Design, Implementation, and Validation of Embedded Software

Contract #F33615-00-C-1707

Quarterly Status Report

May – July 2002
Distribution: unlimited

Summary

The work on project is going according to the schedule outlined in the proposal. The main effort concentrates on the development of analysis techniques for hybrid systems models. The analysis techniques currently under development are reachability analysis based on predicate abstraction and automatic generation of test suites to be applied to implementations of the system to test their compliance with the CHARON model. Automatic code generation for embedded systems directly from CHARON models is another important research direction currently under investigation. All work is being performed within the context of the CHARON development toolkit.

In other developments, work on CHARON case studies continues. We are concentrating on the problems provided by the Automotive OEP.

No major problems have been encountered within this period.

Status of project tasks

We describe the activities performed for each of the tasks in the project. Each item listed below corresponds either to a technical paper, published or submitted for publication, or an implemented piece of software.

1. Design language.

The language syntax and semantics have been defined during the project first year. During the summer 2001, a visual language for CHARON models has been added. Semantics of the textual and visual language are compatible and translations between the two languages have been defined. The language has been used to construct many large models, including models of soccer games using Sony robot dogs, biological cells, and embedded medical devices such as an infusion pump. The language was found adequate for these tasks.
We are considering changes to the CHARON language syntax and semantics to make it easier for the users to create models with predictable behaviors and to facilitate translations to and from HSIF format.

2. Programming environment and software toolkit.

· The basic components of the CHARON software toolkit have been designed and implemented. These components include textual and visual editors, a parser, type checker, GUI front-end, reachability analyzer, and a global simulator.

· A preliminary version of the CHARON toolkit has been released for evaluation. The tool, implemented in Java, can be downloaded as a Java package from http://www.cis.upenn.edu/mobies/charon/implementation.html.

· Implementation of the efficient event detection algorithm is under way. The algorithm will substantially improve efficiency of CHARON simulation. It can also be used in various analysis techniques for CHARON.

· The CHARON simulator has been extended with the capability to check assertions within a CHARON model. If a violation is found, the simulation is stopped and the last simulation state in the trace illustrates the violation. The assertion-checking capability effectively turns the simulator into a light-weight analysis tool.

· Code generation from CHARON models
We have begun an implementation of an automatic code generator for CHARON models. The goal of the code generator is to produce C++ code that will exhibit the behavior prescribed by the model. The code generator cosists of two parts. The first part is independent of the target platform and generates a collection of C++ objects that correspond to agents and modes in the CHARON model. Each agent is implemented as a periodic thread. The second part generates the glue code that connects the variables in the CHARON model to sensors and actuators of the target platform.

An important aspect of the code generation process is the separation between the system and its environment. Hybrid systems models usually represent the system together with its environment, which makes it possible to simulate and analyze the model better. However, we generate code only for the system part. Variables that are used for communication with the environment need to be mapped to the sensors and actuators of the target platform. We think that it is impossible, in general, to decide automatically, which components of the model belong to the system and which are part of the environment. High-level models written in CHARON often combine system and environment variables in the same mode. The model needs to be annotated by the modeler to let the tool distinguish between the system and environment variables. In addition, to connect the generated code to the target platform automatically, we need a standardized description of the platform API for accessing sensors and actuators, for accessing the operating system services such as timers, etc. We are currently designing the model annotation and platform description formats.
Currently, the first part of the generator has been implemented, while the second part is in the design stage, pending the annotations described above. The glue code to connect to the platform currently has to be written manually. In parallel with the implementaton of the tool, we are conducting a case study on a real target platform. For the case study, we have chosen Aibo, the Sony robot dog. The dog has motors in its head, legs, and tail, and a number of sensors, including sound and vision capabilities. A programming API is provided by the proprietary operating system. So far, we have generated code for a number of simple models such as coordinated movement of head and tail, tracking of the ball by turning the dog’s head, etc. The generated code performed its tasks correctly. However, insertion of the glue code proved to be a time-consuming process and we are currently working to automate it.
3. Methodology and algorithms.

a. Controller design for hybrid systems
· Control of Multi-Affine Systems
We study multi-affine dynamical systems evolving on rectangles and present a controller design method for reachability of a facet. This problem is motivated by the control of multi-affine hybrid systems. For a natural number N, let RN denote the N-dimensional rectangle ​​​described by:
[image: image1.wmf]}

|

)

{(

1

i

i

i

N

N

N

b

x

a

x

x

R

£

£

Â

Î

=

K

, where
[image: image2.wmf]N

i

b

a

b

a

i

i

i

i

...

