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V Outline

= Challenges of programming wireless sensor networks
= QASIS: A service-oriented architecture
= Programming framework

= Programming model
Object-centric
Ambient-aware

= Integration of resource-constrained SNs with Web
services

= Middleware
= Experimental results
= Research challenges
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E? Programming Challenges

= Limited resources
Memory, bandwidth, and power supply

= Dynamic network behavior
Communication failure, node dropout, mobility

= Scalability
10s of nodes to 1000s of nodes

= Heterogeneity

Sensor nodes, satellite imaging systems, meteorological stations,
PDAs, security cameras

Rapidly evolving hardware architectures

How do we program a system composed of a large number of
heterogeneous, volatile, resource-constrained devices?
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E? Programming Models and Abstractions

= Virtual machine
Mate, Magnet

= Mobile agents
Impala, Agilla
= Database
TinyDB, Cougar, SINA, DsWare
= Macroprogramming
Kairos, Abstract Region, Abstract Task Graph
= Service-oriented
SONGS, CodeBlue, Milan
= Object-centric
EnviroTrack
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E? Integrating Heterogeneous SNs

= Service-oriented architecture
= Loosely-coupled modular, and autonomous services
= Well-defined interfaces
= Published, discovered, and invoked over the network
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V Programming Framework

DASIS: ogmmming Teehone

Domain Deployment

Plan

Domain Service
| Development

Object-Code

SR I
= =

— o o
LY LAY e

= Separation of concerns
= Application domain services
= Middleware services
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Vv

= SN applications that can be
described by dataflow such as
tracking, gesture recognition,
etc.

= Each activity is implemented
as a service

= Applications are described as
service graphs

= (Object-centric programming
=  Ambient-awareness

= Globally asynchronous locally
synchronous (GALS) model of
computation

OASIS: A Service-oriented
Architecture

Target Object

10/16/2006 Monterey '06



OASIS at Run-time

© T

Vv

= Sensor network
monitors environment
for target

= When target is
detected:
Elect object owner

Locate services In
network

Execute application
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E? Object-Centric Programming -

= Application development from the view point
of the phenomenon under observation

= Application is driven by the phenomenon

= Phenomenon is represented as a unique
logical object
= Benefits
Focus on the object

No global network model
Scalability
Heterogeneity
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E? Service-Oriented Architecture

= Services

Modular, autonomous, with
well-defined interfaces

Published, discovered, and
invoked over the network

= Service graph

Application functionality
described as dataflow

= Service constraints
Determine the allocation of
services to nodes

= Globally Asynchronous,
Locally Synchronous (GALS)
model of computation
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V Ambient-Awareness

= Dynamic network behavior
Communication failure
Node dropout
Mobility
= Uncertainty of the physical phenomenon monitored

= Dynamic service discovery
New service provider must be selected quickly and efficiently
Must satisfy constraints specified in the service graph

= An application capable of adapting to the environment in
such a manner is said to be ambient-aware
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E? Dynamic Service Configuration

= Service Discovery

= Service graph cannot
be executed until its
constituent services are
located in the network

= Passive service
discovery

= Composition
= Constraint satisfaction
= Binding
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Multi-hop Routing

= Similar to Dynamic Source Routing (DSR)

4

Adjusted for the OASIS architecture 1
= Message types requiring routing ‘ 6

information €
Service discovery reply messages
AN
// N
_ N
Ve AN

Service binding messages )
Service access messages P J
7/ AN

= Each node contains a NextHop table e \

/s AN
Specifies the next node on the path to 7 h
final destination Node Manager

Table is filled dynamically by examining NextHop
the headers of received messages Table Dest | Next

If table does not contain a requested L
destination
» A next-hop guess is made

= Based on which neighbor is closest to the physical
location of destination node
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V Multi-hop Service Discovery

= Object Node floods network with a service request
message up to MAX_HOP number of hops

= Nodes receiving a request
Forward message
Start timer
= Timeout is inversely proportional to distance from Object Node
= When timer expires

Create service discovery reply message containing:
= Provided services on present node
= Services included in reply messages received from other nodes

Send service reply message to the Object Node
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E? Service Graph Constraints @

Constraint

a.provider.z > 1 average(provider.power) > 85 over {a,b,c}

a.provider.id # 143 different(provider.id) over {a,b}

l

Prune design

. Backtrack for
space to satisfy

: : first feasible —><Solution founoD
atomic constraints :
solution

|

Design space
empty?

Prune design
space to satisfy
compositional
constraints

Design space
empty?

No solution )

( No solution )
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V ENCLOSE Constraint

= Specifies spatial configuration of services
= ENCLOSE(L) over {a,b,c}

Location L must be surrounded by nodes providing service
instances a, b, and ¢

= L is surrounded by {a,b,c} if there is no line in the
plane that separates L from all of {a,b,c}

= Definition depends on domain
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WWW Gateway

Vv

= Bridge between SN and
Internet e

= Translation of node- [
based byte sequence P
messages to XML-based
messages

Web service discovery 1 1

Service access and return
MESSages

= Transparent! ‘

Similar to any other node
in the network
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E? Middleware Implementation

= Target platform
= Mica2 motes

=  Implementation in galsC
= GALS extension of nesC

WWW Gateway
= Java
= Apache WS tools

Application Services

Service

Sl Discovery

Node Manager

TinyOS + TinyGALS

Sensor Network

Node In_box
Manager

Receiver

Application Service

Service Program Memory | Required RAM
(bytes) (bytes)
Node Manager 8500 367
Service Discovery 3858 313
Composer | Composer 8036 509
Object 3560 151
GALS queues and ports 702 1013
Total 40248 2820
Available 64000 4000
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Case Study Illj

Motivation: Chemical cloud tracking
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Case Study: Results
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Scalability (1)

message transmissions with multihop service discovery
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Scalability (2)

discovered nodes with multihop service discovery
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Scalability (3)

multihop service discovery time
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Scalability (4)

multihop service discovery "discovery ratio"
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V Concluding Remarks

= Service-oriented architectures are feasible in
resource-constrained SNs

= Integration of SN applications with Web
services can enrich the available functionality

= Ambient-awareness based on dynamic service
discovery

= Real-world integration by considering spatio-
temporal constraints

= Scalability by focusing on a network
neighborhood of the object node
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V Current & Future Work

Failure detection/recovery

Multiple objects

Multiple applications

Mobility
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\ ¥4 OASIS Web Site

= www.isis.vanderbilt.edu/Projects/OASIS
= Papers
= Presentations
= Downloads

= Acknowledgements

= Microsoft External Research
= NSF
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