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Preface 
 
This volume contains technical papers presented at the second Joint Workshop on High 
Confidence Medical Devices, Software, and Systems (HCMDSS) and Medical Device Plug-and-
Play (MD PnP) Interoperability, held as part of the Cyber-Physical Systems Week on April 16, 
2009 in San Francisco, CA. 
 
The workshop series is based on the idea that bringing together the HCMDSS (High Confidence 
Medical Devices, Software, and Systems) and MD PnP (Medical Device “Plug-and-Play” 
Interoperability) communities of medical device specialists (researchers, developers, clinicians, 
regulators, and policy makers) from clinical environments, industry, research laboratories, 
academia, and government, would accelerate the development of science, technology, and 
practice to overcome crucial challenges facing the design, manufacture, certification, and use of 
medical devices. More reliable medical devices and interoperability standards will form the 
building blocks for patient-centric integrated medical device systems to improve the safety and 
efficiency of healthcare in diverse clinical settings. 
 
The previous joint workshop was held on June 25-27, 2007, in Cambridge, MA. One-hundred-
forty-five attendees from academic and clinical organizations, government and industry, 
demonstrated their commitment to the vision and goals of the conference over three information-
rich days. Prior meetings on HCMDSS and MD PnP were held separately: the first HCMDSS 
workshop was held in June 2005 in Philadelphia, PA, and the MD PnP Interoperability program 
has held plenary meetings in May 2004, in November 2004 (at the FDA), and in June 2005. The 
synergies between the HCMDSS and MD PnP goals led to the joint workshop series to continue 
the momentum produced by the prior meetings, and to provide a forum to exchange new research 
and development results by the emerging community of researchers, developers, regulators, 
users, and manufacturers. (See Background section below for further information on both 
programs.) 
 
Workshop Organizers:   
 
Julian M. Goldman, MD Massachusetts General Hospital 
Insup Lee   University of Pennsylvania 
Oleg Sokolsky  University of Pennsylvania 
Susan Whitehead  CIMIT 



  

Background 
 
High Confidence Medical Devices, Software & Systems (HCMDSS).  The development and 
production of medical device software and systems is a crucial issue, both for the US economy 
and for ensuring safe advances in healthcare delivery. As devices become increasingly smaller in 
physical terms but larger in software terms, the design, testing, and eventual Food and Drug 
Administration (FDA) device approval is becoming much more expensive for medical device 
manufacturers in terms of both time and cost.  Furthermore, the number of devices that have 
recently been recalled due to software and hardware problems is increasing at an alarming rate. 
As medical devices are becoming increasingly networked, ensuring even the same level of health 
safety is a challenge. 
 
Several federal and regulatory agencies have identified this growing problem and are interested 
in establishing a research agenda directed at improving the design, certification, and operation of 
current and future medical device software and systems. The 2005 High-Confidence Medical 
Device Software and Systems (HCMDSS) workshop was sponsored by various federal agencies, 
including the FDA, the National Institute of Standards and Technology, the National Security 
Agency, and the National Science Foundation, along with the National Coordination Office for 
Networking and Information Technology Research and Development.  
 
The purpose of the first HCMDSS workshop was to provide a working forum for leaders and 
visionaries from industry, research laboratories, academia, and government concerned with 
medical devices. More than 90 experts from these sectors attended the workshop. They 
represented a mix of the relevant stakeholders — including researchers, developers, certifiers, 
and users — who can help identify emerging systems and assurance needs.  The main goal of the 
workshop was to develop a road map for overcoming crucial issues and challenges facing the 
design, manufacture, certification, and use of medical device software and systems.  An 
additional goal was to identify and form a sustainable research and development community for 
the advancement of HCMDSS. Of particular interest was the crystallization of technology needs 
and promising research directions that could revolutionize the way HCMDSS are designed, 
produced, and validated in the future but that are beyond the range of today’s devices because of 
time-to-market pressures and short-term R&D practices. More information about the first 
HCMDSS workshop, including the presentations of the working groups, keynote speakers, and 
panelists, as well as the submitted position statements of participants in this workshop are 
available at www.cis.upenn.edu/hcmdss/. 
 
Findings from the HCMDSS workshops provided the basis for the report by the Networking and 
Information Technology Research and Development (NITRD) Program, titled “High-Confidence 
Medical Devices: Cyber-Physical Systems for 21st Century Health Care.” The NITRD Program 
is an interagency activity within the U.S. Federal Government that coordinates research and 
development (R&D) in the areas of advanced networking, computing, and related information 
technologies. The report, released in February 2009, establishes national priorities in medical 
device R&D. 
 
MD PnP Program.  Medical devices are essential for the practice of modern medicine. 
However, unlike the inter-connected “plug-and-play” world of modern computers and consumer 
electronics, most medical devices are designed to operate independently, and do not employ 
open networking standards for data communication or for device control. The integration of 



  

individual medical devices into patient-centric networked systems can provide real-time 
comprehensive data for the electronic health record (EHR) and can create integrated clinical 
environments to support innovation in patient safety, workflow improvements, and reductions in 
medical errors and healthcare costs throughout the continuum of care: from the home, to pre-
hospital transport, and to hospital areas as diverse as the OR, ICU, and general hospital ward. 
 
The MD PnP program was established in 2004 to lead the evaluation and adoption of open 
standards and technology for medical device interoperability to support clinical innovation. The 
program is affiliated with Massachusetts General Hospital (MGH), CIMIT (Center for 
Integration of Medicine and Innovative Technology), and Partners HealthCare Information 
Systems, with additional support from TATRC (U.S. Army Telemedicine & Advanced 
Technology Research Center). Having evolved from the OR of the Future program at MGH, the 
MD PnP program remains clinically grounded. The program has a geographically dispersed, 
multidisciplinary, multi-institutional team of collaborators representing diverse stakeholder 
groups (clinicians, biomedical and clinical engineers, healthcare delivery systems, regulatory 
agencies, medical device vendors, standards development experts). Since the program’s 
inception, more than 700 clinical and engineering experts and representatives of over 85 
institutions that share a vision of medical device interoperability have participated in ongoing 
convening activities, including elicitation of clinical scenarios for improving healthcare through 
interoperability, implementation of selected clinical scenarios in a laboratory environment, and 
drafting an initial standard for the integrated clinical environment (ICE) required to support 
device interoperability (ASTM F-2761, being published in Spring 2009).  
 
To support these goals, the CIMIT MD PnP Lab opened in May 2006 to provide a vendor-
neutral “sandbox” to evaluate the ability of candidate interoperability solutions to solve clinical 
problems, model clinical use cases (in a simulation environment), develop and test related 
network safety and security systems, and support interoperability and standards conformance 
testing. In the Lab we are developing demonstrations of interoperability-based patient safety 
improvements, such as improving the safety and quality of portable x-rays, and patient-
controlled analgesia systems that are used for pain management. Our team of collaborators 
includes participants from: Kaiser Permanente, Johns Hopkins, FDA, Univ. of Penn. Dept. of 
Computer and Information Science, Dräger Medical Systems, LiveData Inc., DocBox Inc., 
Moberg Research Inc., Univ. of Illinois at Urbana Champaign, Univ. of Waterloo, NIST, NSF, 
Geisinger Health System, as well as the Partners HealthCare System community (Massachusetts 
General Hospital Anesthesia, Biomedical Engineering at MGH and Brigham & Women’s 
Hospital, PHS Information Systems, and PHS Materials Management).  
 
Current activities include: 
 

• Developing clinical scenarios to inform interoperability solutions, and refining 
methodologies to analyze clinical scenarios to derive engineering requirements 

• Developing an ASTM International standard to define the “ecosystem” requirements of a 
patient-centric “Integrated Clinical Environment” (ICE), which includes system functions 
that could meet clinical, technical, regulatory, and legal requirements: data logging, data 
security, decision support, and connectivity to the hospital information system.  

• Collaborating with the FDA and others to elaborate a regulatory pathway for patient-
centric networked medical devices 

• Sharing contract language to support the preferential acquisition of standards-conformant 



  

systems by healthcare organizations (as developed by Kaiser Permanente, Johns Hopkins, 
and Massachusetts General Hospital / Partners HealthCare) 

• Defining an open source platform to support ICE-compliant implementations of 
interoperability-driven clinical use cases. 

 
Learn more at http://www.mdpnp.org (including a link to streaming video coverage of the June 
2007 Joint Workshop on MD PnP and HCMDSS). 
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Abstract
The increasing complexity of medical device software has
created new challenges in ensuring that a medical device
operates correctly. This paper discusses how two technolo-
gies — model-based development and static analysis — may
be used to facilitate the successful engineering of medical
software and some possible regulatory side benefits.

Keywords model-based development, formal verification,
static analysis, instrumentation based verification

1. Introduction
The amount of software present in medical devices has
dramatically increased over the last decade. Many infusion
pumps today contain tens of thousands of lines of code.
This number can run into the millions for proton beam
therapy devices. Software is considered by many to be
easier to configure, change and re-use than hardware. It is
a technology that enables robust device designs. The need
for high-integrity software in the health-care industry has be-
come more important than ever as remote surgery, intelligent
operating rooms, autonomous assisted living environments,
and bio-feedback based prosthetics become the norm in the
not-so-distant future.

The increasing complexity of device software presents
considerable engineering challenges. In 1998, close to 8%
of device failures could be traced to software errors [5].
Currently, the number of device recalls due to software
problems is believed by some to be about 18%. It is likely
that device failures and subsequent recalls will continue to
increase until software is better engineered.

Figure 1 depicts a generalized software development
workflow process typically followed by device manufactur-
ers. The quality of the code in this workflow process is gen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HCMDSS 2009 April 16 2009, San Francisco.
Copyright c© 2009 ACM . . . $5.00

erally ensured through verification activities such as manual
inspections, code walkthroughs and testing. Integrated sys-
tem testing typically takes place at the end of the develop-
ment lifecycle. Such verification activities, in the context of
a quality system, have historically been considered sufficient
for developing quality software. However, history has shown
that common practices within this workflow process are
insufficient for developing highly dependable software [10].
The reason for this is that these largely human resource
intensive activities simply cannot fathom, unaided, the in-
terdependencies of complex requirements and code.

Some of the limitations associated with traditional soft-
ware development techniques can be summarized as follows:

• No formal, mathematics-based verifiable relationship is
established between the design and the code

• Without a formal relationship established, it is difficult to
demonstrate that the design and the code conform to each
other structurally as well as behaviorally

• Without a formal methods foundation, rigorous verifi-
cation and validation results are difficult to demonstrate
throughout the life-cycle process

• Without the use of statistically based testing methods
code coverage is difficult to characterize objectively

• No formal relationship is established between system
property requirements (e.g., safety, security, privacy, etc),
code, and the test suite used to verify the software. As a
result, there is no reliable way to ensure that the software
addresses these property specific requirements.

The risks associated with current software development
practices will likely increase as medical device cyber-
physical systems1 such as non-homogeneous interoperable
medical devices begin to enter the health care system.
Configurations of such devices will be highly variable and
reconfigurable in order to provide support in operating
rooms, in hospital rooms, and in home care environments.
For example, during a surgical operation, a number of “off-
the-shelf” medical devices may be networked together to
monitor and safely react to a patient’s changing physiology.

1 The term cyber-physical systems refers to the tight conjoining of and
coordination between computational and physical resources



Figure 1. Traditional Software Development Workflow

Emerging medical device cyber-physical systems, such as
interoperable medical device systems and prosthetics, bring
new engineering challenges to the medical device devel-
opment space in terms of scale, security, privacy, timing,
human factors, composition, sensing, coordination, control,
and certifiable evidence based verification and validation.
Ultimately, research and development is needed to establish
cyber-physical device composition and integration technolo-
gies and certifiable tool chains that address issues of logical
and physical interoperability [8].

The remainder of this paper discusses some mathemat-
ically well-founded technologies for design, development
and verification of medical device software. These tech-
niques have been used with considerable success in other
safety-critical industries such as aerospace and automotive
engineering. In particular, we discuss model-based develop-
ment and static analysis, and discuss how these technologies
might be leveraged in a regulatory environment.

2. Model-based Development
A model can be thought of as a formal representation of a
design specification. A model can also be used to capture the
essential structure and behavior of a component or system.
Of particular interest to developing high-confidence medical
device software is the notion of ”executable modeling nota-
tions.” Executable modeling notations can be distinguished
from conventional design notations by the fact that they are
based upon a mathematically precise notion of what it means
for a model to perform a behavioral action. This means that
designs rendered in an executable modeling notation can be
simulated and debugged just like normal code that has been
written in a traditional programming language like C or C++.

The principal advantage of using executable models,
hereafter referred to simply as models, over conventional
programming languages is that they free the developer
from implementation details like pointer management and
memory allocation. This is analogous to the way program-
ming languages abstract away low-level details of processor
instruction sets, facilitating the separation of software and
hardware concerns. Modeling makes it easier for the devel-
oper to focus resources on various aspects and properties of
a particular design.

To verify models on a particular hardware platform they
must be converted to code through a process called “auto-
matic code generation.” Modeling tools are used to convert
modeling notations into code. Compilers then transform this
code into machine language that can then be executed on the
hardware.

This kind of software development, where the model
serves as the primary artifact, is often referred to as
model-based development. Over the years, model-based
development techniques have become standard practice in
the production of high-integrity embedded software in the
aerospace and automotive industries.

A major advantage of a model-based development work-
flow is that it facilitates catching and correcting errors
early in the development lifecycle. Since models can be
constructed much faster than code, designers can rapidly
create prototypes of their system and study various design
alternatives before committing to a final implementation.
Also, owing to the executable nature and formal semantics of
these models, various analytical verification and validation
(V&V) methods like model-checking [4] or instrumentation-
based verification (IBV) [1] can be used to formally prove



Figure 2. Model-checking based Verification Workflow

that the software design satisfies functional and specific
property requirements (e.g. safety, security, etc).

When using model-based V&V techniques, natural lan-
guage requirements are first converted to formal specifica-
tions, which may be expressed as either temporal logical
formulae [2] or monitor models (monitors for short) [1].
Temporal logic formulae are typically employed for model-
checking. Monitors may be thought of as encodings of
idealized system behavior that are executed concurrently
with the models to guarantee consistent results during IBV.

If model checking is used (as shown in Figure 2), then
the logical specifications (or temporal logic formulae) are
checked against finite-state representations of the design
model using either sophisticated graph traversal or equation
solving techniques. A model is said to be verified against a
set of specifications, if for all possible model executions, it is
not possible for any of the specifications to be violated. On
the other hand, if a specification is violated by an execution
trace, the model is deemed to be erroneous. (This execution
trace is often generated by the model-checker as proof of the
specification violation.)

