
1

Time-triggered Message-triggered Object
Programming Scheme

Juan A. Colmenares
DREAM Lab

University of California, Irvine

October 17th, 2006, Paris, France

Presented by Juan A. Colmenares at the 2006 Monterey Workshop

K.H. (Kane) Kim
Director of DREAM Laboratory

University of California, Irvine

2

Low Productivity Characterizes
Real-time Programming

n Providing time guarantees is essential for distributed real-
time (DRT) applications

n Very complicated if many factors impact response times

n Conventional practice leads to low productivity

n Avoid most of the software layers

n Implement application software in C or assembly

n Increasing demands for challenging new applications that
require precisely timing actions

n Distributed multimedia processing, drive-by-wired, and time-
sensitive health care

n This practice cannot continue

2

3

Time-triggered Message-triggered
Object (TMO) Programming Scheme

n Initiated in the early 90’s

n A programmatic approach for facilitating
the development of DRT applications

n Contains only high-level intuitive and yet
precise expressions of timing requirements

n From the beginning the objective was to

n Enable design-time guarantees of timely actions

4

Time-triggered Action
Essence of Real-time Programming

At time T do S

{ = Start S during [T - ∆∆∆∆, T + ∆∆∆∆] }
n S may be

n A single or compound statement, or a function (assume
the last one)

n A control signal for activating S in a node is
derived from the progression of (real) time
n A control signal is generated whenever the real-time
clock within a node reaches the preset value T
specified in a scheduling table

3

5

Time-triggered Objects
Object-oriented Support for Time-triggered Actions

n Include a new group of member functions

n Spontaneous methods (SpMs)

n Also called time-triggered methods

n SpMs are executed within specified time windows

6

Specification of Execution Time
Windows of SpMs

n Example 1

n Start-during (9am, 9:15am)

n Finish-by 9:40am

n Example 2

n For t = from 10am to 10:50am, every 30min

n Start-during (t, t+5min)

n Finish-by t+10min

n It is intuitive and explicit

Autonomous Autonomous

Activation Activation

Condition Condition

((AACAAC))

4

7

An AAC Concrete Example

n MicroSec from = 5 * 1000 * 1000; // 5 s

n MicroSec until = 2 * 60 * 60 * 1000 * 1000; // 2 h

n MicroSec every = 1 * 1000 * 1000; // 1 s

n MicroSec est = 0; (early start time)

n MicroSec lst = 15 * 1000; // 15 ms (late start time)

n MicroSec by = 100 * 1000; // 100 ms

time0

/~/

5s 2h

start until

10s 20s

20.015s20s 20.1s

est lst by

/~/

30s

8

Remote Method Calls
Fundamental Mechanism in Distributed Computing

n Provide transparency in terms of

n Location

n Low-level communication protocols (e.g., TCP/IP)

n Message-triggered object

n Implement remote methods

n Also called service methods (SvMs)

n Activated by messages from clients

n Real-time application designers must provide
guaranteed completion times of SvMs

5

9

TMO
Time-triggered Message-triggered Object

n Object that also supports

n Time-triggered actions

n Remote method calls

n A natural and

syntactically small but
semantically powerful
extension of the
conventional object
structure

var

SvM 2

SpM 2

SvM 1

SpM 1AAC

AAC

••

••

• •

C++
object

Network

TimeTime--triggered triggered

methodsmethods

MessageMessage--triggered triggered

methodsmethods

Requests
from clients

Capabilities for
accessing other
TMOs and the
environment

10

First Advantages of the
TMO Programming Scheme

n No concerns with

n Processes and threads

n Object locations

n Communication protocols

n No specification of timing requirements in
indirect terms

n e.g., priorities

6

11

Structure of TMO-based Distributed
Real-time (DRT) Application

OS Kernel

H/W

TMOSM

OS Kernel

H/W

TMOSM

OS Kernel

H/W

TMO Support
Middleware

Network of TMOs

TMOs interact

through remote
method calls

UDP/IP

12

Coordination of Distributed
Time-triggered Actions

n A DRT system should be able to perform
coordinated time-triggered actions that
take place in different nodes

At time T do S,
{ = Start S during [T - ∆∆∆∆, T + ∆∆∆∆] }

where S = [TMO0 does S0, TMO1 does S1, …]

n Key requirement

n A global time base accessible to all nodes

n i.e., clock synchronization

7

13

TCoDA
Global Time-based Coordination of Distributed Actions

“Let's discuss at 9am” or

“Let's start playing the song at 7pm”