1

,

,

,

=

<

Â

Î

. A multi-affine function
[image: image3.wmf]m

N

R

f

Â

®

:

 (for a natural m) is a polynomial x1, …, x2 with the property that the degree of f in any of the variables is less than or equal to 1. Stated differently, f has the form

[image: image4.wmf]å

Î

=

}

1

,

0

{

,

1

,

,

1

1

1

1

)

,

(

N

N

N

i

i

i

N

i

i

i

N

x

x

c

x

x

f

K

K

L

K

,
with
[image: image5.wmf]m

i

i

N

c

Â

Î

,

,

1

K

 for all
[image: image6.wmf]}

1

,

0

{

,

1

Î

N

i

i

K

, and using the convention that if ik=0, then
[image: image7.wmf]1

=

k

i

k

x

.

Consider a non-linear control system evolving in RN, given by the equation

[image: image8.wmf]Bu

x

f

x

+

=

)

(

&

. (1)

The drift term
[image: image9.wmf]N

N

R

f

Â

®

:

is a multi-affine function,
[image: image10.wmf]m

N

B

´

Â

Î

 is a constant matrix whose columns give the directly controllable directions, and the input u is assumed to take values in a polyhedral set
[image: image11.wmf]m

U

Â

Ì

 only.

For any initial state
[image: image12.wmf]N

R

x

Î

0

, we have to find a time instant
[image: image13.wmf]0

0

³

T

 and an input function
[image: image14.wmf]U

T

u

®

]

,

0

[

:

0

, such that

i.
[image: image15.wmf]N

R

t

x

T

t

Î

Î

"

)

(

],

,

0

[

0

,
ii.
[image: image16.wmf]j

F

T

x

Î

)

(

0

, and T0 is the smallest time-instant in the interval [0, ∞), for which the state reaches the exit facet Fj,
iii.
[image: image17.wmf]0

)

(

0

>

T

x

n

T

j

&

, i.e. the velocity vector
[image: image18.wmf])

(

0

T

x

&

 at the point x(T0) has a positive component in the direction of nj. This implies that in the point x(T0), the velocity vector
[image: image19.wmf])

(

0

T

x

&

 points out of the rectangle RN.

Furthermore, this input function u should be realized by the application of a continuous feedback law u(t)=k(x(t)) with
[image: image20.wmf]U

R

k

N

®

:

 a continuous function, that is independent of the initial state x0.

We derive necessary and sufficient conditions for the existence of the desired control in terms of linear inequalities to be satisfied by the control at the vertices of the rectangle.

For example, consider the following system with state x = [x1,x2,x3]T and inputs u = [u1,u2]T in the form given by the equation (1) with

[image: image21.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

=

n

B

nx

x

x

k

x

k

x

k

x

x

k

x

x

k

x

k

x

f

0

0

0

0

1

,

)

(

3

3

1

1

2

2

2

2

3

1

1

3

1

1

2

2

and k1 = 30, k2 = 10, n = 10. We want to design a multi-affine feedback control so that all states in the rectangle
[image: image22.wmf]}

3

,

2

,

1

,

2

1

|

]

,

,

{[

3

3

2

1

3

=

£

£

Â

Î

=

i

x

x

x

x

R

i

are driven through the facet x2 = 2. In addition, the controls are supposed to be constrained in the rectangle U = {20 ≤ u1 ≤ 60, 1 ≤ u2 ≤ 10}.
The vector field of the uncontrolled system (u = 0) is plotted in Figure 1, (a). We can see that the vector field already has a positive component along e2, as desired. On the other hand, the uncontrolled vector field would steer the system out of the rectangle through x1 = 1 and x3 = 1, which is not desired. So, in this problem, we expect the controls to solve the “stay inside” condition. The desired multi-affine feedback control is given by u(x) = [u1(x), u2(x)]T with

[image: image23.wmf]3

2

3

2

1

2

3

3

1

2

1

)

2

(

))

1

(

3

(

,

4

)

1

(

(

10

x

x

x

x

x

u

x

x

x

x

u

+

-

-

+

-

+

=

-

+

-

+

-

=

 (4)
The controlled vector field is plotted in Figure 1, (b). A full exposition of this technique can be found in [1].
[image: image24.wmf][image: image25.wmf]
(a) (b)
Figure 1. The orientation of the vector field in the rectangle 1 ≤ xi ≤ 2, i = 1, 2, 3 together with some trajectories originating within: (a) the uncontrolled case, (b) the controlled case using (4).