If IBV is used as the V&V method of choice, as shown in
Figure 3, the design model is first instrumented with monitor
models. A test-generation engine is then used to check the
composite of the design model and the monitor against a
series of automatically generated tests. The aim here is to
determine whether the actual behavior of the design model
and the idealized behavior of the monitor instrumentation
diverge from each other. In other words, the test-generation
engine takes the role of a pessimistic observer and generates
tests so as to “break” the design. If it is successful in
observing a divergence between the design model and the
monitor, it outputs the relevant test case as the rationale for
why the specification is not satisfied.

The metric that specifies how extensively the model’s
behavior is covered by the tests is known as a coverage

criterion. Various coverage criteria can be used to verify the
model based on how rigorous the test cases need to be. For
example, line coverage stipulates that each model element
needs to be executed at least once for the test suite to be
complete. Decision coverage, on the other hand, enforces
that boolean expressions tested in control structures (such as
the if-statement and while-statement) must evaluate to both
true and false. The coverage criterion typically used by IBV
is known as MC/DC (modified condition decision coverage).
MC/DC stipulates that tests should be generated until each
boolean sub-expression in a conditional expression has been
shown to independently affect the outcome of the expres-
sion. MC/DC is considered by the Federal Aviation Agency
(FAA) to be the most exhaustive coverage criterion and is
used for testing the most critical type of aerospace code.

Once the model has been verified, using either model
checking or IBV, automatic code generation is used to derive
the core source code for the device. The generated code
typically needs to be instrumented by hand in the same
way outputs of compilers need to be optimized for certain
applications2.

There are two principal ways to perform code verification
in the model-based development process. The first is applied
using model checking techniques. In this method, the logical
specifications are first converted to assertions, the generated
code is instrumented with these assertions, and code veri-
fication tools [6] run on the modified code. In contrast to
this rather direct method of re-verifying the requirements
on the code, one may adopt an alternative strategy, where
the code and the design are shown to be behaviorally
equivalent to each other [12]. Since the design has already
been verified, we may conclude that the code also satisfies
the requirements. This alternative strategy makes use of IBV
work, wherein the test suite generated as part of the model

2 With advances in code-generators we expect to see production-level
highly-optimized code being produced directly from models in the future.



Figure 3. Instrumentation-Based Verification Workflow

verification is re-used for code. The code is verified to be
correct if outputs of the model and the code are equivalent.
If they are not, one may suspect that behavior has been
introduced in the code that may lead to the violation of a
requirement.

It should be noted that both these techniques for code ver-
ification are driven by requirements. In the case of assertion-
based verification, the code is checked against assertions that
are derived directly from the requirements. In the testing
equivalence method, the test set that is used to prove behav-
ior conformance between design and code is generated pri-
marily by referencing the requirements. In both approaches,
a direct traceable connection between the requirements and
code verification activities is established. This traceability,
base in mathematics, can help establish a convincing argu-
ment that the software has been checked with respect to its
requirements at each stage of the development life-cycle.

The use of model-based V&V techniques reduces the
dependence on testing as the principal means for verifica-
tion, while at the same time providing a means for detecting
design errors early in the development life-cycle. Clearly, the
earlier errors are detected and corrected, the greater are the
benefits in terms of time and cost; a fact expressed succinctly
by the great architect Frank Lloyd Wright — “You can use
an eraser on the drafting table or a sledge hammer on the
construction site”.

The nature of these design formalisms is such that they
could be used in a regulatory context to challenge man-
ufactured products for specific properties, such as safety,
security, etc., acting as pseudo reference standards. In the
FDA/CDRH/OSEL3 software laboratory we were able to
establish an infusion pump safety model using these meth-

3 Food and Drug Administration/Center for Devices and Radiological
Health/Office of Science and Engineering Laboratories

ods. From this model, we were able to establish a set of
alarm safety assertions and insert them in code from a real
infusion pump implementation. The Verisoft4 tool was used
to perform systematic state space exploration of the code
and check if any of these assertions were ever violated
without triggering the appropriate alarm. Several alarms
were not triggered that should have been [9]. An advantage
of using Verisoft was that the assertions could be checked
on all possible paths of the program and not just a specific
execution path, as with runtime checking.

Clearly, it is impractical for regulators to develop such
reference models for all medical devices. However, it is
eminently practical for device manufacturers to carry out
their own property-specific verification activities, and get
“regulatory credit” for the work. One way of presenting this
work is in the form of an assurance (or dependability) case
[10]. For example, the claim might be that the device is safe.
The evidence might be a test result report showing that all
safety properties are met. And, the argument might be a
safety model and an explanation of how it relates to the test
results.

3. Static Analysis
Static analysis can be defined as an analysis of software that
is performed without executing code, i.e., by analyzing some
static artifact like source code or object files. Using static
analysis facilitates detecting errors while the code is under
development, thus reducing development and maintenance
costs and the risk of expensive device recalls. In the context
of high-confidence medical software, static analysis may
be carried out for two principal purposes: a) checking the

4 Verisoft is a freely available state-space exploration tool for C programs.
The use of Verisoft for the research study does not imply FDA endorsement
of the tool.



source code to ensure that architectural constraints are not
violated, and b) discovering errors in the source code.

3.1 Checking Architectural Constraints through Static
Analysis

In the previous section, we described how assertion-based
code verification and testing equivalence aims to establish
the identical behavior of design models and code with
respect to satisfying the requirements. However, these tech-
niques do not check whether structural constraints defined
in the design architecture are actually implemented in code.
Static analysis can be used to make such checks.

The structural constraints that designers impose on code
stem from considerations of extensibility and maintenance.
For example, in a layered protocol, a layer is only allowed to
use functions provided by its immediate subordinate so that
a layer implementation may be replaced easily with another.
However, such constraints formulated at the design phase are
often not followed in the implementation. This often leads
to spaghetti (highly-coupled) code that while perhaps still
functionally correct, is extremely difficult to maintain and
modify. In order to prevent this architectural degeneration,
the code needs to be checked for off-specification dependen-
cies. This can be done by using static analysis techniques
to extract the implemented architecture from code [11].
The extracted architecture can then be compared to the
required architectural specifications. This comparison can
help identify dependencies that are present in the code but
should not be and dependencies that should be present in the
code but are not.

As an example, consider the architecture diagrams shown
in Figure 4. Figure 4(a) shows a design architecture where
component A is expected to communicate with B and B
with C. However, after performing static analysis, we find
that even though a dependency exists between A and B
as planned, the expected dependency between B and C is
missing and an extra dependency between A and C, that was
not supposed to exist, is now present.

3.2 Detecting Runtime Errors using Static Analysis
While dependency analysis on extracted architectures may
help guard against design errors, it does not afford any
kind of protection against low-level coding errors. Coding
errors usually manifest themselves as run-time bugs, such as
null pointer dereferences, buffer overruns, arithmetic errors
and memory leaks. Until recently, the only way to detect
these errors was by means of rigorous code reviews and
dynamic testing. However, with advances in lightweight
formal methods techniques, a number of these defects can
now be detected using static analysis.

While dependency analysis on extracted architectures
may help guard against design errors, it does not afford any
kind of protection against low-level coding errors. Coding
errors usually manifest themselves as run-time bugs, such as
null pointer dereferences, buffer overruns, arithmetic errors

and memory leaks. Until recently, the only way to detect
these errors was by means of rigorous code reviews and
dynamic testing. However, with advances in lightweight
formal methods techniques, a number of these defects can
now be detected using static analysis.

There are many different types of static analysis tech-
niques for detecting run-time bugs, such as symbolic exe-
cution [7] and abstract interpretation [3]. These techniques
focus on assessing run-time bugs by evaluating intricate
interactions within the software. For example, values of
variables as they are manipulated down a path through
the code, or the relationship between how parameters of
functions are treated and the corresponding return values.
To analyze code with this level of sophistication, all possible
paths in the software are exhaustively analyzed to check for
potential software anomalies.

By searching exhaustively through all paths in the pro-
gram, these static analysis techniques can uncover bugs that
may not be caught by testing alone. Since each test case
follows only a specific path in the program, a finite number
of tests can only check a limited set of possible execution
paths. Usually these paths cover only a small fraction of the
total possible paths in the software. Static analysis, on the
other hand can evaluate all possible execution paths through
the program; subject to the constraints of the tool employed.

Despite providing greater code coverage than testing,
static analysis does have its limitations. Since the analysis
is performed at compile-time, it is impossible to ascertain
the actual values of input parameters and program variables
used during execution. Static analysis tools therefore have to
assume all possible values for these variables. This makes
the analysis computationally intensive and causes high false
positive5 rates. Alternatively, the analysis tools may use
heuristics to improve performance, yielding false negatives6

as a result. In the ideal case, static analysis tools should
have no false positives, no false negatives, and run in
approximately the same amount of time as is required for
compilation. However, this is not possible given the current
state of technology. Therefore, most effective static analysis
tools instead try to find the elusive sweet spot between false
positives, false negatives, and performance to make results
useful for every day software development.

It must be noted that static analysis is most effective
when used in combination with traditional V&V techniques.
It must be viewed as a complement to, rather than a re-
placement for, conventional V&V methodologies. Ideally,
of course, static analysis should be integrated with a man-
ufacturers’ software development life-cycle process. Using
it as code, is developed helps developers identify and repair
defects prior to adding the code to a code baseline. Similarly,

5 A false positive is any result that a static analysis tool reports that is not
actually a defect in the source code.
6 A false negative is any defect in the code that a static analysis tool does
not report.



Figure 4. Architecture based comparison between design and implementation

using static analysis during code integration can provide an
integrated analysis of the entire software system at a holistic
level.

Static analysis technology can play a role in a regula-
tory context as well. In this context regulators can obtain
device code and apply this technology to expose errors,
without knowing much about the design or code. And, like
the modeling technology discussed earlier, manufacturers
could get “regulatory credit” for using this technology when
presented in an assurance case format. One could further
imagine that a verification claim would be strengthened
by arguing that both model-based development and static
analysis techniques were used in the verification process.

4. Conclusion
In this paper we have presented two complementary soft-
ware development technologies that can be used to help
develop high integrity medical device software: model-based
development, which allows the developer to check that the
design and implementation adhere to the system (software)
requirements and static analysis that helps ensure that the
implementation itself is free of errors.

Though these technologies have been used with great
success in the aerospace and automotive industries, it should
be remembered that the medical device environment has its
own idiosyncrasies to consider. This environment is based
on the practice of medicine (a rather inexact science) on
patients with widely varying physiological conditions and
with devices that rely on the notion of “competent human
intervention” as a primary means for risk control. In this
environment, the consequence of a device malfunction may
be death or serious injury.

The technologies discussed provide a glimpse of how
the development of high-confidence medical device cyber-
physical systems might begin to be realized. An open-
systems based research environment seems warranted to
facilitate broad involvement in addressing issues underlying
the composition and integration of cyber-physical medical
device and infrastructure technologies through certifiably
dependable tool chains that can represent and resolve cyber-
physical properties. At the same time, these tool chains
need to explicitly support implementation assurance claims.
A broad national research agenda is warranted that brings
academics, manufacturers, and regulators together to refine
existing technologies; and through innovation, develop new
technologies such that future implementations can be estab-
lished as certifiably dependable.
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Abstract - In this work we describe a software tool for designing implantable biosensor network (BSN) applications. 
BSNs are next generation medical monitoring systems, which provide continuous monitoring and actuation capabilities to 
medical personnel. They usually form a wireless network on a subject’s body and can be controlled remotely. Before 
deploying any mission critical systems, it is important to be able to evaluate their performnce in the appropriate settings, 
and fine tune the design choices made. This is especially important for BSNs which are cyber-physical in nature – they 
interact and influence their environment of deployment.  

Toward this goal we present the development of a software tool which can be used by developers and medical personnel 
to emulate an actual deployment of biosensor applications and evaluate its performance in different scenarios. We use 
Architecture Analysis and Design Language (AADL) in order to implement our tool as it provides an easy to use interface 
for specifying complex systems, and their environments. In this paper we discuss various aspects of developing such a 
tool including prinicipal characteristics of BSNs that need to be considered by it along with its functional architecture. We 
also provide an example scenario of how the tool can be used to evlauate a specific biosensor application.  
 

1. Introduction 
 
Recent technological advances in the fields of MEMS, integrated circuits, and low power design have lead to 

the development of implantable network of health monitoring sensors and devices. The RAND Corp. report on 

future technologies [RAND] predicts that the first applications resulting from the synergistic efforts of various 

disciplines will be out for public use by the year 2015. These Biosensor Networks (BSNs) are cyber-physical 

systems which have the potential to save lives by continuously monitoring the human body and taking 

corrective actions by triggering a response in case of medical anomalies. Biosensors communicate using the 

wireless medium with one another and with the external world.  Medical personnel can use the Internet to 

remotely monitor and control implanted sensors, which not only provides them with valuable diagnostic 

feedback but also actuation capabilities. Figure 1 illustrates an example BSN embedded inside the human 

body. 

Given the cyber-physical nature of BSNs – their close coupling with the human body – care has to be taken to 

understand the effects of their operation on their environment (body). As it may not be feasible to test BSNs in 
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a real-life setting (through actual deployment), it is important to develop tools which can ‘emulate’ such 

deployments and allow designers of BSNs to be able to evaluate the consequences of their design choices and 

thereby improve the performance of the BSNs.  

 

Figure 1: Example Biosensor Network 

Typically, developing any application including those based on biosensors begins with an idea and 

conceptualization. This is then followed by the preliminary design. The design will then have to be analyzed 

against models of the target environment. Design and analysis are iterative steps and are repeated until the 

design team is confident that they have taken care of all issues. This refined design is then used to build a 

prototype that will be tested in the target environment (tissue medium). Here, the design and analysis phases 

are especially important as they are used to identify potential problems and address them at a very early stage. 

The goal of this paper is to present an overview of our tool and some of the issues involved in developing it. 

We use the Architecture Analysis and Design Language (AADL) in order to implement the tool. Some of the 

applications where such a tool could be useful include: analyzing the effects of signal propagation through the 

human body [GLP+03]; and studying energy-efficient coding and modulation techniques for biosensor 

networks [PG03] [69], techniques for minimizing heat dissipation in biosensor networks [TSG] [TTG], 

energy-efficient wireless communication protocols [SNG+01] [SGA+02], and cyber-physical security 

solutions of BSNs [VBG08]. 
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2. Preliminaries 
 
Biosensor applications can be of many types. Table 1 shows some of the important applications of BSNs. Even 

though the individual application requirements vary, all BSN applications have some properties in common. 

