
On the Correctness of Model
Transformations in the Development
of Embedded Systems

Gabor Karsai, Anantha Narayanan, Sandeep Neema

Institute for Software-Integrated Systems
Vanderbilt University
Nashville, TN 37235, USA

Overview

The Problem
Background: Instance-based verification
Approaches:

Certification through bisimilarity checking
Certification via semantic anchoring

Exercise problem:
Show the non-existence of infinite recursion

Summary

Model-based Embedded Software
Development Today

Defines the modeling
language (document)
The “source code”

The “compiler”
The “verification tool”
The “code”

The “OS”

Defines the modeling
language (document)
The “source code”

The “compiler”
The “verification tool”
The “code”

The “OS”

METAMODEL

Domain Models

Simulation/Execution
Engine

Code
Generator

Execution Platform

Executable
components/code

Hand-
written
Code

COMPILER

WE TRUST
THESE

Model-based Software Development –
Near Future

METAMODEL

Domain Models

Verification
Engine

Code
Generator

Execution Platform

Executable
components/code

Hand-
written
Code

COMPILER

Formally defines the
modeling language

Formally defines the
modeling language

MODEL TRANSLATOR

Verification
Engine

Implicitly implements
the semantics of the
modeling language

Implicitly implements
the semantics of the
modeling language

Essential questions for model-
based development:

1. How do you know that your
model transformations (model
translator/code generator) are
correct?

2. How do you know that the
products of the verification
engine are true for the
generated code running on the
platform?

Essential questions for model-
based development:

1. How do you know that your
model transformations (model
translator/code generator) are
correct?

2. How do you know that the
products of the verification
engine are true for the
generated code running on the
platform?

Background:
Instance-based Verification

Instance-based generation
of certificates:
(NASA/ARC/RSE)

1.Use the transformation
engine to co-generate
‘verification conditions’

2.Use a theorem prover/model
checker to check properties
on the verification conditions

Instance-based generation
of certificates:
(NASA/ARC/RSE)

1.Use the transformation
engine to co-generate
‘verification conditions’

2.Use a theorem prover/model
checker to check properties
on the verification conditions

Approaches (1):
Certification through bisimilarity checking

Problem description:
Statechart to EHA transformation

Bisimulation
Checking bisimulation between Statechart
and EHA models

Problem Description:
Analysis of Design Models

Correctness of Model
Transformations is central to the
success of a model driven
development process
Systems are designed using a
design language, and
transformed into an analysis
language for analysis
The results of the analysis hold
on the analysis model
They will hold on the design
model only if the transformation
preserved the semantics with
respect to the property of interest

Design
Model

(Statechart)

Transform

Analysis
Model
(EHA)

Analysis

?

Verifying Transformations
Checking whether a transformation preserves

Certain properties of interest
For a certain instance
Using bisimulation

We can certify that the analysis results are valid on the
design model for this instance
We do not attempt to prove the general correctness of the
transformation itself

CERTIFY....

Bisimulation

Given a labeled state transition system (S, Λ, →), a
bisimulation relation is a binary relation R such that

For every pair of elements p, q in S, if (p, q) is in R
For all α in Λ, and for all p’ in S
p → p’ implies that there is a q’ in S such that
q → q’ and (p’, q’) is in R
And for all q’ in S
q → q’ implies that there is a p’ in S such that
p → p’ and (p’, q’) is in R

Use cross-links to trace the relation R, and check if
it is a bisimulation

α

α

α

α

Statechart to EHA Transformation

Source - Statechart Target - EHA

A’ B’ C’

F’ G’ H’ I’

1’ 2’

3’

4’

5’
6’

Statechart to EHA Transformation

Source - Statechart Target - EHA

A’ B’ C’

cross-link

F’ G’ H’ I’

1’ 2’

3’

4’

5’
6’

1. Create top-level Sequential Automaton2. Create a Basic State for each top level state3. Create cross-links as elements are created4. Proceed similarly for remaining states5. Refine compound states into individual Sequential Automata6. Create simple transitions7. Create and annotate inter-level transitions

Verifying the Transformation

When the target elements are created, we know
what source elements they correspond to
But we do not know whether

all the source elements were considered
all compound states were refined correctly
all transitions were connected between the correct
corresponding elements
all inter-level transitions were annotated correctly

To verify these conditions, we check if the two
models are bisimilar

Using the cross-links to trace the equivalence relation R

Statecharts and EHA

State Configuration – A maximal set of states
that a system can be active in simultaneously

Closed upwards
Transitions – Take the system from one state
configuration to another
Two state configurations S1 and S2 are in R if

every state s1 in S1 has a state s2 in S2 and (s1, s2) is in R
every state s2 in S2 has a state s1 in S1 and (s1, s2) is in R

Checking Bisimilarity

At the end of the transformation, the cross-links are
preserved and sent to the bisimilarity checker, which
performs the following steps

For every transition t :SSC→SSC’ in the Statechart, find the
equivalent transition t’ :SEHA→SEHA’ in the EHA
Check if SSC and SEHA are equivalent
Check if SSC’ and SEHA’ are equivalent

The result of the bisimilarity checker will guarantee
whether the results of the analysis on the analysis
model are valid on the design model

Approach (2):
Certification via semantic anchoring

Problem description:
Statechart-X to Statechart-Y transformation

Background: Semantic Anchoring
Checking weak bisimilarity between
semantically-anchored models

Background
Semantic Anchoring

Semantic unit: well-defined, accepted ‘unit’ of
semantics. E.g.: finite transition system
Semantics of a DSML is formally defined by the
transformation that maps models in the DSML into
configurations of the semantic unit.