Node 1

Node 2

Node 2

Node 1

Node 3

data

SpMs

SvMs

data

SpMs

SvMs

data

SpMs

SvMs

data

SpMs

SvMs

data

SpMs

SvMs

14

TCoDA
Global Time-based Coordination of Distributed Actions

n It may loosen the coupling among subsystems,
and improve efficiency

n Several nodes can be designed so that they
simultaneously start to perform certain actions at
10:00am without exchanging any message if they
observe certain conditions by 9:59am

n That is, less number of messages to exchange between nodes

8

15

TMO

Digital Music Ensemble
Demonstrating the Power of TCoDA and TMO

LAN

piano.wav
bass.wav
drum.wav

Player
nodes

(Mini-ITX)

TMOTMO
TMO

bass.wav

Speakers

drum.wav

guitar.wav
SONG 1

TMO

guitar.wav
piano.wav

Global Time
reference

Target play time Target play time Target play time Target play time

Controller node
(Laptop)

SpeakersSpeakersSpeakers

16

TCoDA Has Not Been
Sufficiently Explored

n Incorrect perception about the difficulty of
establishing a sufficiently precise global time base

n Reality is far better

n 100 µs-level-precision
n Conventional LAN with strict control over the network traffic

n 1 µs-level-precision
n Nodes equipped with GPS receivers capturing time
announcements with microsecond-level accuracy, even if
nodes are dispersed over an area larger than a campus

9

17

TMO Supports the TCoDA Principle

OS Kernel

H/W

TMOSM

OS Kernel

H/W

TMOSM

OS Kernel

H/W

TMO Support
Middleware

Network of TMOs

Clocks are
synchronized!

UDP/IP

18

TMOSM and TMOSL

TMO-based Application

ODSS
BaseClass

EAC
BaseClasses

RT I/O Func
Global Time

Func

TMO
BaseClass

TMO Support Library (TMOSL)

Selected OS Services

Operating System Kernel

TMO Support Middleware (TMOSM)

OS kernel Services

Middleware Service Interface (MSI) Function

Socket APIs Thread APIs

C++ API

Supported OSs: Windows XP, Windows CE, and Linux 2.6

Action
timings at
the level of
10 ms on
Windows XP

10

19

C++ TMO
Source

Program

C++ compiler
Binary

Program

Headers Binary

TMO Support Middleware
(TMOSM)

Operating System

Hardware Platform

Function Call

Inherit classes,
Instantiate objects

MSI Function Call
TMO Support Library (TMOSL)

TMO Programming Environment

20

TMOSM Architecture

VMAT: VM for Main Application Threads

VCT: VM for Communication Threads

VAT: VM for Auxiliary Threads

WTST: Watch-dog Timer and Scheduler Thread

11

21

A More Detailed View of TMO
Programming Scheme

22

Revisiting Spontaneous Methods

Example of AAC

"for t = from 10am
to 10:50am
every 30min
start-during

(t, t+5 min)
finish-by t+10min"

Clear separation
between SpMs and
SvMs

SpMs must be
registered to the
execution engine

Generally done in
the constructor

12

23

ODSS
Object Data Store Segment

n A group of data members that represents part of
the internal state of the enclosing TMO

n Basic unit of storage, which can be
n Locked for exclusive access by a certain TMO method
execution

n Shared by multiple concurrent executions of TMO
methods

n Concurrency control
n When a TMO method (SpM or SvM) is invoked,
all the ODSSs to be accessed during that method
execution are locked before the execution begins

24

ODSS
Object Data Store Segment

n my_odss.ReleaseODSS ();

n Used when the associated ODSS will not be accessed
during the remainder of the method execution

n Such an early release enables earlier initiation of
other TMO method executions

n Once a ODSS is released via ReleaseODSS (), it
cannot be locked again in the method execution

13

25

SvMs
Service Methods

n Invoked by client TMOs

n Local and remote clients
call a SvM exactly in the
same way

n SvMs are ordinary
methods of a TMO
(sub)class registered to
TMOSM

26

Timing Specification of SvMs

n The registration of an SvM includes the following
parameters:

n Guaranteed execution time bound (GETB)

n Maximum number of concurrent executions (PipelineDegree)

n Maximum invocation rate (MaxInvocations) and minimum
invocation interval (BasicPeriod)

n Statistical assurances of better service times

n Other required parameters are:

n The names and access modes (RO/RW) of ODSSs

n The external name of the SvM

n A globally recognized symbolic name

O
p
ti
o
n
a
l

14

27

Invocation of SvMs

Environment
Access Capability:
an ODS extension

n Gate objects

n EACs that allow us to
invoke SvMs on other
TMOs

n Client's call to a SvM
(through a gate) can
be associated with
deadline for result
return