Each of these characteristics has to be considered carefully within our tool. In this section we summarize some 

of the prominent characteristics of BSNs.  

Table 1: Types of monitoring needed for different applications of biosensors [SGW+01]. 

Type of sensors Continuous/Discrete monitoring 

Organ monitoring (Heart, Liver, Kidney) Continuous 

Cancerous Cell monitoring Continuous 

Glucose monitoring Discrete 

General Health monitoring Discrete 

 

Network Topologies: Unlike individual medical devices, BSNs have a group of devices (sensors) working in 

tandem performing patient monitoring and actuation. To be energy efficient the sensors typically organize 

themselves into different topologies. However, this organization of the sensors into different network 

topologies directly affects the deployment environment. For example, if sensors are located too close to each 

other, the cumulative heat generated between the sensors during their operation may be difficult to drain away 

and may result in unsafe temperature rise. But if the sensors are locate too far from each other the longer 

distance may need higher power wireless communication between sensors, which means higher RF power 

consumption and higher radiation into the surrounding tissue. The tool should be able to specify and handle a 

variety of sensors with wide ranging capabilities. 

Sensor Hardware: The type of sensor used in building the network is of importance. Smaller sensors can only 

be equipped with low capacity battery and limited computational capability. Since such sensors cannot cover a 
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large area, they may require a higher density of distribution. Then more scalable and complicated network 

algorithms have to be designed to support more powerful and efficient data exchange for the large number of 

sensors. The tool should be able to specify and handle a variety of sensors with wide ranging capabilities. 

Bio-safety Considerations: Bio-safety is a critical issue that should be considered at every step of biosensor 

design and implementation. Strict regulation of bio-safety may require smaller antenna and lower radiation. 

Also, sensors may not be allowed to recharge continuously in order to avoid sustained heating of sensors and 

the surrounding tissue medium. The ability to consider these requirements into the analysis of the BSN design, 

in an automated manner within the tool is extremely important for achieving a practical design. 

It should be noted that looking at each of these requirements in isolation is not sufficient. Every aspect of the 

biosensor application influences the characteristics and performance of other parts of the system. Trade-offs 

between all the factors and requirements must be thoroughly considered and measured. Coordination and 

integration among different parts are essential to achieving a successful design. 

 

3. BSN Design Tool Requirements 
 

It is desirable for the tool to be applicable to a wide variety of biosensor applications and hence its analysis 

capabilities should be a common denominator of the various possible analysis methods. At the heart of such a 

tool will be a generic workflow control mechanism that is customized by specifying the application-specific 

plug-in modules and a user-specified array of third party tools. A modular design with well-defined interfaces 

will allow different researchers to work on different problem domains and implement their work as modules 

that can be plugged into the tool. As more knowledge becomes available to the community through ongoing 

research, the tool can be refined by swapping specific modules with newer and better ones. Thus the tool will 

be flexible. The tool will also be extensible in the sense that new functionality can be added later. This entails 

an open architecture design from the very beginning.  We are using the Architecture Analysis & Description 

Language (AADL) from the Software Engineering Institute (SEI) for implementing the tool. The AADL 

provides an easy to use language with various constructs allowing system architecture model specifications.  
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3.1 Functional Requirements 
 

In this section we present some of the principal functional requirements of the BSN design tool. We divide the 

requirements into two parts –operation specification and usability.  

3.1.1 Component Specification 
 
These describe the ability of the tools to specify the various components of the BSN application, how they 

function and how the results from the operation of the application are analyzed. Some of the requirements in 

this category are: 

 
Workflow Specification: This will allow BSN developers to describe their application to the tool without 

having to modify the tool itself. Workflow is specified using AADL, which will be extended as and when 

required using new constructs which will be incorporated as an annex to the language.  

Unified Bio-heat, Communication and Energy Consumption Analysis:  BSNs work in a difficult 

environment. The wireless channel in the human body is prone to high path loss factors due to high water 

content. Further due to organ, bone and blood vessel boundaries there will be severe multipath fading. Specific 

propagation models have to be developed for the biosensors. Based on the model used, the range of a 

transmission can be estimated. Further, if there are multiple transmissions, propagation models that can be 

used to estimate the level of interference and hence the bit error rate that can be expected in the transmitted 

data. While analyzing heat, we have to account for multiple sources and sinks. We also have to take note of the 

fact that heat and communication affect each other. Communication produces heat which in turn affects the 

communication channel. 

Sensor Deployment Specification: This will allow the developers to take sensor properties, placement and 

energy supply requirements into consideration.  As these parameters can significantly affect bio-heat, 

communication and energy consumption, it is important for them to be explicitly specified by the biosensor 

application developer. Further, these parameters are hardware implementation dependant and vary from 

manufacturer to manufacturer. 
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Regulatory Requirements Management: The tool should have a controller that will maintain data 

consistency and enforce government mandated rules and regulations. The controller should be flexible enough 

to allow changes since different countries or states may have varying and conflicting guidelines 

3.1.2. Usability 

These requirements describe the tool in terms of its utility to the application developers in developing and 

analyzing the BSN application. Some of the requirements in this category are: 

Graphical User Interface: The user interface provided by the tool should hide the complexity of models from 

users not well versed in the intricacies of specific models. At the same time, the interface should also provide 

enough flexibility for a researcher to change modules and models easily. New modules should be addable in a 

plug-n-play fashion and users should be able to control simulation parameters without having to write scripts. 

Interfacing the Third Party Analysis Tools: In order for a tool to be useful, its data should be available for 

further analysis. Instead of developing new data analysis and simulation tools specifically for this application, 

we should take advantage of the numerous tools that are already available to the research community. To avoid 

being tied to any particular third party tool, we have to have some data exchange interface in which data from 

our tool is output in a standard format. We can then write tool specific drivers that will convert the standard 

data format to a format amenable to the tool. As and when researchers want to add new tools to the simulator 

environment, drivers can be written specifically for those tools without affecting anything else. 

Customizability and Extensibility:  Users should be able to use this tool with as many biosensor applications 

as possible. Since the nature of individual applications cannot be known beforehand, users should be able to 

easily customize the tool to their specific applications. It should have pluggable and swappable modules for 

models of body (2-D or 3-D shape, size, density, resolution), radio propagation, heat absorption, energy 

consumption, sensor properties (obtainable from manufacturer) etc. 

4. Tool Architectural Description 
 
Our vision of the tool architecture is shown in Fig. 3. It consists of 5 logical blocks as described below.  
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Design and Evaluation Tool:  At the heart of the Design and Evaluation Tool (DET) will be the modules for 

bioheat, communication and energy analysis. Parameters and instructions to these modules can be fed through 

the Graphical User Interface (GUI). These modules will perform the required analyses using inputs from the 

other four modules. A workflow execution engine will perform the biosensor application operations as 

specified in the application workflow that is fed to the tool via the GUI. The GUI will allow the user to specify 

application parameters such as sensor type and location, energy constraints etc. It will provide an interactive 

visual interface to help place sensors in the body and also provide a visualization of the human body model 

that will be constructed with information obtained from third party databases. Only the important functionality 

will be executed in the DET. Functionality that are prone to change with the biosensor application and 

supporting functionality such as checking for regulations compliance are implemented in the other modules. In 

order to provide flexibility and extensibility, the Tool will have standard interfaces for each of the four 

surrounding modules as shown in Figure 3. 
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Figure 3: System Architecture. 
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Plug-in-Modules: Biosensors applications are very complicated may involve many technnologies. We can 

think of the biosensor system as composed of several subsystems including those for wireless communication, 

energy supply, and tissues. Each of these subsystems are research problems in their own right and have a 

continually evolving body of knowledge associated with them. Researchers have developed theoretical and 

empirical models to mathematically formulate these research problems. Therefore each subsystem in the of the 

biosensor application will be a model or mathematical approximation of the real world. As research in these 

areas continue, better and more accurate models will be developed. By implementing these models as plug-in 

models, we can easily replace old models with new ones. The design and analysis tool should also be flexible 

enough to allow each subsystem to be implemented in different ways. For example, power supply to sensors 

can be through RF induction, supersonic powering or an embedded battery. We should be able to change the 

way power model for an application by simply plugging in the appropriate module. The actual model used will 

affect the outcome of the analysis but will not affect the architecture of the tool. Some of the plug-in modules 

that may be implemented are: 1) Propagation model: The medium in which EM waves are transmitted can be 

homogeneous, heterogeneous, or layered. Its impact on attenuation and phase shift of EM waves would be 

various. We will provide some widely used propagation models but users can customize by adding their own 

propagation models; 2)  Energy model: Provides some regular and basic options for various power supply 

methods such as RF induction, supersonic, and B-field. Parameters such as the capacity of battery and 

performance of transductor can be adjusted to meet different requirements. Users’ own customized power 

supply models are acceptable as well; and 3) Tissue properties database: Has information on tissue properties 

that can be obtained from publicly avalaible sources [EMF]. 

External Tools: Commercial and open-source software are available to perform several useful tasks that may 

be performed in the design and analysis of biosensor applications. To avoid reinventing the wheel and save 

development time, it may be useful to exploit the capabilities offered by these third party software tools rather 

than rewrite them. However, these tools may be developed by different parties and may be incompatible. To 

simplify interaction, it will be necessary to develop a data exchange standard. For any new software tool that 
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has to be supported, a tool driver can be written that will convert between the standard format and the format 

accepted by the new tool. Useful tools include but are not limited to:   1) Mathematical computing and signal 

processing tools such as MatLAB and LabVIEW; Electromagnetic simulation tools such as FDTD or FED 

analysis software; 2) Antenna analysis and propagation simulation tools; 3) Human body modeling and 

simulations tools. We are considering some publicly available human model, such as Visual Man Project 

[NLM] or other public tissue model, such as NIH model organization [NIH]. These models will be used by our 

tool in the form of an input data file or database; and 4) Visualization and graph-plotting software that will 

help researchers better understand analysis results. 

Application Requirement Specifications: This module consists of those parts of the application 

specifications that change often during the iterative process of design and analysis. It has data structures to 

store parameters that can be used to tweak an application. The actual parameter definitions and values have to 

be provided by the application developer and are specific to that application. Some of common application 

requirements specifications include: 1) Communication: Frequency of operation, data latency limits, data loss 

tolerance; 2) Sensor Location: Placement of individual sensors and base station. Depending on the human 

body model used, location may be specified in terms such as right eye, left elbow, heart or may be specified 

Cartesian co-ordinates; and 3) Energy Information: Power supply (embedded battery, RF inductance), energy 

consumed by individual sensors for different operations. 

Regulation Compliance: This module is used to define the International or governmental regulations that 

should be followed for implantable biosensor applications. Regulations cover issues such as the permitted 

operation frequency for implanted medical devices, the Specific Absorption Rate limit and maximum 

temperature rise allowed for bio-safety. This functionality has been put into a separate module because 

regulations change with time and different applications may use a different set of regulations. Also, different 

countries and regions may have different regulations. In our implementation, we plan to support most widely 

used regulations of biomedical or electrical engineering. These include: 1) Food and Drug Administration 

(FDA) regulations on medical devices; 2) Federal Communications Commission (FCC) regulations on using 
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the ISM (Industrial, Scientific and Medical) band and other requirements on frequency and bandwidth 

management. FCC also has the Medical Implant Communications Service (MICS) standard for 

communication between medical implants; 3) IEEE defines many standards on issues such as the measurement 

of SAR, IEEE C95.1 RF human exposure standard, and Standard for Medical Device Communications (IEEE 

1073); and 4) IEC defines the safety limit of exposure to RF radiation. IP68 (IEC 601.2.2) and IP20 have 

stringent requirements for medical devices. Other regulating organizations will also be considered including 

EU and ISO. It is important to take these regulations into account while developing biosensor applications. 

 
5. Example of an Analysis Model: Bioheat Problem 
 
Operation of implanted devices inside human body will cause tissue heating. Heating is caused by both the 

sensor circuitry as well as absorption of radiation by tissue. Specific Absorption Rate (SAR) is a measure of 

the rate of radiation energy that is absorbed by dielectric materials, such as biological tissues. Normally it is 

expressed in watts per kilogram (W/kg) or milliwatts per kilogram (mW/kg). These limits, which are based on 

the current International Electrotechnical Commission (IEC) 60601-2-33 standard, are 8 W/kg in any gram of 

tissue in the head or torso for 15 minutes, or 12 W/kg in any gram of tissue in the extremities for 15 minutes 

[FDA99]. Also ANSI/IEEE C95.1-1992 has a limit on partial body exposure, to 8 or 1.6 W/kg (controlled or 

uncontrolled exposure) averaged over any gram of the exposed tissue.  

Different parts of body have various sensitivities to temperature rise. For example, the eye is expected to be 

more sensitive to heating because of a lack of blood supply to cool down its temperature once increased. And 

exposure to RF fields results in increased retinal temperatures, which can lead to eye dryness and ocular 

discomfort. Some research results show that a long-term exposure to RF could also lead to cataract. 

Understandably, bio-safety is an essential issue and should be considered when implementing implanted 

biosensor. Strict calculation and prediction should be done to estimate the SAR (Specific Absorption Rate) and 

temperature rise inside body tissue. 

5.1. Heating Factors 
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In our previous work, we have studied the temperature rise inside body tissue due to an implanted biosensor 

[TTG05]. In that case, the internal sensors are powered by RF inductive power. Sensors and an external base 

station exchange data wirelessly using the 2.4 GHz ISM frequency band. The heat factors we considered were:  

Heating caused by RF inductive powering: If the implanted devices are powered by RF inductive power 

supply, the frequency of RF power supply is normally operated in 2 MHz to 20 MHz range [He88] [MS01]. 

Radiation from Implanted device communication: Implanted devices need to exchange data between other 

implanted devices or an external device using wireless communication. The wireless signal also has radiation 

effect on tissues surrounding the implanted sensors. 

Power dissipation by implanted node circuitry: When a sensor node processes the data, there will be power 

consumed by its circuitry. The sensor circuitry may also need to perform data aggregation and various other 

functions which consume power. This power is transformed into heat which may add to the already heated 

tissue. The power consumed by the sensor circuitry depends on its implementation technology and 

architecture. 

