
On the Correctness of Model 
Transformations in the Development 
of Embedded Systems 

Gabor Karsai, Anantha Narayanan, Sandeep Neema

Institute for Software-Integrated Systems
Vanderbilt University
Nashville, TN 37235, USA



Overview
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Background: Instance-based verification
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Certification through bisimilarity checking
Certification via semantic anchoring

Exercise problem:
Show the non-existence of infinite recursion

Summary
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Model-based Software Development –
Near Future
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Background:
Instance-based Verification
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Approaches (1):
Certification through bisimilarity checking

Problem description:
Statechart to EHA transformation

Bisimulation
Checking bisimulation between Statechart 
and EHA models



Problem Description:
Analysis of Design Models 

Correctness of Model 
Transformations is central to the 
success of a model driven 
development process
Systems are designed using a 
design language, and 
transformed into an analysis 
language for analysis
The results of the analysis hold 
on the analysis model
They will hold on the design 
model only if the transformation 
preserved the semantics with 
respect to the property of interest

Design
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Transform

Analysis
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Analysis

?



Verifying Transformations
Checking whether a transformation preserves

Certain properties of interest
For a certain instance
Using bisimulation

We can certify that the analysis results are valid on the 
design model for this instance
We do not attempt to prove the general correctness of the 
transformation itself

CERTIFY....



Bisimulation

Given a labeled state transition system (S, Λ, →), a 
bisimulation relation is a binary relation R such that

For every pair of elements p, q in S, if (p, q) is in R
For all α in Λ, and for all p’ in S
p → p’ implies that there is a q’ in S such that 
q → q’ and (p’, q’ ) is in R
And for all q’ in S
q → q’ implies that there is a p’ in S such that
p → p’ and (p’, q’ ) is in R

Use cross-links to trace the relation R, and check if 
it is a bisimulation

α

α

α

α



Statechart to EHA Transformation
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Statechart to EHA Transformation

Source - Statechart Target - EHA

A’ B’ C’

cross-link

F’ G’ H’ I’

1’ 2’

3’

4’

5’
6’

1. Create top-level Sequential Automaton2. Create a Basic State for each top level state3. Create cross-links as elements are created4. Proceed similarly for remaining states5. Refine compound states into individual Sequential Automata6. Create simple transitions7. Create and annotate inter-level transitions



Verifying the Transformation

When the target elements are created, we know 
what source elements they correspond to
But we do not know whether

all the source elements were considered
all compound states were refined correctly
all transitions were connected between the correct 
corresponding elements
all inter-level transitions were annotated correctly

To verify these conditions, we check if the two 
models are bisimilar

Using the cross-links to trace the equivalence relation R



Statecharts and EHA

State Configuration – A maximal set of states 
that a system can be active in simultaneously

Closed upwards
Transitions – Take the system from one state 
configuration to another
Two state configurations S1 and S2 are in R if 

every state s1 in S1 has a state s2 in S2 and (s1, s2) is in R
every state s2 in S2 has a state s1 in S1 and (s1, s2) is in R



Checking Bisimilarity

At the end of the transformation, the cross-links are 
preserved and sent to the bisimilarity checker, which 
performs the following steps

For every transition t :SSC→SSC’ in the Statechart, find the 
equivalent transition t’ :SEHA→SEHA’ in the EHA
Check if SSC and SEHA are equivalent
Check if SSC’ and SEHA’ are equivalent

The result of the bisimilarity checker will guarantee 
whether the results of the analysis on the analysis 
model are valid on the design model



Approach (2):
Certification via semantic anchoring

Problem description:
Statechart-X to Statechart-Y transformation

Background: Semantic Anchoring
Checking weak bisimilarity between 
semantically-anchored models



Background
Semantic Anchoring

Semantic unit: well-defined, accepted ‘unit’ of 
semantics. E.g.: finite transition system
Semantics of a DSML is formally defined by the 
transformation that maps models in the DSML into 
configurations of the semantic unit. 



