On the Correctness of Model
Transtormations in the Development

of Embedded Systems

Gabor Karsai, Anantha Narayanan, Sandeep Neema

Institute for Software-Integrated Systems
Vanderbilt University
Nashville, TN 37235, USA

Overview

The Problem
Background: Instance-based verification

Approaches:
o Certification through bisimilarity checking
o Certification via semantic anchoring

Exercise problem:
o Show the non-existence of infinite recursion

Summary

‘ Model-based Embedded Software
Development Today

= Defines the modeling
language (document)

= The “source code”

= The “compiler”
= The “verification tool”
= The “code”

The “OS”

‘ Model-based Software Development
Near Future

= Formally defines the
modeling language

Essential questions for model-
based development:

1. How do you know that your
model transformations (model
translator/code generator) are
correct?

2. How do you know that the
products of the verification
engine are true for the
generated code running on the

platform?

l (MODEL TRANSLATOR

Code
Generator
= \
N

Implicitly implements
the semantics of the
modeling language

VAR

‘ Background:
Instance-based Verification

) Metamodel of Source Madel -
> el Transformatis | Metamodel of Target
3 =% .
Instance-based generation 3 e mrri e
of certificates: = ! —
(NASA/ARC/RSE) . l
E _'_‘_-_inun: Models - thlﬂjf'\
1.Use the transformation _3,_ (o) |
engine to co-generate = (o)
‘verification conditions’ E

Verification
Conditions

2.Use a theorem prover/model
checker to check properties
on the verification conditions

| m=m———-

[Property
Specification

Certification-Level

Approaches (1):
Certification through bisimilarity checking

Problem description:
o Statechart to EHA transformation

Bisimulation

Checking bisimulation between Statechart
and EHA models

Problem Description:
Analysis of Design Models

= Correctness of Model Design
Transformations is central to the Model J
success of a model driven (Statechart)
development process)

= Systems are designed using a
design language, and
transformed into an analysis
language for analysis

= The results of the analysis hold
on the analysis model

= They will hold on the design
model only if the transformation
preserved the semantics with
respect to the property of interest

Analysis > m

Veritying Transtormations

Checking whether a transformation preserves

o Certain properties of interest
o For a certain instance
o Using bisimulation

Irdodel
Transformation
Source maodel get model

Livics E:leiwaen moddel elemearts

Bisim 11 arity checler

» IMlodel checleer

|}

—|CERTIFY...

We can certify that the analysis results are valid on the

design model for this instance

We do not attempt to prove the general correctness of the

transformation itself

Bisimulation

Given a labeled state transition system (S, A, —), a
bisimulation relation is a binary relation R such that
o For every pair of elements p, g in S, if (p, g) isin R

o Forallain A,and forallp’ inS

p > p’ implies that there is a g’ in S such that

g®q and (p’,q)isinR

Andforallq inS

q > g implies that there is a p’ in S such that

o pSp and(p’,q)isinR

Use cross-links to trace the relation R, and check if
it is a bisimulation

o o 0O O

Statechart to EHA Transformation

Source - Statechart Target - EHA

Far
19@
Y

Transidon
Lahel i LD
2’ G’
3 L] I! . F L]

Statechart to EHA Transformation

Source - Statechart Target - EHA

Transidon
Lahel i Uy
2’ G’
3 L] I! . F L]

pilEEbiglbe uential Automata

Veritying the Transtormation

When the target elements are created, we know
what source elements they correspond to

But we do not know whether
o all the source elements were considered
o all compound states were refined correctly

o all transitions were connected between the correct
corresponding elements

o all inter-level transitions were annotated correctly

To verify these conditions, we check if the two
models are bisimilar

o Using the cross-links to trace the equivalence relation R

Statecharts and EHA

State Configuration — A maximal set of states
that a system can be active in simultaneously

o Closed upwards

Transitions — Take the system from one state
configuration to another

Two state configurations S; and S, are in R if
o every state s, in S, has astate s, in S, and (s, s,) isin R

o every state s, in S, has astates, in S; and (s, s,)isin R

Checking Bisimilarity

At the end of the transformation, the cross-links are
preserved and sent to the bisimilarity checker, which
performs the following steps

o For every transition t :Sg—Sg in the Statechart, find the
equivalent transition t’ :Sg ,—>Sgys in the EHA

a Check if Sg- and Sy, are equivalent
o Check if Sg” and S¢,,' are equivalent

The result of the bisimilarity checker will guarantee
whether the results of the analysis on the analysis
model are valid on the design model