Effect of Metallic Implants: Several research findings show that metallic implants may couple with the RF 

used in magnetic resonance imaging (MRI) and may lead to a heating hazard [YSA02] [Ho]. The presence of 

the metallic implant results a local amplification of the SAR, and this effect is not seen with the external 

transmitter alone. 

5.2. Calculating Temperature Rising 

The above mentioned sources for heating the tissue can cause a rise of temperature inside the control volume. 

The rate of rise in temperature is calculated by using the Pennes bioheat equation as follows. 

mcircuitrybp QPTTbSARTK
dt
dTC ++−−+∇= )(2 ρρ   
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The left hand term measures the rise in temperature in the control volume, the terms on the right side 

respectively indicate the heat transfer rate by conduction, heat transfer due to radiation, heat  
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Figure4: Heating Workflow. 

transfer due to blood perfusion, power consumed by circuitry and heat generated by metabolic heating .Where       

is the rate of rise in temperature in the control volume, ρ is the mass density, Cp is the specific heat of the 

tissue, K is the thermal conductivity of the tissue, b is the blood perfusion constant which indicates how fast 

the heat can be taken away by blood flow inside the tissue, Tb is the temperature of the blood. Once we know 

the properties of mediums and blood flow, and the power or heat absorbed by the tissue, we can calculate the 

temperature change rate within a period of time by      . With this equation we can predict the SAR inside 

tissue and the resulting temperature rise. 

dt
dT
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5.3. Workflow of Heating Problem 

Actual calculation of the temperature rise is not be straightforward as many factors are dependent on the 

design and implementation of other parts of the biosensor system as shown in Figure 4. Factors that affect 

heating include power supply design, communication design and sensor implementation. Researchers may 

work with Matlab, LabView or other wireless simulation software, propagation software to design those parts. 

If part of the communication design is changed (ex. different encoding scheme or radio frequency), then its 

impact on heating would be changed too. Sources of cooling have a similar problem and depend on where to 

implant the sensors, the properties of tissues etc. Further, researchers may use different models, or use 

different software tools (Matlab, VC++) and algorithms (FDTD, FEM) to evaluate the SAR and temperature 

rise. The final result would be compared with different regulations according to the specific application. Final 

results may lead to redesign of other parts of the system.  

All the blocks outside the dash box are factors that depend on other application requirements and system 

implementations. Any change to any of them would lead to a change in the heating effect. Researchers have to 

work with several different software packages and repeat the whole heating work flow several times. 

With proper interface drivers and software platform, the heating analysis inside the dash box can be 

automated. Researchers only need to interact with the integrated platform to use the different software. The 

data generated from different sources will be managed and aggregated together to realize an automatic heating 

estimation workflow. If any part of the system has changed to a different scheme, researcher only needs to re-

execute the automated workflow again without having to deal with individual software packages. 

5.4. Communication System Workflow 

A researcher may use various software tools for antenna simulation and signal modulation simulation. With 

different antenna schemes and transmission medium, RF signals have different attenuation and phase shift. 

Signal strength also depends on the location and distance between sensors or base-station. This 

interdependence of various components and design decisions are shown in Figure 5. If we consider 

propagation model, modulation scheme and environment interference together, link budget analysis can be 

performed. The output can be used in designing communication hardware for the sensor.  
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Figure 5: Communication Workflow. 

Models inside the dash box will be integrated as an automatic process in our platform. Once a user changes the 

requirements and implementation antenna model, modulation model, network routing model, the workflow of 

communication system will automatically run and the result will be input to other related workflow and will 

trigger those workflow to process again.  

5.5 Power Workflow 

Power system design is influenced by the application requirements, the implementation of sensors and design 

of the communication system. The work flow that specifies the inter-relationship among the different 

requirements and design decisions are shown in Figure 6. The total power consumption is composed of power 

consumed by sensor circuitry, communication system and the base station. Users may select different 

implementation options of power system which have different impact on heating the surrounding tissue. At the 
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same time, regulations or application may have some strict requirements on lifetime of battery, size of power 

supply etc. This workflow can be automated by our proposed platform. 

 

Power Model WorkFlow

 

Figure 6: Power Workflow. 

5.6. Interaction between different workflow 

The relationship between the different models is shown in Figure 7. The whole design process will work on an 

integrated and automated mode. All the subsystems rely on the detailed application specifications and 

regulations. These subsystems work together to decide whether reasonable power consumption criteria, stable 

communication, and bio-heat safety criteria can be met. The change of input of one workflow would 

automatically generate new results for this workflow and then trigger the re-computation of related workflows. 
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Finally, users can expect to get simulation and analysis results with a few mouse clicks and the output will 

show if the result is in accordance with specifications and regulations. 
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Design

Communication
Design

Bioheat
Safety Criteria

Regulation

Requirement

Application

 

Figure 7: Module Interaction. 

6. Development with AADL 
A model description language is required to develop the biosensor network application analysis tool. In this 

regard we use AADL [FGH] which has the following properties: 

• High level architectural model of the tool can be specified in AADL using various constructs that it provides. 

• The functionality of the AADL model can be extended with the help of appropriate annex to the language 

• Analysis of the entire system can be performed in AADL by designing appropriate plug-ins. 

Given the system architecture of the tool in Figure 3 we endeavor to develop an AADL specification. Figure 8 

[CPS] shows the AADL specification for the biosensor network that is designed for analyzing the heat safety 

of the system. 

• To specify the system we first need models of the physical objects and devices, that comprise the system. 

These are required to be specified in AADL specific constructs. As shown in Figure 8 we specify the model of 

the human tissue in the physical component named Tissue where we can incorporate its thermal characteristics 

as a set of attributes. The sensors are modeled as the Node device wherein we need to specify the computing 

states of the sensors and the associated energy dissipation.  
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• In order to incorporate the effect of energy dissipation of the sensors nodes on the tissue we have to specify the 

bioheat model using AADL language constructs. Specification of models of different physical phenomenon in 

AADL involve the development of appropriate annexes.  

 

Figure 8: AADL specification for Heat Safety analysis 

We specify the bioheat model as a subprogram Tissue.temp in the physical component specification of the tool 

(as shown in Figure 8). In this subprogram we can specify the input variables and the output variables of the 

bioheat model and also specify a mapping between them. 

• The application requirements and regulations of the tool need to be specified in AADL by properly setting 

values of attributes of different componenets. An application requirement in our tool is to provide a system 

alarm whenever the temperature of the tissue crosses a threshold. This requirement is specified in the AADL 

model as an attribute to the Tissue component.  

• The tool in order to analyze the thermal behavior of the BSN will require inputs from external softwares. The 
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bioheat model would require several parameter values that are not possible to compute in AADL given the 

present status of its infrastructure. In our tool we need to parse the output provided by Matlab and convert it to 

AADL recognizable format and provide as input to the bioheat subprogram. Thus ouputs from different 

software modules need to be properly parsed and provided to the analysis infrastructure of AADL.  

• An important aspect of this tool is the analysis of the interaction of the BSN with the physical environment 

(Tissue). The interaction is very complex and current AADL infrastructure does not provide a method to 

specify and analyze this cyber-physical property of the BSN. We are currently working towards the 

development of an annex for AADL that supports the evaluation of the cyber-physical interaction of a system. 

In the case of the tool for BSN we have incorporated the physical interaction of the BSN with the body tissue 

by implementing two subprograms in each of the componenets Tissue and Node. The subprogram 

Node.sensor_energy specifies the amount of energy that is being transferred as heat to the sensor’s physical 

environment (body tissue). Tissue.temp subprogram is then utilized to calculate the temperature rise in the 

tissue due to the energy dissipation in the sensor.  

• An intuitive GUI is essential for the tool in order to provide an easy interface to the user. The GUI that 

currently exists in the AADL framework does not enable the user to fully utilize all the functionalities of 

AADL. One of our goals in this development of the tool is to develop a GUI through which the user can 

provide complete information about the system such as placement location of sensors, tisue heating 

parameters, work flow for analysis of different policies. 

7. Conclusions 
 
In this paper we have discussed some important issues in developing a software tool for designing and 

analyzing BSN applications. In this regard we presented a design of a software tool which can be used by 

developers and medical personnel to emulate an actual deployment of biosensor applications and evaluate its 

performance in different scenarios. We use Architecture Analysis and Design Language (AADL) in order to 

implement our tool as it provides an easy to use interface for specifying complex systems, and their 

environments. Further, we discussed various aspects of developing such a tool including the principal 
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characteristics of BSNs that need to be considered by it along with the tool’s functional architecture.  
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Abstract 
Assistive Cyberphysical Systems (ACPS) are 
pervasive and ubiquitous systems connecting the 
cyber with the physical, with the aim to assist a 
human’s daily activities both at home and at work. 
We propose an event driven framework with event 
identification mechanisms that drive actuators, 
transform a substrate and alter human behavior in a 
feedback loop process in ACPS. This framework is a 
dynamic, context aware, adaptive, self-repairing and 
high-confidence system that couples computational 
power with physical substrate (testbed) control and 
command; it recognizes events, human needs from 
lifestyle, environmental and longitudinal health data.  
 
1. INTRODUCTION 
Assistive  Cyber­Physical  Systems  or ACPS 
are  systems  that  collect  data  and  provide 
assistance  to  humans  interacting  with  the 
physical  and  digital  environment  around 
them. In this special CPS category, the human 
is  dependent  on  the  input  and  output  of 
instruments  and  on  the  environment’s 
sensors  embedded  in  @home  and  @work 
spaces.  ACPS  is  a  complex,  dynamic  and 
pervasive  CPS  that  is  human‐centered  and 
responsive to human needs.   
 

 
 

 

In  this  paper,  we  describe  an  “event 
identification  mechanism”  for  ACPS  that 
enables  seemingly  meaningless  human 
activity and  interaction data to gain meaning 
with  regard  to  human  behavior.  Event 
identification  (EI),  is  a  2‐phase  process  of 
first  assimilating  continuous  and  discrete 
types  of  data  or  streams  collected  through 
various  types  of  sensors  over  time  and  then 
identifying  “events”  of  interest  through  the 
use of  various mining  and  feature  extraction 
tools applied  to multi‐channel data  in a non‐
invasive  and  privacy‐preserving  approach. 
Through  the  EI  mechanism,  the  framework 
can  summarize  and  filter  non‐interoperable 
information  over  time  and  space  in  order  to 

reach  higher  levels  of  awareness  and 
intelligence  that  responds  to  patterns  and 
enhances  human  capabilities  in  significant 
ways.   

 

Figure 1 . ACPS Framework for Event Detection 
 

ACPS  desired  properties  include  (1)  a  self‐
correcting  and  adjusting  feedback  loop  that 
refines  the  identification  of  an  event  by 
adjusting  sensors  and  data  collected;  (2) 
flexible and easy  to use human‐centered and 
customizable  functions;  (3)  an  expandable 
architecture  to  accommodate  new  types  of 
instruments  and  devices;  (4)  responsiveness 
to emergency and non‐emergency situations; 
(5)  supportive  prediction  and  decision 
making  by  identified  events;  (6)  an  EI 
mechanism that adapts to different situations, 
the  types  of  data  that  need  to  be  collected, 
new  technologies  or  software;  and  used  to 
discover  behavioral  and  environmental 
“markers”  of  social  and  community 
importance  that  can  trigger  alerts  or  
warnings  or  address  social  and  community 
needs,  ranging  from  better  learning  or 
training  environments,  to  improving  human 
performance  in  stressed  situations,  such  as 
recognizing  depression,  pain,  lack  of 
understanding,  or  even  recklessness  in  the 



face  of  risk  or  danger;  (7)  innovation  and 
design  of  new  instruments,  and  testing  new 
ways  to  use  them;  (8)  powerful  analysis 
engines    to  recognize  low‐level  and  higher 
level  events,  and  support  meta‐analysis 
impacting  numerous  CPS  applications,  from 
healthcare,  to  manufacturing,  house/car 
design,  training,  school  scheduling  [2,5‐10]. 
Figure 1 shows the ACPS framework for event 
detection. 

 
2. EVENT DRIVEN ACPS 
An  “Event”  in  ACPS  is  any  extraordinary 
occurrence  or  observation  involving  the 
subjects, objects, and environmental status in 
the  entire  environment.  We  focus  on 
identifying  three  types  of  events  [3,4]:  (a) 
prevention of accidents such as falls or other 
injuries;  (b)  abnormal  behavior  or  activity 
involving  either  the  human  or  the  system, 
(e.g., malfunctioning of  instruments,  physical 
or digital  intrusions,  aberration  from normal 
human  activity  (e.g.  missed  medication  or 
meals) in order to better guide the human or 
signal  the  need  for  the  system  and/or  its 
components  to self‐correct or ask  for human 
intervention;  (c)  social/psychological  need 
detected (e.g., depression, pain, loneliness). 
 
The  event  identification  component  in  the 
ACPS  framework  gets  data  fed  from 
multimodal  sensors  and  devices  (e.g. 
Micaz/Cricket/Mote  Invent  sensors,  VICON 
cameras, audio sensor, ECG sensor).  In ACPS, 
event  identification  and  fusion  exist  in  both 
low  level  (e.g.  identify  abnormal  activities 
from  image/video)  and  high  level  (e.g. 
identify  events  from  correlated  events  and 
data  from  different  sensors/devices).  All 
events  in  ACPS  can  be  organized  as  a 
hierarchical  tree:  the  top‐level  events  are 
derived from the low‐level events.  
 
3. FEEDBACK LOOP 
This  ACPS  includes  a  self‐correcting  and 
adjusting  feedback  loop  that  refines  the 
identification  of  an  event  by  adjusting  the 
way the sensors and the environment collect 
data.  For  example,  it may  add more  sensors, 
improve the window of time over which data 

are  collected,  reduce  noise  by  some  other 
mechanism,  improve  the  algorithm  applied 
on the data, etc. Figure 2 shows the feedback 
loop  of  the  ACPS  framework  for  event 
detection.  (a) The static sensors provide raw 
sensory data, to be processed by the behavior 
recognition  components  and  create  events. 
(b)  The  events  are  fed  into  the  Event 
Processing/Identification Module.  (c)  Unusual 
behaviors  are  identified  and  sent  to  the 
human operator (who closes the loop) and/or 
to  the  actuator  controller who may  trigger  a 
certain  set  of  actions.  (d)  The  actuator 
controller  activates  the  robot  or  moving 
cameras  to  focus  their  sensors on  the  target. 
(e) Better sensory input  is acquired and sent 
to the behavior recognition module. (f) Some 
live  video  is  transmitted  to  the  human 
operator, who closes the loop. 

