
MONTEREY’06

From MDD back to basic:
Building DRE systems

Jérôme Hugues, ENST

2MONTEREY’06 Jérôme Hugues

MDx in software engineering
Models are everywhere in engineering, and now in software engineering
MD[A, D, E] aims at easing the construction of systems

Enforce careful modeling through clear modeling language/artifacts
Support for model transformation, analysis, verification, …
Combine many expertise in one process

Requirement capture, dimensioning, scheduling analysis, verification
Tools support required, and becoming mainstream (at least partially)

Building a DRE remains a complex issue
RT-CORBA, DDS are only partial solutions
Difficult to build large systems, to combined app. components
Harder to complete system analysis (scheduling, dimensioning)

Solution (obvious ?): apply MDD to deploy and use middleware
How ? What are the pitfalls ? Which reasonable direction ?

3MONTEREY’06 Jérôme Hugues

Some thoughts on MDx
MDx aims at more efficiency

By manipulating high-level abstractions
By leaving tedious and error-prone work to tools & automation

Models are easier to understand & to build systems than code
But

Model implementations cannot be fully substituted to code
Benefit from code generation & model transformation still ahead

MDx is no need without
a well-defined modeling “cookbook”
a clear engineering method and design rules
a proven engineering process sustaining both

Efficiency largely relates on toolset capability

4MONTEREY’06 Jérôme Hugues

MDx & DRE systems
Two pitfalls
Abstraction inversion

Use something complex to re-implement something simple that already exists
Ex: CORBA CCM & DanCE to support simple event propagation

Chicken & egg dilemma
Do you model a system ? Or do you conform to a meta-model ?
Of course, meta-model constraints model construction
BUT a common issue is that meta-model constrains the system too much

Semantics of the underlying RTE (RTOS, middleware) should appear wisely
And should not prevent model portability or adaptability !

Need to go back to basic, to build DRE systems on simple patterns
To ease model reusability, portability
=> Focus on the architecture first <=

5MONTEREY’06 Jérôme Hugues

Families of DRE middleware
Middleware is software that has to offer more

High configurability, performance,
Support for more targets, more constraints

Similarities with typical software engineering
Middleware is complex by nature
Should be adapted to application domains (avionics), families (safety)
Support for semantics (DOC, MOM), standards (RTCORBA, DDS)
And configurability (QoS policies, mapping of app. entities onto nodes)

Middleware support distribution on behalf of application
QoS-based: “large” embedded system, RT-CORBA, DDS
HI: implementation is semantically constrained for certification

Middleware is a point of failure of the system, to be avoided
Some errors: configuration, deployment, interpretation of the semantics

Models to address all these complexity issues ?

6MONTEREY’06 Jérôme Hugues

How to solve this challenge ?
Two middleware families, one challenge: configuration of the middleware

The architecture governs both the configuration and deployment
Needs a (simple) way to express both
Should not impede late binding decision

Difficult to achieve with UML and profiles/meta-models (for now)
Goal: propose a methodology, middleware and tools to build DRE

Automate validation & verification, configuration, deployment
Scale up to complex systems
Ensure reusability (process, code, models, know how, etc)

Pragmatic approach: go back to basics of software architecture
Select a modeling language for architecture description
Exploit the description of the architecture to ensure system correctness
Need a language to express architecture, with analysis and enough expression
power to describe

An Architecture Analysis & Design Language ? You named it, AADL ;)

7MONTEREY’06 Jérôme Hugues

Our approach
One common design philosophy to build systems

Extensions through design refinements
Promote late binding decision to enforce reuse

Two complementary technologies
AADL, Ocarina

Design language for HRT systems, support design by refinement,
Connections with code generators and verification tools

“Schizophrenic middleware”, PolyORB
Both a design methods and its supporting implementation
Extreme genericity of middleware constructs
Enable the rapid prototyping of middleware (RT-CORBA, DDS, dedicated)

PolyORB: QoS-based middleware
“PolyORB-HI”, part of IST-ASSERT, middleware for HI systems

8MONTEREY’06 Jérôme Hugues

Architecture Analysis & Design Language

AADL, an ADL to describe distributed real-time embedded systems
A standard proposed by SAE (Society of Automotive Engineers)
Focuses on high-level components down to software/hardware concerns

Integration of separately developed components
Clear interfaces, refinement of components
Component assembly

Provides precise & machine-processable syntax
Text and graphical notations, link with UML