Specific Problem:
Model-to-model transformation

Both DSML-s (variants of
Statecharts) are defined
using semantic anchoring
(i.e. via anchoring
transformations *)
They map to a common
semantic framework
(‘semantic unit’)
Concept:

1. Translate the source and
target models using
semantic anchoring to their
behavior models

2. Check for weak bisimilarity
between the configured
semantic units

*Kai Chen, Janos Sztipanovits, Sherif Abdelwahed, and Ethan
K. Jackson. Semantic anchoring with model transformations. In
ECMDA-FA, pages 115–129, 2005.

Bisimilarity

Example:
Statechart variants with (V1) and without (V2) inter-level transitions

The problem of behavioral bisimilarity

For proper translation in V2 we need ‘instantaneous’ states
(D) and actions (i)

I-state: can be entered and exited in the same step. A step is not
complete until there are no I-states in the state configuration.
I-action: action executed (event posted and event triggers a
transition) in the same step.

(T21,T22): macro-step:
D and i are invisible to the external observer
Executed as one, indivisible step

The semantic unit: FSM
Implemented in ASML

Executable specification
language based on the
Abstract State Machine
concepts of Gurevich

The S/A transformation
‘instantiates’ the semantic
unit Metamodel fragment for FSM:

Setting up the V1/V2 transformation
Implemented in GReAT

Copy each state from V1 into V2
Link the source and target states

For each transition in V1 do:
If src and dst have the same parent state, copy
else

repeat
add a self-start (or self-termination) state to the deeper of
the two states, and
mark the parent as the source (or target)

until the source and target states are under the same
parent

Verifying behavior preservation
Weak bisimilarity
Source and target FSMs:

I-state

Case Study: Behavior preservation
Define Weak Bisimulation

Use the encoded labels of the FSMs to define the relation R
For all states (p, q) in R, and for all α: p ⇒ p’, there exists a
q’ such that q ⇒ q’ and (p’, q’) is in R
And conversely, for all α: q ⇒ q’, there exists a p’ such that p
⇒ p’ and (p’, q’) is in R
p, q, p’, q’ are all non-instantaneous states (we ignore
instantaneous states)
⇒ is a series of transitions between non-instantaneous states
α is the collection of actions and triggers in ⇒, ignoring all
instantaneous events

α

α

α

α

Checking for weak bisimilarity

Reduce the FSM to non-I-states and I–transitions:
Aggregate all sequences of transitions through I-states

Establish R:
p (V1) and q (V2) are in R if they have the same label
During transformation labels are created s.t. labels in V2
are derived from labels in V1. The S/A GT uses a similar
technique to generate labels for FSM states.
List all states with their transitions in a table, check that the
weak bisimilarity relation holds for each state pair.

Case Study: Behavior Preservation
Behavior model 1

Behavior model 2

Behavior model 2 with weak transition
Ignore instantaneous state P_Q_D and instantaneous action i
Combine transitions T21 and T22

The two systems are weakly bisimilar

Exercise Problem

Tool:
Stateflow -> C code generator

Objective:
Show that the generated code uses a bounded
amount of stack space (no infinite recursion)

Problem:
Stateflow semantics proscribes enter/exec/exit
actions on each state (including hierarchical ones)

Exercise Problem:
Example source model

Exercise Problem:
Call graph from generated code

IS THIS A
RECURSION?

Exercise Problem:
Thoughts

It is not a recursion because the same routine
entered in a different ‘state’ of the
code/system

Different parameter values
Different state variable values

How to verify the claim?
Model checking?
Theorem proving?

Summary

Correctness of MT-s is essential for model-based development of
embedded systems
Instance-based verification is a pragmatic approach that also
provides arguments for certifying the generated code
Generating bisimilarity-based certificates help showing the
reachability-oriented behavioral equivalence between different
variants of Statecharts
Many open research questions remain:

Extension to other models (e.g. timed automata, P/N)
Generalization to other kinds of properties
Other modeling languages, semantic units, verification tools

	On the Correctness of Model Transformations in the Development of Embedded Systems
	Overview
	Model-based Embedded Software Development Today
	Model-based Software Development – Near Future
	Background:�Instance-based Verification
	Approaches (1):�Certification through bisimilarity checking�
	Problem Description:�Analysis of Design Models
	Verifying Transformations
	Bisimulation
	Statechart to EHA Transformation
	Statechart to EHA Transformation
	Verifying the Transformation
	Statecharts and EHA
	Checking Bisimilarity
	Approach (2):�Certification via semantic anchoring
	Background�Semantic Anchoring
	Specific Problem: �Model-to-model transformation
	Bisimilarity
	The problem of behavioral bisimilarity
	The semantic unit: FSM
	Setting up the V1/V2 transformation�Implemented in GReAT
	Verifying behavior preservation�Weak bisimilarity
	Case Study: Behavior preservation
	Checking for weak bisimilarity
	Case Study: Behavior Preservation
	Exercise Problem
	Exercise Problem:�Example source model
	Exercise Problem:�Call graph from generated code
	Exercise Problem:�Thoughts
	Summary