 
4. PRIVACY AND SECURITY ISSUES 
The  ACPS  system  produces,  by  its  nature, 
valuable  behavioral  and  other  human‐
centered  data  that  relate  to  sensitive  health 
records  of  a  person.  It  can  also  connect  to 
biomedical  data  such  as  brain  scans,  history 
of  a  condition,  physical  characteristics  and 
even  genetic  characteristics.    It  is  very 
important, therefore, that in order to produce 
robust and feasible ACPS systems for e‐health 
and  pervasive  environments  of  the  future, 
that  we  also  address  important  issues  of 
privacy and security.  In particular, we ask the 
question,  at  which  points  of  the  event 
identification process is there risk for privacy 
violations  or  security  lapses?  Or,  how  does 
each stage of  the EI process rank  in  terms of 
data sensitivity? In this section we provide an 
analysis  of  the  different  types  of  security 
issues that can arise.  In a series of PETRA’08 
and  09,  papers  [1,  11‐13],  we  introduce  a 
security  framework  for  ACPS. We  divide  the 
key  privacy  and  security  issues  in  two 

 
Figure 2.  Event Refinement Feedback Loop



different  types:  Low  level  security  that 
applies to raw data or streams and high level 
security that applies to high level events that 
have  more  semantic  meaning  regarding 
behavior. For  low‐level security, we consider 
Data  Integrity  (nobody  tampered  with  the 
data and no parts are missing), Confidentiality 
(data  is  encrypted  and  only  the  proper 
receiver  can  decrypt  it),  and  Availability 
(continues and robust service). For high‐level 
security, we consider sensitive events that are 
defined by the user or the data owner. 
 
4.1  Low  Level  Security  on  Raw  Data 
Sets/Streams 
Data  Integrity: When  data  are  generated  in 
devices  and  ready  to  be  sent  to  a  receiver, 
such  as  a  base  station,  a  router  or  another 
device  which  will  further  process  the  data, 
are  supposed  to  guarantee  they  can  tell  that 
(1)  it  receives  the entire package of  the data 
instead of a portion of it, and that (2) the data 
is  from  that  device  as  it  claimed  and  not 
someone  else  [2,3].  Usually  it  could  be 
provided  by  generating  the  hash  value  or 
fingerprint  of  the  entire  message  or  data 
sequence,  and  then  signing  the  hash  value 
with the private key of the device if public key 
operations  are  affordable  on  that  device,  or 
using  a  keyed  hash  function  to  generate  the 
fingerprint  if  public  key  operations  are  not 
affordable  and  the  two  parties  has 
established  shared  symmetric  key.  The 
receiver will use the public key of the sender 
or  the  symmetric  key  they  shared  priori  to 
verify  the  package  it  received.  The  finger 
print  makes  sure  that  all  the  original 
information was included and the keyed hash 
or  the  digital  signature  makes  sure  that  the 
data  is  generated  by  the  device which  holds 
the same key or corresponding public key. 
 
Data  Confidentially:  When  data  is 
transmitted  among  devices,  secure  channels 
must be established for the communication to 
protect  the  data  against  eavesdroppers.  So 
besides  the  data  origination  authentication 
and  integration  checking,  the  data  must  be 
encrypted  during  transmission.  For  those 
devices that can afford public key operations, 
they will use their public/private key pairs to 

establish  session  keys  to  encrypt  the  data 
exchanged.  For  those  which  cannot  afford 
public  key  operation,  either  a  key  escrow or 
an  initial  key  distribution  phase  will  be 
introduced  to  set  up  the  symmetric  key 
sharing among the devices in a group‐wise or 
pair‐wise fashion. 
 
Data  privacy  could  be  viewed  as  “selective 
confidentially”  granted  by  data  owner.  We 
could  let  users/patient  to  configure  the 
access  of  their  data  and  this  is  not  enough 
since  privacy  information  may  leak  in  an 
unintentional  way.  For  example,  the  traffic 
data  in  a  health  center  may  already  be  de‐
indentified.  However,  if  an  attacker  is 
equipped  with  an  appropriate  tracking 
algorithm and also obtains other information 
about a person, such as the type of room (e.g., 
bathroom) he  is visiting at a certain  time, he 
will be able to link a daily habit with the data 
set  and  associate  this  with  the  actual 
corresponding person. So we have to sanitize 
the collected data before we actually publish 
it,  even  if  it  is  aimed  at  general‐purpose 
research. We will need to annonymize such a 
dataset against popular data mining methods. 
At  the  same  time, we must also keep certain 
dataset properties associated with the dataset 
in  order  for  it  to  be  valuable  for  further 
analysis. For example, we may wish to use the 
dataset to optimize the layout of the physical 
apartment  space  of  a  person  and  the 
associated sensors for data collection in order 
to schedule better services [13].   
 
Data  Availability:  The  availability  is  the 
basis of  the confidentiality and  integrity, and 
requires  the  data  or  service  to  be 
continuously available. The required security 
must  provide  intrusion  detection  and  fault‐
tolerant‐and‐recover  mechanisms,  and  work 
against  attacks  like  Denial‐of‐Service  (DoS) 
attacks.  The  resiliency  is  more  critical  in 
assistive  applications  since  any  network 
misconnection  or  dysfunction  of  the medical 
devices may endanger human lives. 
 
4.2 High Level Security on Sensitive Events 
After raw data  is processed and transformed 
into  events,  a  higher  level  of  security  should 



be  provided  to  protect  sensitive  events.  The 
mechanism we propose is to allow patients to 
authorize the access of his/her events and to 
enforce  the  system  to  check  the  compliance 
when someone requests them. We propose to 
define  event  access  using  widely  accepted 
Semantic Web  standards  such  as  OWL,  RDF, 
and XML.  
 
<owl:Class rdf:type=”#event”>  
<owl:DataTypeProperty rdf:ID=”timestamp”/> 
 <rdfs:domain rdf:resource="#time"/> 
  <rdfs:range rdf:resource="&xsd;time"/> 
<owl:DataTypeProperty rdf:ID=”location”/> 
 ... 
</owl> 
<event id="8739173917">  
<timestamp> 2009.2.18.12:50pm </timestamp>  
 <location> x: xxxx; y: yyyy </location> 
 <type> bathroom visit </type>  
 <physical quantities type="hit">  

<dooropen newton> 5 </dooropen newton>  
<velocity> 4 m/h </velocity> 
<duration> 10 m </duration>   

 </physical quantities>  
</event> 
<Rules> 
 <Rule type="home"> 
 <condition type=”event”> 

<before> B ← all other events detected 
within 1 hour </before> 
<present> P ←  Newton > 10 v velocity > 
10 m/h v duration > 30m </present>  
</condition> 
<action> report injury ← P v (B = 
abnormal) </action> 

 </Rule>  
</Rules>  
<Access> 
<action> check role of requester R ← 
Requester </action> 
 <Access type="bathroom"> 
 <condition duration=”9a-5p”> 

<allowed> ALL(TRUE) </allowed> 
</condition> 

 <condition duration=”6p-12a&12a-8a”> 
<allowed> Doctor(R) and Nurse(R) 
</allowed> 
</condition> 

 <condition assistance=”robot”> 
<allowed> on call ← injury </allowed> 
<denied> video ← false </denied> 
</condition>  

</Access> 
Figure 3. Sensitive Event 

 
Figure  3  gives  an  example  of  the  access 
description  of  a  bathroom­visit  event.  This 
event  is  characterized  by  3  or  more 
parameters, such as, the type of force used to 
open  the  bathroom  door,  the  walking  speed 
to the bathroom door, and the duration of the 
bathroom  visit.  The  event  access  description 
is  to  be  executed  when  such  an  event  has 

been requested.  In this example, only doctors 
and nurses  can  see  the  event  records during 
the night and an assistant robot is allowed to 
be  on  call  in  case  there  is  an  accident 
associated with this event. 
 
5. EVENT VISUALIZATION (ZSCOPE) 
As part of our framework, there is a front‐end 
information  visualization  interface  (ZSCOPE) 
that summarizes a history of key current and 
past  events  taking  place.  We  will  use  the 
Heracleia  Apartment  (HA)  of  the  Human 
Centered Computing Laboratory for the study 
of device training in Figure 4. ZSCOPE will be 
used to help a human operator or user locate 
active devices, their function and priority and 
provide ways  to  interact with  them. Ongoing 
empirical  studies  collect human activity data 
from HA in order to: (1) to understand needs 
for  human  assistance  and  how  the  devices 
and instruments could be involved; and (2) to 
track  the  visualization  and  training  needs  of 
human operators.  

 
Figure 4 The Heracleia Apartment

ZSCOPE  is  also  used  to  illustrate  the 
interactive  nature  of  the  EI  mechanism  and 
the  generated  events  regarding  patient 
behavior, or worker performance. The events 
will  tell  whether  the  patient  follows  the 
medical  instructions  and  how  well  such  a 
worker performs his  tasks. Mistakes need  to 
be  corrected.  Training  regarding  new 
rehabilitation  or  new  devices  that  were 
added, will predict risk or neglect. 
 
6. CONCLUSIONS 
This  paper  proposed  an  event  identification 
(EI)  framework  with  a  multi‐level  data  to 
knowledge  approach  on  multimodal  human 
activity  data  in  complex  physical  pervasive 
environments,  converting  low  level  data 
semantics  to  high  level,  with  privacy  and 
security  built‐in.  In  addition,  events  are 



visualized  in  this  framework  through  an 
information visualization interface, ZSCOPE. 
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1. Introduction 

Recent studies show [1] that “In 2000, people aged 65 and older made up 12.3 percent of the U.S. 

population, while by 2030, they will constitute 19.2 percent, after which growth is projected to level off 

so that this cohort represents 20.0 percent of the population in 2050. The most rapid growth will occur 

within a subgroup of this cohort—the so-called ‘oldest old,’ or people over the age of 80. Today this 

group makes up 3.2 percent of the U.S. population, while by 2030 that number will increase to 5.0 

percent, and by 2050, to 7.2 percent”.  This group is subject to both physical and cognitive impairments. 

Such situation will have a profound impact on maintaining the elderly independent from caregivers.   

As stated in [2], mobility is fundamental to health and social integration of human beings, and 

therefore is viewed as being essential to the outcome of the rehabilitation process of wheelchair 

dependent persons.  It is estimated that some 2.5 million people in Europe and 1.25 million in the US 

depend upon a wheelchair for their mobility. Equally important as wheelchairs are the lift devices. As far 

as assistive technology for the mobility impaired including the wheelchairs, lift aids and other devices, is 

well established, the patient typically requires assistance to use the device.  With more and more elderly, 

there is a need for improving these devices to make them more intelligent to ensure them independent 

assistance.  The need for patient lift devices will also increase as generations get older.  

In response to these needs, the National Institute of Science and Technology (NIST), Intelligent 

Systems Division, began the Healthcare Mobility Project to address this healthcare issue of patient lift and 

mobility, and began developing the Home Lift, Position, & Rehabilitation (HLPR) chair to investigate 

these specific areas of mobility, lift and rehabilitation [3].  The prototype of the HLPR chair, shown in 

Figure 1, is based on a manual, off-the-shelf forklift. The forklift includes a U-frame base with casters and 

a vertical frame. The patient seat mechanism is a double, nested and inverted L-shape where the outer L is 

a seat base frame that provides a lift and rotation point for the inner L seat frame. The outer L is bolted to 



the lift device while the inner L rotates with respect to the seat base frame at the end of the L. Drive and 

steering motors, batteries and control electronics along with their aluminum support frame provide 

counterweight for the patient to rotate beyond the wheelbase. When not rotated, the center of gravity 

remains near the middle of the HLPR Chair.  When rotated to π rad (180 deg.) with a 136 kg (300 Lb) 

patient on board, the center of gravity remains within the wheelbase for safe seat access.  

 

  
Fig. 1. HLPR Chair [3]. 

 

The HLPR chair exists as a prototype and is being used for research purposes at the Florida Gulf 

Coast University (FGCU). A significant number of unresolved issues are being researched. The objective 

of this particular project is to investigate the computer and software safety issues in the design, 

implementation and use of the HLPR chair.   

 

2. Specific Goals of the Project 

One particular problem is that currently there are no standards, or even adequate research, to 

guide developers and manufacturers regarding intelligent rehabilitation chairs and forklift technologies 

that use advanced sensors, computers and actuation systems.  There is a strong sense that before 



intelligent chairs are commercialized and sold to the general public, a research based target safety practice 

should be in place.  Our study is meant to address this gap. 

The issue of primary importance is the patient safety.  The chair is designed toward enabling safe 

mobility to all users, including all sorts of impairments that may include blindness, paralysis, 

Alzheimer’s, obesity, etc. Because the HLPR Chair’s ultimate purpose is to help disabled persons, it is 

important to remember the human impact during all of these projects. For safety purposes, humans should 

be assumed unreliable and unpredictable, thus safety studies must expect the extraordinary in regards to 

the functions to which the user will subjugate the chair.  

As an example, in current design, when the patient is using joysticks to control the move and turn 

the chair, steering wheel design allows stopping the chair at just beyond 180 degrees for safety of the 

steering system. Steering is reverse Ackerman controlled as joystick left rotates the drive wheel 

counterclockwise and joystick right rotates the drive wheel clockwise [4]. The steering rotation amount 

can be limited by the amount of drive speed so as not to roll the frame during excessive speed with large 

steering rotation.  This raises several important questions, however, regarding the implementation of 

safety functions in software.  Some of the most critical issues include: chair stability (is there sufficient 

safety margin for abrupt rotations and tilt adjustment?), chair mobility (is the chair traceable, so it could 

be remotely controlled in case of a hazard?), software itself (is there enough protection embedded in 

software to keep the patient safe in case of equipment failures?).  Some of these issues are discussed in 

the next section. 

 

3. Selected Issues Related to HLPR Chair Safety 

 

3.1 Tilt Awareness and Stability 

Some safety standards for the wheelchairs and forklifts already exist [5], and are implemented in 

current design. However, incorporating simple safety measures, such as electronic level detection and 

sensors to determine the chair lift’s current height into the HLPR software, not allowing the user to take 

the chair past a predetermined angle, are necessary but not sufficient for full patient protection.  This 

project is taking it a step further.  

 Under existing collaboration with NIST, testing for the HLPR chair’s stability in load carrying 

situations has been conducted [6]. The research was aimed at looking for discrete angle of tip in the most 

and least stable configuration (Fig. 2). Several factors were included in the analysis, such as: load/lift 

height, load orientation, HLPR orientation on platform.  

 



 

Fig. 2. Illustration of Basic Chair Safety Issues [6]. 
 