28

Timing Specification in the
Invocations of SvMs

n SvMGateClass gate1 (_T("TMO2“), _T("SvM2“), …);

n gate1.BlockingSR (¶m, sizeof(param), dra, ort);

n dra = Deadline Result Arrival

n ort = Official Release Time

n Time at which the invoked SvM should be executed

n If 0, SvM is executed ASAP

Toshiba has a patent on the idea of using ORT !
Invented in 1996 and US Patent was granted in April 2001,
but we learned the invention only in February 2005
although we have been using it since mid-1999.

15

29

Return Deadline vs.
Guaranteed Service Time

SpM2

Client TMO

SpM1

Server TMO

SvM1

Guaranteed Execution
Time Bound (GETB)
If GETB is violated, fault handling

actions must take place.

Domain of
communication
infrastructure

DRA - Call initiation time >
Max. trans. time imposed on comm. infrastructure + GETB >
Time consumed by communication infrastructure + GETB

Deadline for
Result Arrival (DRA)
A violation of this deadline

is a fault.

Object Data StoreObject Data Store

Required condition

30

Type of SvM Invocations

n Blocking calls
n with return deadlines imposed and official release
times

n Non-blocking calls and subsequent result checks
n with deadlines imposed and official release times

n One-way calls
n With official release times

n Client-transfer calls
n An SvM passes the client's request to another SvM,
and the latter returns the result to the client

16

31

SvM Client-Transfer Call

SpM2

Client TMO

1

6

Object Data Store

SpM1

Server TMO2

SvM1

5

4

3
SpM1

Server TMO1

SvM1

2

ClientTransferSR (..)

Object Data
Store G Object Data

Store G

BlockingSR

32

BCC
Basic Concurrent Constraint

n SpM executions are given higher priority over SvM
executions

n An SvM is allowed to execute only if there is no SpM that requires
access to the same ODSS and will execute in the time window of
this SvM

n It prevents potential conflicts between SpMs and SvMs
and reduces the designer’s efforts in guaranteeing timely
service capabilities of TMO

n Note that this BCC does not impose any restriction on concurrent
execution of SpMs or concurrent execution of SvMs

n Causes potential SvM starvation

17

33

Q BCC, OI,
and Pipelining

Complete
execution

Request
arrival

Start
execution

Guaranteed Execution Time Bound of Guaranteed Execution Time Bound of SvMSvM

Maximum Execution Time of SvM

BCC
Basic Concurrent Constraint

n In general, the maximum execution time of an
SvM depends on how many SvMs and non-
conflicting SpMs compete for machine resources

34

RMMC
Real-time Multicast and Memory Replication Channel

n TMO also supports
n Multicast of event messages

n An event message must be read by every corresponding
subscriber

n Replication of state messages
n Consumer are interested in the current state

n The producer timestamps the message at
message-production time

n RMMC also supports Official Release Time

18

35

RMMC
Real-time Multicast and Memory Replication Channel

n RMMCs accessed by TMO methods

n Access gates for 2 RMMCs (RMMC1 and RMMC2) declared in the TMOs

36

Summary

n TMO programming scheme

n Simplifies the development of DRT applications

n Allows us to specify the timing requirements of our
DRT applications in explicit and intuitive manners

n Supports fundamental principles of real-time
programming

n Time-triggered actions

n Global-time-based coordination of distributed actions (TCoDA)

19

37

Summary

Server TMO {

Guaranteed execution time
bound, …}

Remote methods callsService Methods (SvMs)
Client TMO {

Deadline for Result Arrival,

Official Release Time }

Producer {

Official Release Time }

Multicast of event messages
and replication of state

messages

Real-time Multicast and
Replication Memory
Channel (RMMC)

AAC {

For t = from 10am to 10:50am,
every 30min

Start-during (t, t+5min),

Finish-by t+10min }

Time-triggered actionsSporadic Methods (SpMs)

Timing specificationSupported features
TMO interaction
mechanisms