Approach (2):
Certification via semantic anchoring

Problem description:
o Statechart-X to Statechart-Y transformation

Background: Semantic Anchoring

Checking weak bisimilarity between
semantically-anchored models

Background
Semantic Anchoring

GME GReAT Tool Semantie Unit AsmL Tools
Toolset Formal Spec.
DSML Model Semantic Unit | Mode!
Abstract
Metamdosl Trans. Rules Metarmodel |jre—— Dats Strucl;ure Checker
(A) [/1ta) ()
[' H » —
Me) iGeners sa | instance —+—
: T - . TestCase
Vil oy R Gereaio
i nisition | L) I
19} ngine M-:'_del Semartic Spec.
/) (]
v Mode!
Sinrulato
ASM -
Common Semantic Framework

Semantic unit: well-defined, accepted ‘unit’ of
semantics. E.g.: finite transition system

Semantics of a DSML is formally defined by the
transformation that maps models in the DSML into
configurations of the semantic unit.

Specific Problem:

Model-to-model transformation

1.

Both DSML-s (variants of
Statecharts) are defined
using semantic anchoring
(i.e. via anchoring
transformations *)

They map to a common
semantic framework
(‘semantic unit’)

Concept:

Translate the source and
target models using
semantic anchoring to their
behavior models

Check for weak bisimilarity
between the configured
semantic units

sC-1

Graph Transformation
SC-2

{to be verified)

oemantic Semantic
Anchoring Anchonng

model

Check Weal: Bisimulation

Behavior

_.*" Behavior
. model
Ty K

—ommon Semantic Framewark ‘

*Kai Chen, Janos Sztipanovits, Sherif Abdelwahed, and Ethan
K. Jackson. Semantic anchoring with model transformations. In
ECMDA-FA, pages 115-129, 2005.

Bisimilarity

Bisimulation [San(d] is defined for Labeled Transitions Systems (LTS). Given an LTS (5, A, —). a

relation R over S is a bisimulation it
(p,g) € R and p 2, p’ implies that there exists a ¢’ = Ssuch that ¢ ®, ¢’ and (p', §') € R,
and conversely,

g, q' implies that there exists a p’ € S such that p®, p' and (p'. ¢') € R.

Example:
Statechart variants with (V1) and without (V2) inter-level transitions
a P
' !
Q . Q . N .
A Ti:a J B T2 b J e A T a JB T21.b/:= D ol R

The problem of behavioral bisimilarie

|=¢ Py
Q Q

v v] .
A Ti:a JB T b Jc A Ti:a B T21Zb/f= D To:i Jc

For proper translation in V2 we need ‘instantaneous’ states

(D) and actions (i)

o |-state: can be entered and exited in the same step. A step is not
complete until there are no I-states in the state configuration.

o l-action: action executed (event posted and event triggers a
transition) in the same step.

(T54,T5,): macro-step:
o D andiare invisible to the external observer
o Executed as one, indivisible step

The semantic unit: FSM

Implemented in ASML structure ModelEvent implements Event

gtructure LocalEwvent implemants Ewvent
structure InstantEvent implements Event

o Executable specification S
id a8 String

Ianguage based On the var cutputEvents as Seg of ModelEvent
. var lccalEvents as Set of LocalEwvent

Abstract State Machine

concepts of Gurevich $a'as string

var active as Boolean = false
var instantanecus a8 Boolean

The S/A tranSformation w.rar csutTransiticnzs a8 Set of Transition
'instantiates’ the semantic =

unit Metamodel fragment for FSM:

Events F3IM
==llodel== L ==lodel==
[[
E'\-'e-l;t State e Transition
<= itarm=e = itarm=e bl L
*------ ; :)
EventMame : field Init : baoal | Ir|ggder. ;!E:S
InstantEvent : bool 1D : field t f,;?:,rn X T:gld
Instantanecous : bool _ :

Setting up the V1/V2 transformation
Implemented in GReAT

Copy each state from V1 into V2

o Link the source and target states

For each transition in V1 do:
o If src and dst have the same parent state, copy

o else

repeat

0 add a self-start (or self-termination) state to the deeper of
the two states, and

0 mark the parent as the source (or target)

until the source and target states are under the same
parent

Veritying behavior preservation

Weak bisimilarity
Source and target FSMs:
Ti: a T2 b
I-st|ate
Ti:a To1: b | Too: i