Several areas for stability testing were identified, including those listed below, and will be 

addressed in this research by developing respective stability algorithms and implementing them in 

software: forward and rearward dynamic stability on ramp, lateral dynamic stability on ramp, lateral 

dynamic stability while turning in circles, lateral dynamic stability while turning suddenly, dynamic 

stability while traversing a step 

 

3.2 Autonomous Motion 

By incorporating a new controller feature of near real-time validation and execution, the HLPR 

chair could be made autonomous.  In particular, previous studies have determined that the incorporation 

of RFID tags on the HLPR chair along with RFID readers in a building, would allow tracking of any 

HLPR chair and its user within a designated area.  This implementation could also serve as a safety 

measure for prohibiting entrance to certain areas and automatically unlocking certain doors.   However, 

full safety analysis regarding potential hazards and failure modes requires more significant attention, with 

specific requirements coming from the nursing objectives and is the subject of this study. 

At this point, we developed a preliminary RFID tracking system that allows: (1) collecting the 

RFID tag data with search abilities, and (2) making the data available via the Internet (Fig. 3). The 

software allows a remote access to a server and pulling from it logs of what tags have passed through and 

when [7].  It has a user-friendly interface and socket-protocol accessibility, and will be used as a basis for 

the HLPR safety analysis with RFID. 



Fig. 3. RFID Device Employed in the Project (left) and the User Interface (right). 

 

3.3 Software Safety 

Software safety analysis is typically done by identifying potential hazards that may be caused by 

software failures.  Analyzing software architecture is very helpful, in this respect, because it identifies the 

major components that may be potential sources of such hazards.  The architecture of current HLPR chair 

controller is based on the RCS concepts outlined in [8] and illustrated in Figure 4.  It does not, however, 

include any safety features. 

 

Fig. 4. RCS Architecture Used in HLPR Chair Controller Design [8]. 

 



To address the software safety issues we employ the concept of safety shell (Fig. 5), developed in 

collaboration with NASA [9], which relies on an architectural concept similar to that of RCS architecture 

[10] and fits well into the RCS scheme, enabling design of control systems [11].  Its essential element is 

the implementation of a “Test First” design element to prevent dangerous situations from occurring. In 

case of the HLPR chair, this design element is initiated with every change in input from the user and 

encoder. It is meant to catch any hazardous situation at its beginning; by “testing first” the processor will 

either validate or invalidate the current motion and/or the desired motion.   

 

Fig. 5. Safety Shell Architecture [9]. 

 

The safety shell for the HLPR chair is being implemented in the MOAST/UsarSims environment 

[12], which allows for virtual simulation, thereby simplifying safety testing for mapping and planning 

operations. Software safety requirements have been developed for this project, including requirements for 

external interfaces, input requirements, output requirements, processing requirements, and performance 

requirements, for all system modes and user classes.  A sample of input requirements is given below: 

 Software shall accept input from the designated sensors/user input device. 

 Software shall validate or invalidate an input according to the environment. 

 Software shall accept changing inputs from sensors/user input device. 

 Software in the failsafe mode shall be able to override sensor/user input devices. 

 

Conclusion 

The HLPR chair was designed at NIST to be a revolutionary patient lift and mobility system for 

wheelchair dependents, the elderly, stroke patients, and others requiring personal mobility and lift access. 



The system shows promise for moving these groups of patients into the work force and removing the 

burden placed on the healthcare industry. It has been prototyped to show the basic concept of such a 

patient lift and mobility system.  However, the complete development of the HLPR chair from its current 

state all the way to its realization as an assistive technology in the hospital setting requires a significant 

additional work in several areas, including computer and software safety.  

The current proposal addresses the safety issues in a comprehensive, interdisciplinary way, and 

aims at developing a safety model and its verification, to enable subsequent steps towards chair 

certification by the U.S. Food and Drug Administration (FDA). 

The multidisciplinary approach is intended to cover all aspects of the complex problem of 

ensuring chair safety, both at the product level (to reconcile discrete safety assurance algorithms and 

continuous algorithms to ensure stability) and at the process level (to address domain requirements 

originating from computing, bioengineering and nursing). 
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Abstract

Medical device interoperability is still an issue. Standards exist only for specific areas like

HL7 and DICOM, or have not been widely adopted like ISO/IEEE 11073 except for the domain

information model at the semantic level. An approach that covers interoperability below the

semantics is proposed. It is based on Web services which are widely accepted outside the medical

device application domain. In particular the architecture is build on the upcoming Device Profile

for Web Services (DPWS). It is a collection of existing Web services specifications for service

discovery, interface description, event notification, and security. It is designed for resource-

constrained devices and thus seems to be suitable as a basis for medical device plug-and-play.



1. Introduction

Interoperability is defined as “ability of two or more systems or components to exchange information

and to use the information that has been exchanged” [1]. According to Lesh et al. [2] the interoperability

continuum distends from the least complex endpoint of physical interoperability to the most complex

of data interoperability. To achieve data interoperability not only the capability to exchange information

without an error has to be given, but also correct interpretation of the information to use it in an algorithm.

Benefits of medical device interoperability range from less development time for data-driven clinical

decision support algorithms or medical device safety interlocks to improved patient safety. Many initiatives

like the MD PnP Interoperability program [3] or IHE PCD [4] also address this problem.

The ISO/IEEE 11073 is a mature standard addressing the interoperability issue. Especially the provided

domain information model is used frequently and enables medical devices to exchange data on the

semantic level. The lower layers are complex and do not support current technologies like Ethernet or

TCP/IP.

MediCAN is a solution proposed by McKneely et al. [5] and is described as a vendor-independent

network architecture for interfacing medical devices based on proprietary protocols that are built on top

of UDP/TCP as well as CAN-Bus. There is no direct communication between the devices and the access

to the closed network of medical devices is controlled by a proxy server.

Another approach establishes interoperability between components of imaging systems built from

OEM-components using special purpose CANopen device profiles. There is also a CANopen based

application profile addressing acute care systems [6].

1.1. Service-oriented Architecture

The idea of service-oriented architectures (SOA) is coming from the business environment. The

operation and maintenance of computer systems there is complex and thus very costly. Each time business

processes change, new computer systems have to be integrated in the existing infrastructure. Often, these

new computer systems have new interfaces and an integration with old systems is problematic.

A SOA solves this problem by introducing a new standardized interface technology for all systems,

called “service”. All services are now communicating with their service interface in a common messaging
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Service ServiceService
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Figure 1. In a SOA all services communicate with each other over a common messaging back-
bone. The realization of this abstract backbone depends on the concrete SOA implementation. It
can be a network or a central communication server for example.
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Figure 2. The three primary roles in a service-oriented architecture with the interaction among
each other

backbone according to Figure 1.

A SOA does not dictate a specific technology, it is just a concept how to build such an architecture.

Figure 2 depicts that concept with the three primary roles: service provider, service registry, and service

consumer. A service provider publishes its service description to a service registry. Then, a service

consumer is able to find a corresponding service in the registry. Afterwards, the service consumer binds

to the service provider to use that service.

Web services are a realization of a SOA with Internet technologies [7]. The benefit of Web services

in contrast to other SOA solutions is that it uses well-known technologies and a vendor lock-in can be

avoided.

The fundamental and widely accepted standards on which Web services are build are SOAP [8] and

the Web Services Description Language (WSDL) [9]. WSDL covers the service description in the role

model, while SOAP is an XML-based messaging transfer format. Together WSDL and SOAP cover the

roles of the service provider and the service requester.

The registry role is not covered by these two standards, but by the Universal Description Discovery &



Integration (UDDI) [10] that specifies an interface for such a registry. However, the standard is not so

widely accepted as WSDL and SOAP. This is owed to the fact that the main idea behind UDDI to build

one global service registry failed.

1.2. First Architecture Concepts

The architecture developed in the FUSION project, funded by the German Federal Ministry of Educa-

tion and Research, is built upon Web services to realize a SOA. Two approaches have been explored: a

complete centralized and a more decentralized approach. The latter to overcome the problem of a single

point of failure and due to performance issues.

The centralized approach utilizes an enterprise service bus (ESB) to provide a common data-centric mid-

dleware structure for reliable transport and traceability of synchronous and asynchronous messages [11].

The distributed approach does not depend on a central structure, but more on standards from the Web

service domain. Lookups of services are handled by a UDDI server. Web services of a provider are

invoked directly by a consumer without sending the request/response through the ESB. Furthermore,

events are transported using the WS-Eventing specification: either point-to-point or via an event broker.

In most cases, point-to-point event notification will be used, if the event is safety critical and could not

be send via a centralized event broker. This approach yields more flexibility, less configuration effort,

and – by far the most important – communication between devices will not break down, even if one of

the basic service components crashes. With regard to semantic interoperability, both approaches employ

an XML vocabulary based on the ISO/IEEE 11073 domain information model for hemodynamic and

respiratory data as well as HL7 for ADT data.

The problem with both solutions – even if reduced for the latter one – is the usage of centralized

structures and hence the introduction of a single point of failure as well as scalability issues. Furthermore

some effort has to be expended for configuration of the medical devices with the result that no plug-and-

play feeling comes up.

For that reason, an architecture based upon current Web service standards is presented that is locally

de-centralized and only needs central components if communication over subnet boundaries is needed.

This concept is described in the following section.



2. Proposed Architecture

The architecture proposal for medical device connectivity leverages the upcoming Devices Profile for

Web Services (DPWS) standard [12] that defines services for discovery, interface description, messaging,

event propagation as well as secure information transmission. It is out of scope of the proposed architecture

to define the semantic side of interoperability. This can be handled using data models from mature

standards like HL7 or ISO/IEEE 11073.

DPWS – becoming an OASIS standard in June 2009 – is a minimal set of Web services specifications

for resource-constrained devices. It includes discovery and description of Web services as well as the

possibility for event propagation. The origins of DPWS are in the consumer electronics domain where it

is used in modern network printers or image scanners to allow plug-and-play. To sum up, DPWS achieves

the same ease of use for consumer electronics for Ethernet as USB does for serial connected devices. It

is pushed forward by Microsoft for future printer integration and consequently Microsoft Windows Vista,

Windows Server 2008, and Windows Embedded CE 6.0 R2 already have a native DPWS stack (called

WSDAPI) on-board.

The services of the proposed architecture are discussed in detail below.

2.1. Dynamic discovery

Web Services Dynamic Discovery (WS-Discovery) [13] is a service localization protocol and will be

standardized in the context of the DPWS standardization process. By default it operates in an ad-hoc

mode without any configuration. Therefor it uses a predefined multicast group to reach all services within

the same sub-network. Multicast is a transmission mode where the underlying network distributes the data

to all subscribed nodes. The discovery functionality is similar to the probably known discovery procedure

in SoHo (Small Office Home Office) firewall appliances or in media center systems that distribute music

and video in home networks. In the managed mode the discovery process uses a centralized component

called discovery proxy that caches all information. With this proxy the discovery process scales to a

larger number of endpoints since the usage of multicast is reduced to a minimum in contrast to the

ad-hoc mode.
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Figure 3. WS-Discovery sequence diagram for two discovery procedures: The service consumer
on the right searches for services, while the consumer on the left waits for announcements.

The decentralized nature of the ad-hoc mode is applicable to the application domain of medical devices,

since it avoids a single point of failure. It is important to have a robust discovery system in case of

network failures outside the currently interacting devices. Medical devices in an operation room for

example should function well in case of network failures outside their room. This scenario forbids a sole

centralized registry for discovery.

In WS-Discovery service providers announce themselves when they join the network. It avoids the

need for polling in service consumers for the same service periodically. With this feature it is possible

to automatically update lists of available services or directly respond in case a new service appears in

the network.

In Figure 3 two discovery procedures are shown. First, the service consumer on the left side is already

running while the service provider starts up. The service consumer receives the hello announcement of

that service provider and thus is able to directly start the interaction without the need for periodically

polling for new services. In the second discovery sequence with the service consumer on the right, the

service provider started before the consumer. Thus, the consumer missed the hello announcement and

must search for that service.

WS-Discovery is designed for use within a single subnet. The multicast announcements and search

requests do not scale very well, because all messages have to be sent to all WS-Discovery nodes in the

network. Also the specification restricts the usage to a single subnet. Thus, this specification seems to be
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Figure 4. Two different discovery layers: Within the same subnet services can be found
decentralized, while in the whole network a centralized scheme is necessary to go across subnet
boundaries.

impractical for use in enterprise or hospital networks. In such large networks it is much more efficient

to have a centralized component for discovering services.

On the one hand the reliability of the decentralized multicast discovery is required on the other hand

an enterprise scale discovery is required. An approach to solve this conflict is to use both variants in

combination with each other. For the managed mode WS-Discovery specifies a so-called discovery proxy.

Originally it is used to cache all available information from the local service providers and response to

search requests from service consumers within the same subnet. Instead of using this discovery proxy to

reduce multicast traffic in subnets it can be used as a central component to search for services hospital

wide – outside the current subnet. A benefit of using a WS-Discovery proxy server instead of a UDDI

server is that the discovery process is more consistent for the architecture.

The proposed feasible 2-layer discovery architecture [14] is shown in Figure 4. The WS-Discovery

compliant decentralized multicast discovery within a subnet is as robust as possible against network fail-

ures. It is sufficient, that a network connectivity between service provider and consumer exist. Practically

this is no restriction, since the two services cannot communicate further. To discover services in the

whole network it is necessary to query a centralized discovery proxy.

Different approaches are possible to reach the centralized discovery proxy. In [14] the DHCP protocol



is used to transfer the IP address of the discovery proxy server to the service consumers. DHCP offers

the possibility to add vendor specific data on the server side. Then DHCP clients are able to request this

data. Another approach [15] is to use the domain name system. Here, the clients query the name servers

for the IP address of the discovery proxy. The DNS based solution has the benefit of being easier to

implement platform independent and has to be configured only in one name server instead of all subnet

limited DHCP servers.

2.2. Event-driven Architecture Concepts

Web services started with typical request-response scenarios, where a client requests a service from the

Web service provider and gets a response. A typical example for this are use cases from travel agencies

where a flight and a hotel must be booked for a customer. Events are disregarded in this scenario.

In the medical application domain a lot of communication is event driven. For example, alarms were

sent and real-time data is transmitted. That means that publish-subscribe has to be supported in addition

to the typical request-response pattern for device control.

In IP-based networks two different solutions for publish-subscribe exists in general. The first one

uses a dedicated point-to-point connection for each subscriber; while the second solution utilizes the

functionality from the underlying network using UDP multicast.