Specific Problem: 
Model-to-model transformation

Both DSML-s (variants of 
Statecharts) are defined 
using semantic anchoring 
(i.e. via anchoring 
transformations *)
They map to a common 
semantic framework 
(‘semantic unit’)
Concept:

1. Translate the source and 
target models using 
semantic anchoring to their 
behavior models 

2. Check for weak bisimilarity 
between the configured 
semantic units

*Kai Chen, Janos Sztipanovits, Sherif Abdelwahed, and Ethan 
K. Jackson. Semantic anchoring with model transformations. In 
ECMDA-FA, pages 115–129, 2005.



Bisimilarity

Example:
Statechart variants with (V1) and without (V2) inter-level transitions



The problem of behavioral bisimilarity

For proper translation in V2 we need ‘instantaneous’ states 
(D) and actions (i)

I-state: can be entered and exited in the same step. A step is not
complete until there are no I-states in the state configuration.
I-action: action executed (event posted and event triggers a 
transition) in the same step.

(T21,T22): macro-step:
D and i are invisible to the external observer
Executed as one, indivisible step



The semantic unit: FSM
Implemented in ASML 

Executable specification 
language based on the 
Abstract State Machine 
concepts of Gurevich

The S/A transformation 
‘instantiates’ the semantic 
unit Metamodel fragment for FSM:



Setting up the V1/V2 transformation
Implemented in GReAT

Copy each state from V1 into V2
Link the source and target states

For each transition in V1 do:
If src and dst have the same parent state, copy
else

repeat
add a self-start (or self-termination) state to the deeper of 
the two states, and 
mark the parent as the source (or target)

until the source and target states are under the same 
parent



Verifying behavior preservation
Weak bisimilarity
Source and target FSMs: 

I-state



Case Study: Behavior preservation
Define Weak Bisimulation 

Use the encoded labels of the FSMs to define the relation R
For all states (p, q) in R, and for all α: p ⇒ p’, there exists a 
q’ such that q ⇒ q’ and (p’, q’) is in R
And conversely, for all α: q ⇒ q’, there exists a p’ such that p 
⇒ p’ and (p’, q’) is in R
p, q, p’, q’ are all non-instantaneous states (we ignore
instantaneous states)
⇒ is a series of transitions between non-instantaneous states
α is the collection of actions and triggers in ⇒, ignoring all 
instantaneous events

α

α

α

α



Checking for weak bisimilarity

Reduce the FSM to non-I-states and I–transitions:
Aggregate all sequences of transitions through I-states

Establish R:
p (V1)  and q (V2) are in R if they have the same label
During transformation labels are created s.t. labels in V2 
are derived from labels in V1. The S/A GT uses a similar 
technique to generate labels for FSM states.
List all states with their transitions in a table, check that the 
weak bisimilarity relation holds for each state pair. 



Case Study: Behavior Preservation
Behavior model 1

Behavior model 2

Behavior model 2 with weak transition
Ignore instantaneous state P_Q_D and instantaneous action i
Combine transitions T21 and T22

The two systems are weakly bisimilar



Exercise Problem

Tool:
Stateflow -> C code generator

Objective:
Show that the generated code uses a bounded 
amount of stack space (no infinite recursion)

Problem:
Stateflow semantics proscribes enter/exec/exit 
actions on each state (including hierarchical ones)



Exercise Problem:
Example source model



Exercise Problem:
Call graph from generated code 

IS THIS A 
RECURSION?



Exercise Problem:
Thoughts

It is not a recursion because the same routine 
entered in a different ‘state’ of the 
code/system

Different parameter values
Different state variable values 

How to verify the claim?
Model checking? 
Theorem proving?



Summary

Correctness of MT-s is essential for model-based development of 
embedded systems
Instance-based verification is a pragmatic approach that also 
provides arguments for certifying the generated code
Generating bisimilarity-based certificates help showing the 
reachability-oriented behavioral equivalence  between different 
variants of Statecharts
Many open research questions remain:

Extension to other models (e.g. timed automata, P/N)
Generalization to other kinds of properties 
Other modeling languages, semantic units, verification tools
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