Allows (formal) analysis of the properties of the architectures
Resource allocation, execution time, …

Advocates generation of a system from its description
Mapping to programming languages (C, Ada, SimuLink, VHDL, ...)
Definition of a run-time

AADL is a common support for many information

9MONTEREY’06 Jérôme Hugues

AADL (short) Overview
AADL Description = set of components

Component = 1 interface [+ 0 .. N implementations]
Some components can contain subcomponents

Components communicate through features, described in the interfaces
Features are ports, accesses to subcomponents, etc.
Features are connected using connections

Components
Software

Data, Process,
Thread, Subprogram

Execution platform
Memory, Processor,
Bus, Device

System
Can contain other components
Structure of the architecture

Properties associated with elements
Components / subcomponents
Features
Connections

Standard properties
Resource usage
Behavioural descriptions, …

Property sets
For user-defined properties

10MONTEREY’06 Jérôme Hugues

Ocarina Tool Suite
http://ocarina.enst.fr

Library & tools to manipulate AADL
AADL parsers and printers
Semantic checks

Specific operations
Model transformation, Code generation
Run-time configuration

Provides
Code generators

Ada/PolyORB
Ada/PolyORB-HI
Both local and dist. App.

V&V
Petri Nets
Schedulability (Cheddar)

Specific
Analyzer

Code
Generator

Core
library

AADL
(XMI)

AADL
(Text)

Run-Time

AADL
(graphic)

Ada, C AADL

Model
Transformation

Specific
Analyzer

Model
Transformation

Petri Nets

http://ocarina.enst.fr/

11MONTEREY’06 Jérôme Hugues

Reusable Framework for DRE systems

Reorganize middleware functionalities to reduce components coupling
like an OS on top of a micro-kernel

Define generic building blocks to describe middleware: Addressing,
Binding, Representation, Protocol, Transport, Activation, Execution
Let interaction between building blocks be independent from any specific
distribution model

Common behavioral contract => ease modeling
Propose one implementation for each generic building block

Enable code reuse
Tailoring for specific needs whenever required

Generic services propose a coarse grain parameterization
Components refinement, OO techniques, implement new behavior, ..

Configuration is fine grain customization of blocks
Selection of one strategy, one parameter value, ..

12MONTEREY’06 Jérôme Hugues

QoS-middleware: PolyORB
Configurable, Generic and Verifiable Middleware

PolyORB is our reference middleware implementation
Configurability and extreme genericity
Clear design: modeling and formal verification

Already support many distribution facilities
CORBA (RT-, FT-, MIOP), OMG DDS
MOM (MOMA), SOAP, Web Apps.

Each facility enriches MW repository
Remote reference, protocol, representation
Request demultiplexing, concurrency
QoS policies and management

Components be either specific (API) or reusable (behavioral)

Challenge: configuring the many semantics variation points
Tools and models to help configuring the middleware

http://polyorb.objectweb.org

13MONTEREY’06 Jérôme Hugues

HI-middleware: PolyORB-HI
Building Distributed Hard-Real Time Systems

Hard-Real Time systems specific constraints:
Ravenscar profile + Ada High-Integrity restrictions
No allocator (task, protected object, memory), no dispatching

Building HI middleware is a pain, building an application a nightmare
Careful allocation of all objects (dimensioning)
Difficult to select configuration points (typical factories forbidden)
Careful analysis of concurrent constructs with certification in mind
Object-orientation defeated by HI constraints, must hard-code many things

Existing prototype for ASSERT: “PolyORB-HI”
Compliant with all HI constraints, numerous Ada checks, etc.

Challenge: suppress tedious and error-prone process of writing apps.
Tools and models to express constraints, and then generate code
Go through V&V process

14MONTEREY’06 Jérôme Hugues

Process to build applications
Combine AADL, compilers, model checkers, validation tools, run-time
environments in one unified process

From early design to final implementation
Automate as much as possible the analysis of a system in each step
Add code generation from AADL to well-defined code patterns

Integrated process, combining Ocarina and 3rd-party tools
1. Syntax checking (Ocarina)
2. Stack and memory dimensioning (GNAT or Cheddar, not yet integrated)
3. Schedulability analysis (Cheddar)
4. Petri Nets to assess system’s behavior (Ocarina)
5. Construction of each deployed node + middleware configuration (Ocarina)
6. Source code generation (Ocarina)
7. Compilation, metrics (GNAT)
8. Execution (GNAT for ERC32, LEON2, native platforms)
Experiments in the IST-ASSERT project, first results promising