For the first solution with n point-to-point connections for n subscribers different Web services speci-

fications exist that were pushed by different companies: WS-Eventing (Microsoft) [16], WS-Notification

(IBM) [17], and WS-Events (HP) [18]. In March 2006 they released a joint white paper to harmonize

the existing specifications [19]. For event propagation it results in a new specification called WS-

EventNotification that builds on WS-Eventing and has to be specified in the future. It seems to be

best practices to use WS-Eventing. It will also be referenced in the DPWS standard. In WS-Eventing the

event source can delegate the management of subscriptions to and distribution of events to another Web

service. This is practical for scenarios where the event source cannot or should not handle the list with

all subscriptions.

The second solution is based on the multicast functionality from the underlying network. In this case,

messages are sent via UDP multicast, which results in only one message transmission from the publisher

to the multicast address. The distribution to the recipients is managed by the network routers. Multicast is



designed from the group up for such distribution scenarios that is why it scales better than point-to-point

transmission. The required specification to employ multicast messaging in Web services is SOAP-over-

UDP [20] which is also included in the OASIS standardization process of DPWS.

2.3. Security

For sensitive data and control commands information security is important. In the context of medical

device connectivity data integrity, confidentiality, availability, and non-repudiation is interesting for risk

management.

Data integrity refers to the validity of data. The integrity can be harmed by accident or maliciously.

Confidentiality means that the data is only accessible to those that are authorized to have access.

Availability stands for a system that has all information available that are needed to serve its purpose. In

the considered context of medical device interoperability, it is important to have a correctly functioning

communication channel. Non-repudiation is required to ensure that a party in a dispute cannot repudiate

a message that it sent out. This might be interesting for control commands.

Information security can be achieved on transport layer or at message level. For transport layer security

a secure channel is established for end-to-end communication. This secure channel provides data integrity

and confidentiality as long as both endpoints authorize each other at the beginning. HTTPS is an example

of transport layer security that uses the TLS (Transport Layer Security) protocol which is the successor

of SSL (Secure Socket Layer) [21].

For message level security each message is secured individually instead of sending unsecured messages

through a secure channel. The benefit of message level security is that the message can be passed through

insecure nodes. Furthermore, non-repudiation is achieved on the message level utilizing digital signatures.

In this case the signed messages must be logged for later proof of message transmission However, the

message level security is more complex in contrast to the transport layer security.

For transport as well as message security a public key infrastructure (PKI) is a basic requirement for

medical device authentication. A centralized approach with user name and password is inapplicably. It

contradicts to the plug-and-play nature, introduces a single point of failure, and nevertheless requires a

certificate to authenticate the server to the clients.

Availability for Web services highly depends on the underlying network. Ethernet is a best effort



network that supports prioritization. Anyhow, a network node with unsocial behavior might disturb other

data transmission and important data packets might get dropped in overloaded switches. For hard real-

time constraints proprietary Ethernet modifications exists. These are not compatible with Web services.

A tradeoff between normal Ethernet and proprietary solutions can be a fair network switch [22] that

equally shares the available data rate between sending nodes. Thus the effect of unsocial nodes can be

reduced and a minimal data rate can be guaranteed.

3. First Feasibility Evaluations

First feasibility evaluations have been made with demonstrator programs on standard computer hard-

ware. For WS-Eventing a few performance measurements were made to gain experience for multi-

ple point-to-point transmissions. They were done with the DPWS toolkits WS4D-gSOAP and WS4D-

JavaME [23]. The results are summarized in Table 1.

Table 1. Exemplary performance results for event distribution according to WS-Eventing for
different toolkits

Event source Listener Total delay

WS4D-gSOAP 1 × WS4D-gSOAP 3.0 ms

WS4D-gSOAP 2 × WS4D-gSOAP 5.7 ms

WS4D-gSOAP 1 × WS4D-JavaME 3.8 ms

The performance measurements showed for a WS4D-gSOAP device, that for one WS4D-gSOAP

listener it takes 3.0 ms to transmit the event and receive an acknowledgement. For two listeners the

event is delivered after 5.7 ms. This time does not only depend on the devices implementation it also

depends on the listeners. For one Java listener implemented with the WS4D-JavaME toolkit it took 3.8 ms

instead of the 3.0 ms with the WS4D-gSOAP listener.

Table 2. Serialization overhead in WS4D-gSOAP for normal messages and messages with a
digital signature for different payloads on PC hardware

Payload Normal
messages

Signature w/o
certificate

Signature with
certificate

1 Integer 1.3 ms 6 ms 8 ms

50 Integer 2.4 ms 12 ms 14 ms



For measurement of the overhead especially for message level security the WS4D-gSOAP toolkit was

used. It is an add-on for the gSOAP toolkit [24] that has support for digital signatures. Table 2 summarizes

first results for the serialization time in different scenarios. From the second column it can be concluded

that the overhead for the SOAP envelope and the DPWS compliant SOAP header takes 1.3 ms. The

serialization of an additional integer takes merely 22 µs. In the third column the whole body of a SOAP

message is signed according to WS-Security with a 1024 bit RSA key and the SHA1 hash algorithm. The

certificate for the RSA key is not included because it is already known to recipient in this scenario. An

additional integer in a signed SOAP message takes 122 µs which is 5 to 6 times the overhead according

to the unsigned message. This overhead solely results from the SHA1 hashing in the signature procedure.

From the last column it can be concluded that an embedded certificate leads to an overhead of 2 ms for

serialization and hashing.

Van Engelen et al. [25] did further performance measurements concerning security overhead. They

compared HTTPS transmissions with symmetric and asymmetric message level security.

4. Results

A concept for a plug-and-play architecture was introduced. It is build on current Web services standards

and covers the technical layers of interoperability. It is an infrastructure architecture and thus semantics

is out of scope and existing standards should be used. To discover other devices an enhanced version of

WS-Discovery is used to offer the possibility to reach services outside the current sub-network. For event

propagation two different solutions WS-Eventing and SOAP-over-UDP multicast coexist with different

advantages. Information security is covered at the transport layer as well as at the message level. First

performance tests showed a timing overhead that results from the use of Web services. If security is

needed due to safety reasons, this adds of course an additional overhead that cannot be avoided.

5. Discussion

In the medical application domain the proposed DPWS-based architecture seems to provide a basis for

device connectivity. It is designed to achieve full plug-and-play capabilities with devices from different

vendors. It runs on resource-constrained devices as well as on high-end computer systems. Web services



in general are one of the widest accepted building blocks for a SOA that probably has the most tool

support. The reasons for this are supposably its platform and programming language independency in

combination with the use of well-known Internet technologies such as HTTP.

Even, if there some reservations concerning the performance of Web services for medical device

connectivity. The performed measurements show that they could be used for communication even if low

transmission latency is needed.

For event and real-time data propagation SOAP-over-UDP multicast should scale better since multicast

was designed for such purposes in contrast to WS-Eventing that tried to add the required functionality

on top of existing Web services standards. The exemplary measurements for WS-Eventing support that

assumption. The delay depends on the listener implementation and the scheduling strategy of the sender.

From a devices perspective the listener implementation can not be influenced. The sender is able to inform

the listener in sequential order or concurrently. When transmitting the messages in sequential order the last

subscribed listener will be informed with a large delay. In contrast to that a programmatically concurrent

transmission is more resource expensive, since multiple threads are required.

Also the UDP multicast has a drawback. It does not support a reliable transport. It is assumed that all

transmitted data is received by the listener. Thus, the decision between WS-Eventing and SOAP-over-UDP

multicast is not a Web service specific decision.

Anyhow, the major problem in both cases is: What to do with failed transmissions? Queue them and

try it x minutes later or just fire and forget an event? All these different aspects lead to the conclusion

that it depends on the specific event (i.e., alarm or real-time data) which solution might be more practical.

In case of information security this decision is even more complex. Van Engelen et al. [25] propose to

use HTTPS whenever it is possible since it performs much better then message level security. It is only

possible to use HTTPS in conjunction with WS-Eventing, because of the nature of multicast transmissions

that require message level security.

A de-centralized plug-and-play architecture like the proposed one might have the best chances to

smoothly migrate into the existing infrastructure since it does not require complex components – two

modern devices are sufficient.
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Abstract

Medical devices historically have been monolithic units – developed, validated, and approved by regulatory authorities
as stand-alone entities. Modern medical devices increasingly incorporate connectivity mechanisms that offer the potential
to stream device data into electronic health records, integrate information from multiple devices into single customizable
displays, and coordinate the actions of groups of cooperating devices to realize “closed loop” scenarios and automate clinical
workflows.

In this paper, we describe a publish-subscribe architecture for medical device integration based on the Java Messaging
Service. We provide a overview of a model-based development environment that we have built for rapidly programming
device coordination scenarios. We assess the extent to which this framework is capable of supporting and complementing
the Integrated Clinical Environment that has been proposed by the Medical Device Plug and Play Interoperability Project The
implementation of this framework is free available and open source. One of the primary goals of the framework is to provide
researchers in acadaemia, industry, and government with an open test bed for exploring development, quality assurance, and
regulatory issues related to medical device coordination.

1 Introduction

Historically, medical devices have been developed as monolithic stand-alone units. Current Verification and Validation (V&V)

techniques used in industry primarily target single monolithic systems. Moreover, the US Food and Drug Administration’s

(FDA) regulatory regimes are designed to approve single stand-alone devices.

This state of affairs stands in direct contrast to the pervasive integration and cooperation among computing devices in our

world today, and it is quite clear that numerous clinical motivations exist to deploy systems of integrated and cooperating

medical devices. It is anticipated that medical systems will undergo a paradigm shift to provide functionality such as device

data streaming directly into patient electronic health records (EHRs), integration of information from multiple devices in a
∗Author’s current affiliation: University of Nebraska, Lincoln
†Corresponding Author.
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clinical context (e.g. hospital room) into a single tailorable composite display, automation of clinical workflows via computer

systems that control networks of devices as they perform cooperative tasks, remote-controlled/robotic surgery, and even auto-

matic construction and execution of patient treatments. Indeed, companies including Cerner, CapsuleTech, Philips/Emergin,

Sensitron, and iSirona are bringing to market infrastructure that facilitates streaming of device data into medical records. In

addition, large-scale research projects such as the Medical Device “Plug and Play” Interoperability Program [9] (MDPnP),

funded by the U.S. Army’s Telemedicine and Advanced Technology Research Center (TATRC), are developing standards and

prototypes for systems of cooperating devices.

Numerous challenges presently exist that are preventing this vision of deeply integrated and highly beneficial medical sys-

tems from being realized. These include: (a) lack of domain knowledge and infrastructure on the part of academic researchers

as they seek to develop appropriate V&V technologies, safety-critical system components, and programming models, (b) lack

of awareness in industry of formal modeling and verification technologies that could tackle the problems of compositional

construction of highly interactive safety-critical systems, and (c) lack of realistic applications of cutting edge V&V and pro-

gramming technologies in the device integration space that might provide science-based inputs for guiding the formation of

new regulatory policy. We believe that only a broad-based community effort of academics, industry, and regulatory officials

can solve these interrelated challenges.

Progress must be made on a number of fronts to address the challenges described above.

• Which middleware and integration architectures are candidates to support device integration across multiple interaction

scenarios?

• Which programming models are suitable for rapid development, validation, and certification of systems of interacting

medical devices?

• What V & V techniques are appropriate for compositional verification of envisioned medical systems, and how can the

effectiveness of the techniques be demonstrated so as to encourage adoption among commercial vendors?

• Can existing regulatory guidelines and device approval processes that target single devices be (a) extended to accom-

modate component-wise approval of integrated systems and (b) established in a manner that encourages innovation

and rapid transition of new technologies into the market while upholding a mandate of approving safe and effective

technologies?

• What interoperability and security standards are necessary to encourage development of commodity markets for devices,

displays, EHR databases, and infrastructure that can support low cost deployment of integrated systems and enable

flexible technology refresh?

To facilitate industry, academic, and government exploration of these issues, we are developing an open Medical De-

vice Coordination Framework (MDCF) for designing, implementing, verifying, and certifying systems of integrated medical
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devices.

Below we list the design goals for our MDCF.

1. Provide distributed networking middleware infrastructure that enables devices/displays/databases from different vendors

to be integrated with minimal effort.

2. Provide payload capabilities that support common data formats used in the medical device and medical informatics

domains.

3. Provide an architecture that enables tailoring, integrating, and transforming device information streams.

4. Support the requirements of realistic device integration contexts.

5. Develop an architecture whose performance and application-level programmability scales gracefully as the number of

integrated devices and computational resources (e.g. server machines) increases.

6. Provide basic functionality needed for reliability including options for guaranteed message delivery, logging/auditing,

and persistent storage of messages.

7. Support a programming model that makes it easy to assemble new functionality from building blocks.

8. Use infrastructure that is freely available and open source (to enable academic research).

9. Use standards-based frameworks that are supported by enterprise-level implementations that can provide suitable per-

formance in a realistic enterprise setting.

10. Because it will be difficult for academics to obtain real devices, support both real and simulated devices.

11. The architecture should enable health care providers to mix and match components from different vendors best suited

to meet patient needs, without undue concern for the safety of the resulting system. This should be done in a way that

assures a level playing field such that vendors compete on the basis of features and performance.

12. Understand the limitations and safety implications of the architecture to establish risk boundaries.

13. Ultimately, we aim to support the capabilities similar to those called for in the MD PnP project by providing an imple-

mentation of a notion of Integrated Clinical Context or similiar capabilities but realized in a component-based integration

environment supported by model-driven development [14].

In previous work [7], we overviewed the MDCF, discussed multiple clinical device integration scenarios that it aims to

support, and reported on experimental studies that described the performance of the MDCF under computational loads that

are similar to what might be encountered in realistic deployments. This paper describes in greater detail the architecture of the

MDCF and a MDCF-specific environment for component-based model-driven development of device coordination/integration

scenarios. The specific contributions of this paper are as follows:
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• Describe a device coordination framework built on top of an open standards based middleware (the Java Messaging

System).

• Describe an architectural layer built on top of JMS that provides extended functionality for robustly managing the

interaction of medical devices, and which supports a model based programming model.

• Explain a model-based development process for the development of device coordination scenarios and components. We

present an Eclipse-plugin based on our Cadena tool [2] which directly supports and aides the development of medical

device coordination scenarios.

• Summarize experiments which indicate that the architecture offers satisfactory performance for most integration con-

texts.