Case Study: Behavior preservation

Define Weak Bisimulation

Q

Q

Use the encoded labels of the FSMs to define the relation R
For all states (p, q) in R, and for all a.: p =% p’, there exists a
g suchthatg=q and (p’, q)isin R

And conversely, for all a: q =2 g/, there exists a p’ such that p
='p’and (p’, q')isin R

P, 9, p’, g are all non-instantaneous states (we ignore
instantaneous states)

= is a series of transitions between non-instantaneous states

o is the collection of actions and triggers in =, ignoring all
instantaneous events

Checking for weak bisimilarity

Reduce the FSM to non-|-states and |-transitions:
o Aggregate all sequences of transitions through |-states

Establish R:
o p (V1) and g (V2) are in R if they have the same label

o During transformation labels are created s.t. labels in V2
are derived from labels in V1. The S/A GT uses a similar
technique to generate labels for FSM states.

a List all states with their transitions in a table, check that the
weak bisimilarity relation holds for each state pair.

Case Study: Behavior Preservation

Behavior model 1
Ti:a Ta: b

Behavior model 2
Ti: a To1: bf Too i

(ron Cran s (re

Behavior model 2 with weak transition
Ilgnore instantaneous state P_Q_D and instantaneous action i
Ti:a To+Too: b

i T —

The two systems are weakly bisimilar

Exercise Problem

Tool:
o Stateflow -> C code generator
Obijective:

o Show that the generated code uses a bounded
amount of stack space (no infinite recursion)

Problem:

o Stateflow semantics proscribes enter/exec/exit
actions on each state (including hierarchical ones)

Exercise Problem:

Example source model

[N

175

function r=haot

Ir=temp == 120}

function r=cool

{r=temp <= 1001}
L

~
~
~
~
~
~
~
~
~

enrgpeed = 0

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
RS
~
=

Hi
enspeed = Z;

[mmml Tmmm

!

Lo
enspeed =1,
; i3

uoounl l [lcool()]

Mo
enspeed = (0

Exercise Problem:

Call graph from generated code

AE

Comtroller_100000014_exee @

A

QOFF_100000015_exec Controller 100000014 _enter-1,11
coa
e
D19 exec O 100000018 entex(0,1 OFF 100000015 _entex(0,1) QOFF 100000015 exit
: ik e AE

G i
00019 _exit Hi_ 100000017 _entex(0,1) Nn_lDDDDDDlE_ente Controller_100000014_entex(1,1)
T -
On_ 100000018 enter(-2,17 +<@ RECU RS | ON)

i

o

i

IS THIS A

Exercise Problem:

Thoughts

t IS not a recursion because the same routine
entered in a different ‘state’ of the
code/system

o Different parameter values
o Different state variable values
How to verify the claim?

o Model checking?
o Theorem proving?

Summary

Correctness of MT-s is essential for model-based development of
embedded systems

Instance-based verification is a pragmatic approach that also
provides arguments for certifying the generated code

Generating bisimilarity-based certificates help showing the
reachability-oriented behavioral equivalence between different
variants of Statecharts

Many open research questions remain:

o Extension to other models (e.g. timed automata, P/N)

o Generalization to other kinds of properties

o Other modeling languages, semantic units, verification tools

	On the Correctness of Model Transformations in the Development of Embedded Systems
	Overview
	Model-based Embedded Software Development Today
	Model-based Software Development – Near Future
	Background:�Instance-based Verification
	Approaches (1):�Certification through bisimilarity checking�
	Problem Description:�Analysis of Design Models
	Verifying Transformations
	Bisimulation
	Statechart to EHA Transformation
	Statechart to EHA Transformation
	Verifying the Transformation
	Statecharts and EHA
	Checking Bisimilarity
	Approach (2):�Certification via semantic anchoring
	Background�Semantic Anchoring
	Specific Problem: �Model-to-model transformation
	Bisimilarity
	The problem of behavioral bisimilarity
	The semantic unit: FSM
	Setting up the V1/V2 transformation�Implemented in GReAT
	Verifying behavior preservation�Weak bisimilarity
	Case Study: Behavior preservation
	Checking for weak bisimilarity
	Case Study: Behavior Preservation
	Exercise Problem
	Exercise Problem:�Example source model
	Exercise Problem:�Call graph from generated code
	Exercise Problem:�Thoughts
	Summary

