6 o
o
0
£ 2r .
=3
=
15+ _
14 | | | | \ | \ | |
1 1.5 2 25 3 3.5 4 4.5 5 5.5 6

number of hops

10/16/2006 Monterey '06

V Concluding Remarks

= Service-oriented architectures are feasible in
resource-constrained SNs

= Integration of SN applications with Web
services can enrich the available functionality

= Ambient-awareness based on dynamic service
discovery

= Real-world integration by considering spatio-
temporal constraints

= Scalability by focusing on a network
neighborhood of the object node

10/16/2006 Monterey '06

V Current & Future Work

Failure detection/recovery

Multiple objects

Multiple applications

Mobility

10/16/2006 Monterey '06

\ ¥4 OASIS Web Site

= www.isis.vanderbilt.edu/Projects/OASIS
= Papers
= Presentations
= Downloads

= Acknowledgements

= Microsoft External Research
= NSF

10/16/2006 Monterey '06