Status of challenge problems

We are concentrating primarily on the automotive OEP problems. Work on the ETC challenge problem is going slower than we expected, in part because existing abstraction methods had to be extended to handle the model. Students and staff members have been assigned to study the models provided by the OEPs.

1. In the vehicle-to-vehicle coordination problem, we have constructed a simplified version of the problem and implemented it in CHARON. We have performed simulations of the model and reachability analysis of the model, proving that it satisfies the property that two cars never collide. A detailed report has been presented at the PI meeting at the end of January.
2. An abstraction of the ETC model provided by the OEP has been constructed (see below). A CHARON model of the abstraction is developed. Currently, we are performing reachability analysis of the model. At the same time, we are have applied test generation techniques to the ETC controller of the original (non-abstracted) OEP model. A test generation report has been submitted to the OEP for evaluation.
HSIF design and implementation

The Hybrid Systems Interchange Format (HSIF), intended to serve as a common interface between different MoBIES tools, is currently under development. The primary contribution of our team is to define semantics for HSIF to ensure a solid common understanding of the format. Following the discussions at the MoBIES PI meeting in July, we are currently modifying the HSIF semantics to ensure a better predictability of executions in HSIF models and a closer connection to the Smiulink/Stateflow modeling approach. The new semantics has been released for evaluation to the HSIF community.
In addition, we have implemented a translator from CHARON models into HSIF format. Translation is currently supported for the models that conform with the HSIF structure (i.e. no hierarchy of either modes or agents). Tools that will convert arbitrary CHARON models into flat models are currently under development and will allow us to produce HSIF format for arbitrary CHARON models. We are also implementing the reverse translator, from HSIF format into CHARON. This will allow us to apply CHARON analysis tools to models developed by other groups.
Future plans

The immediate plans include:

· Continue the implementation of the modular and distributed simulators.

· Extend and refine the reachability tool for hybrid systems. The current effort is to implement automatic generation of additional predicates through the analysis of counterexamples will be the next step.
· Develop algorithms for compositional controller synthesis and implement them in the CHARON toolset.

· Work on challenge problems. We are working on the technology transition of the DIVES tools to the automotive OEP team.
· We are working on the semantics for the new release of the Hybrid Systems Interchange Format. Formal semantics will provide for unambiguous translations between HSIF and MoBIES tools.

More distant plans can be summarized as follows:

· Develop further verfication techniques for CHARON. They will utilize the results on predicate abstraction, and will also require other abstraction and approximation techniques.

· Implement the new verification algorithms in the CHARON toolkit.

· Perform extensive case studies of hybrid systems in CHARON to demostrate the effectiveness of the methodology and the toolkit.

References

[1] C. Belta, L. Habets, and Vijay Kumar. “Control of Multi-Affine Systems on Rectangles with Applications to Hybrid Biomolecular Networks,” in Proceedings of IEEE 2002 Conference on Decision and Control, Las Vegas, Nevada, 2002.
This report was prepared by Oleg Sokolsky, (215) 898-4448, and Insup Lee, (215) 898-3532.
Appendix. Progress chart

[image: image26.png]uarters after contract award

Task

45|67

[T

Task L. Design language

2 CHARON syntax o}

b. Domain—specific extensions

Task 2. Software toolkit
2. CHARON programming env.
b. CHARON simulator
c. Ecrortrace generation
d. Mode checking
&. Code generation

f.Gut [

& Run—tiome monitor generation

Task 3. Methodology and algorighms
. Compositional semantics
b. Event detection
¢ Modular sioulation
4. Disteibuted simulation
e. Controller synthesis
£. Abstraction techniques
& Runtime monitoring
& Test generation

Task 4. CHARON case studies

Task 5. OEP coordination
2 OEP challenge problems
b. HSIF development

O techrical report published
© product integration and version release

_1093174386.unknown

_1093174727.unknown

_1093175117.unknown

_1093175475.unknown

_1093179315.unknown

_1093179612.unknown

_1093180077.unknown

_1093175847.unknown

_1093175361.unknown

_1093174880.unknown

_1093175006.unknown

_1093174776.unknown

_1093174560.unknown

_1093174647.unknown

_1093174503.unknown

_1093159896.unknown

_1093170671.unknown

_1093170784.unknown

_1093170562.unknown

_1093159425.unknown

_1093159555.unknown

_1093159368.unknown