15MONTEREY’06 Jérôme Hugues

Model analysis: Generation of Petri Nets

The AADL specifications can be used to
produce formal modeling of systems
analysis on execution flows

detect structural errors in component
assembling
Using CPN-AMI P/N toolsuite

Other aspects can be handled by other
formalisms and tools

schedulability
memory footprint requirements

process implementation prog.i
subcomponents

thread1 : thread th1;
thread2 : thread th2;

connections
event data port th1.s -> th2.e;

end prog.i;

process implementation prog.i
subcomponents

thread1 : thread th1;
thread2 : thread th2;

connections
event data port th1.s -> th2.e;

end prog.i;

16MONTEREY’06 Jérôme Hugues

Unified Tool Chain

Deployment
Tool

Configuration file
for

MW instance

MW AADL
description

Source
Code

repository

Code
Generator

Configured
sources

Formal
models

repository

Logical node
formal description

Process for each
application node

Process for each
application node

Appl. Arch.
(AADL)

Deployment
Data

17MONTEREY’06 Jérôme Hugues

Toy Example for AADL
Taken from IST-ASSERT project, from space domain
GNC is a cyclic process, with an activation period P. Its maximal CPU
consumption is CPU_GNC. Its deadline is DLGNC < P.
TMTC is an acyclic process, activated on reception of the event TC. Its
maximal CPU consumption is CPU_TMTC. Its deadline is DLTMTC <<
DGNC (for instance, DLGNC = 10 DLTMTC).
POS is a shared variable between GNC and TMTC:

GNC reads POS every P seconds. It performs a computation and then
updates the value of POS at the end of its computation.
TMTC updates the value of POS on reception of TC. The write of TMTC
shall always be taken into account. It can overwrite a write of GNC or a
previous write of TMTC
The write of GNC can be overwritten by TMTC. If TC occurs when GNC is
not active, POS can be immediately updated. If TC occurs when GNC is
active, the update of POS has to be delayed until the termination of GNC

18MONTEREY’06 Jérôme Hugues

Playing with the Toy Example
Cover typical interaction patterns

Periodic, aperiodic, shared variable
Refinement from high-level view to deployment
Serve as a basis to validate the process
Down to code generation

System is schedulable
Has no deadlock
Can be generated for PolyORB-HI/QoS
Fully respects all compile-time restrictions
Then runs on tsim (LEON2 simulator)

Ready for certification & deployment
System comes with both models and code

Unified process for DRE systems
Either large set of QoS
Or HI restrictions

+
system implementation toy_example.sample_1
subcomponents

P1 : processor the_processor;
P2 : processor the_processor;
GNC : process GNC_Proc;
TMTC : process TMTC_Proc;

properties
Actual_Processor_Binding

=> reference P1 applies to GNC;
Actual_Processor_Binding

=> reference P2 applies to TMTC;
end toy_example.sample_1;

19MONTEREY’06 Jérôme Hugues

Conclusion and Ongoing Work
Building a DRE is still a complex task

Many configuration points, difficult to select them
Even more difficult to understand the interaction of 100+ policies

Solution: integrating architecture analysis & DRE in one process
Modelling the system, verifying it, and then generating code
Respect separation of concerns between models, tools and middleware

PolyORB as supporting runtime environment
QoS: RT-CORBA, DDS for “big” targets
HI: for “small” targets, with strong HI constraints

AADL & Ocarina
Generation for both targets + verification (PN) + scheduling (Cheddar)

Ongoing work in the context of IST-FP6 ASSERT
Perspectives

More properties for code generation (deployment, configuration, …)
More on modelling (distribution paradigms, temporal analysis, dependability)

	From MDD back to basic:Building DRE systems
	MDx in software engineering
	Some thoughts on MDx
	MDx & DRE systems
	Families of DRE middleware
	How to solve this challenge ?
	Our approach
	Architecture Analysis & Design Language
	AADL (short) Overview
	Ocarina Tool Suitehttp://ocarina.enst.fr
	Reusable Framework for DRE systems
	QoS-middleware: PolyORBConfigurable, Generic and Verifiable Middleware
	HI-middleware: PolyORB-HIBuilding Distributed Hard-Real Time Systems
	Process to build applications
	Model analysis: Generation of Petri Nets
	Unified Tool Chain
	Toy Example for AADL
	Playing with the Toy Example
	Conclusion and Ongoing Work