• Describe the open-source infrastructure that is now available for use building with and ontop of the MDCF (Including

JMS providers, mock devices, example device drivers and example scenario components.)

We are submitting this paper to HDMCSS in order to directly engage medical professionals and systems builders focused on

integrating medical devices. We hope that the MDCF can be used to rapidly prototype integration systems geared towards

a high level of reliability and patient safety. These prototypes in turn would provide both system designers and medical

professionals with insight concerning potential issues systems of medical devices are likely to face. In addition, the MDCF

architecture in combination with its development environment serves as an example on how rigorous development practices

could be automatically enforced. The contents of this paper should not be interpreted as an endorsement by the FDA of

any particular technology, software infrastructure, or direction for regulatory policy. However, we expect experience with

frameworks like the one presented here to provide science-based input to ongoing regulatory policy and standards development

efforts. We encourage additional experience building efforts with this infrastructure by others in the software engineering and

medical device communities to help shape the vision and realization of systems that we believe will be central to future health

care enterprises.

The MDCF infrastructure is available for public download at [8].

2 JMS Overview

2.1 MOM Foundation

The design of our core architecture is driven by practical realities of the clinical device integration, such as (a) flexible,

dynamic information flow (frequently needing privacy), (b) heterogeneous systems, mechanisms, and needs, (c) many listen-

ers, and many sources, and (d) time-critical, scalable performance. A message-oriented, publish-subscribe architecture with

decentralized hubs, dynamic queuing, reliable message passing, and enterprise-grade deployment fits these criteria nicely.

We have found it convenient to consider message-oriented-middleware (MOM) based on the Java Message Service (JMS)
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Figure 1: JMS primary objects

Figure 2: JMS destinations

standard. JMS satisfies the criteria (a-d) above, while providing low-cost, open-source implementations for low barriers to

entry and easy integration into research environments. In addition, there are multiple commercial enterprise-quality JMS

implementations such as those found in IBM’s WebSphere and Oracle’s AQ products JMS provides point-to-point or pub-

lish/subscribe topologies reliable or unreliable message delivery and high performance It enables distributed communication

which is “loosely coupled, reliable, and asynchronous.” In our application environment, its ability to pass simple data types

as well as complex objects enables a clean integration with structured text standards such as HL7, as well as complex objects

for seamless framework control .

Figure 1 presents the primary objects involved in JMS publish/subscribe communication. When a client wishes to originate

a connection with a JMS provider, it uses the Java Naming and Directory Interface (JNDI) to locate a Connection Factory

that encapsulates a set of connection-configuration parameters for the provider. The client then uses the Connection Factory

to create an active Connection to the provider (typically represented as an open TCP/IP socket between the client and the

provider’s service daemon). In our architecture, clients will do all of their messaging with a single Connection. A Connection

supports an Exception Listener that will be called when an connection fails (which we will use to handle situations in which a

device unexpectedly disconnects in the middle of an activity). Once a connection is established, a client uses the connection

to create a JMS Session.
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Figure 3: JMS message format

Figure 2 illustrates that a JMS destination is an abstract entity to/from which a client publishes or receives a message.

Destinations are located/retrieved via JNDI calls. A session serves as a factory for creating MessageProducers or Message-

Consumers for a particular destination. To send a message, a client requests a session to create an empty message (of a

particular type supported by JMS), the message contents are filled in, and a MessageProducer is called to send the message.

To receive messages asynchronously (which is the method we will use in our framework), the client creates an object (a

handler) that implements the MessageListener interface and sets that object as the listener for a particular MessageConsumer.

A session is a single-threaded context designed for serial use by one thread at a time. It conceptually provides a thread

for sending and delivering messages for all message producers/consumers created from it, and it serializes delivery of all

messages to all of its consumers.

Figure 3 illustrates that the abstract structure of a JMS message is divided into three parts: a header containing values

used by both clients and providers to identify and route messages, a properties section containing application-defined or JMS-

provider-defined key-value pairs that provide additional metadata about the message, and the payload of the message. A

number of these fields such as Destination, DeliveryMode, MessageID, Timestamp, and Redelivered are not set by the client

but by the infrastructure layer as a message is transmitted. We use the Timestamp field to gather performance information

reported on in Section 5. Other fields such as CorrelationID and ReplyTo are set by the client to guide responses to messages.

We use CorrelationID to support the situation where we have multiple integration scenarios running on the same server.

There are a few base administrative destinations (communication channels) that are shared among all running scenarios; each

scenario sets a unique correlationID and watches for responses from the scenario administrator using the same ID.

Property values are set by the client prior to sending a message. When constructing a message consumer, a client can

specify a filter expression that references fields in message headers and properties; only messages that pass the filter are

delivered to clients. Thus, the primary purpose of message properties is to expose attributes for filtering. We currently use

filtering only on header fields, but the property mechanism provides significant flexibility for enhanced functionality moving

forward.
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Figure 4: High Level MDCF architectural diagram

JMS provides a number of different formats for message payloads. We primarily use text messages (e.g. HL7 and most

other data) and object messages (e.g. for DICOM images) (see Section 5).

3 Architecture

3.1 MDCF Components

Figure 4 contains a high level overview of the modules that compose the MDCF. The figure denotes that two different types

of coupling are in place between the various modules. Two modules with ’JVM Coupling’ simply means that those modules

communicate with standard Java method calls, and that they must live in the same JVM. Two modules with ’JMS Coupling’

communicate with each other via the JMS message bus. Two modules with ’JMS Coupling’ need not exist in the same JVM.

3.2 Message Bus Modules

The modules in Figure 4 are grouped according to their general functionality. The JMS message bus (JMS Provider) and

device relavent extensions (Topic Management Modules) provide an abstraction of the JMS topic management interface and

abstract access to the JNDI. As mentioned in Section 2 JMS provides a publish subscribe framework where JMS clients either

publish to or subscribe to ’global topics.’ The Topic Management Modules hide the global nature of JMS publish / subscribe

and instead expose the notion of virtual inter-component channels (see Figure 5). A MDCF scenario component then only

communicates to other scenario components via these virtual channels. There are 2 main benefits to this approach; 1) Human

and automated reasoning about information flows at the scenario level are greatly simplified and 2) the MDCF can take

advantage of the performance features present in the underlying JMS provider (e.g. If many different clinician terminals are

running a scenario that renders data from the same device then the MDCF is smart enough to tap those terminals into the same
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Figure 5: The MDCF hides ‘global‘ topics from the programming model. JMS topics are instantiated for each component output port.
The MDCF automatically subscribes a component’s input ports in order to instantiate a given scenario. Management data
flows are rendered in blue and medical data flows are black.

underlying global topic for information from that device instead of generating a message for each terminal.) In addition, topic

subscription management can be abstracted away from the ’business logic’ of the MDCF component, allowing the developer

to only concern him or herself with the actual data being published or received from a virtual channel.

The Topic Management Modules manage two classes of JMS topics; management topics and medical data topics. The

management topics are used by the various MDCF modules to communicate with devices and operator consoles. Management

topics are never used to transport medical data. Medical data topics take on the opposite role; they are exclusively used to

communicate medical data between devices. This partitioning is in place to support the MDCF programming model (where

the scenario developer should not be concerned with low level connection management and component lifecycle) and possible

future efforts towards automatic verification of integration scenarios (since information pathways are explicitly partitioned

into these two categories, analysis of the functional correctness of scenarios would need not be concerned with management

data).

3.3 Operator Services Modules

The AdminConsoleService and ClinicianConsoleService provide the actual business logic for the various remote operator

consoles. Each service manages the authentication of operators at remote consoles and the interactions of those operators with

the other modules of the MDCF.

The various consoles at the bottom of Figure 4 could represent either Clinician or Adminstrative consoles. These consoles

are simply a remote graphical frontend to the logic provided by the console services. A Clinician Console permits a medical

practitioner to request that a given integration scenario be instantiated with an operator specfied set of devices. If specified by

the scenario, the console may display data output by that scenario.
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The Adminstrative Console is somewhat more complicated. This console allows IT staff to configure, install and maintain

different aspects of the MDCF. The MDCF requires that devices are registered (in the DeviceDB) before they can connect.

Likewise, scenarios and software components must be installed into the MDCF prior to use. The Adminstrative Console acts

as a graphical frontend to the AdminstrativeConsoleService. These two modules act in concert to provide sanity checks on

the various tasks an administrator may perform. (Verifying version compatibility between the components and scenarios,

as well as validating digital signatures.) The Adminstrative Console also provides some monitoring facility which allows

adminstrative staff to observe the health and activity of the running coordination scenarios.

3.4 Device Integration Management Modules

The DeviceManager manages the lifecyle of connected and connecting devices. The DeviceManager uses the management

topics to communicate with devices that are connected or connecting. During this communication the DeviceManager will

query the remote device for accounting information (i.e. what type of device?) and periodically ’ping’ the remote device to

determine the health of the device’s connection. The DeviceManager also provides information w.r.t the state of connected

devices to the rest of the MDCF (e.g. Is device x connected? or Is the device y responding to pings?) The DeviceManager

uses information in the DeviceDB to determine if a given device is allowed to connect to the MDCF and what sort of security

level the device is.

The ScenarioManager is responsible for instantiating and tracking integration scenarios. The ScenarioManager uses

scenario specifications stored in the ScenarioDB to determine what type of devices and components are required for a given

scenario and then communicating the necessary information via the management topics to the requisite devices.

Scenarios can include purely software components in their specification (such as an alarm generator). Software compo-

nents are instantiated per-scenario (each scenario gets its own copy of a component). If the ScenarioManager determines that

a software component is required in a given scenario, then the ComponentManager will retrieve the component bytecode from

the ComponentDB, instantiate it, connect it to the JMS, and then place the new component in the ComponentHost. When a

scenario is finished, the ComponentManager is responsible for disposing of the component and tearing down any connections

to the JMS that component had.

4 Programming Model

We anticipate that device integration scenarios will be implemented either by developers at a company that supplies an in-

tegration framework (who would find it advantageous to build up a collection of reuseable components or product lines to

serve multiple customers) or by on-site clinical engineers (who may not be familiar with underlying middleware and network

concepts). Thus, we have developed a component-based programming model that abstracts away the details of the lower-level

infrastructure and facilitates rapid assembly of integration scenarios from reusable components (Goal 7).

The component model supports typed input/output event (asynchronous) ports with multiple categories of components,

including data producers such as devices, data transformers that filter, coalesce or transform data streams, and data consumers
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Figure 6: ICU scenario components

that represent displays or data repositories. Some components may be both data producers and consumers, such as devices

that may be controlled by others or health information databases.

The MD PnP Integrated Clinical Environment (ICE) and ICE Manager (ICEMan) standards provide a foundational ar-

chitecture describing the safe interaction of dynamically-assembled components (in keeping with the plug-and-play motif),

clearly delineating the various roles within the system [14]. Each device provides a device description to the ICE-defined

architecture, detailing the type and frequency of the data/services being provided, and QoS desired. The MDCF complements

the ICE standard in several respects - providing a standards-based middleware to support the ICE, proposing a component

model for programming device coordination behaviors, and development of a model-based programming environment for

rapid assembly of device coordination scripts - while providing a less-developed device model and no support for dynamically

adding devices (component relationships are statically analyzed).

While providing a more abstract/general component model than the ICE requires, our component model also provides a

natural interaction with systems conforming to the ICE standard. For example, elements from a broader MDCF environment

can map easily onto the MEDICAL DEVICE, ICE SUPERVISOR, and ICE NETWORK CONTROLLER components while

providing a more detailed view of the medical device ecosystem. Furthermore, MDCF can reduce significantly the overhead

of producing compatible, correct systems through extensive code generation capabilities.

We have built an integration scenario development environment in our Cadena framework [2]. Cadena provides component-

based meta-modeling that enables us to define a domain-specific language of components for building device integration sce-

narios. Given a meta-model of the component language, Cadena generates a component interface editor that allows one to

define component types and a system scenario editor that allows one to allocate and connect component instances to form an

executable system. Cadena’s rich type system allows one to define different type languages for component ports that capture

specific properties of data communicated between components. Cadena provides a notion of “active typing” that continuously

checks for type correctnesss as a system scenario is constructed in the graphical scenario editor.

Figure 6 shows a device integration scenario built in Cadena’s scenario editor. Components corresponding to medical

devices such as blood pressure and cardiac monitors appear on the right of the figure. Connections between components
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represent publish/subscribe relationships.

We have built a Cadena plugin that provides facilities akin to a very light-weight version of the CORBA Component Model

(CCM). Given a Cadena type signature for an MDCF component, autocoding facilities generate a Java skeleton/container for

the component. The skeleton contains all logic required by the framework to enable the component implementation to connect

to the framework as a framework component (this includes automatically generating the logic for subscription assignment and

publishing logic). The component developer then only needs to implement the “business logic” – the code that processes

medical information (such as a data transformer or rendering routine) or device access logic (interaction with actual device

sensor hardware).

Similar in spirit to CCM’s deployment and configuration infrastructure, the plugin can also analyze a Cadena coordination

scenario model and generate a MDCF specification file. The MDCF specification file consists of XML that describes the

named component graph. The logical name of each component instance and the type of the component is present, as well as

what inter-component connections exist. This information is used by the MDCF to locate the appropriate MDCF component

class files and instantiate the coordination scenario.

We believe that the use of sophisticated architectural types and component encapsulation can help in constructing assurance

cases for integration scenarios. Use of component technology helps prevent unanticipated interference between components

by insuring that components only interact through explicitly declared ports. The strong typing in the Cadena modeling

environment reduces the possibility of programming errors.

4.1 MDCF Meta-Language

As mentioned in section 3.2 and section 4 the MDCF extends JMS with the notion of abstract inter-scenario component

channels. The MDCF meta-language encapsulates the features of this abstraction in a way that allows scenario developers to

design both coordination components and scenarios composed of those components within the Cadena MDCF programming

environment. The meta-language defines the programming model of the MDCF. What follows is an informal description of

the MDCF meta-language.

• JMSMessage - An ’abstract’ message type that can be transmitted over JMS. (e.g. this is an ’umbrella’ type for the

TextMessages, ObjectMessages, ByteMessages, etc. described in Section 2)

• JMSChannel - An interface type. A message transport between exactely two end points: a message publisher and a

message consumer. The JMSChannel exclusively transports JMSMessages.

• JMSPublishPort - Describes a ’publication port’ which can be associated with MDCF components. Data can only leave

a component via a JMSPublishPort and never enter the component.

• JMSSubscribePort - Describes a ’subscription port’ which can be associated with MDCF components. Data can enter a

component via a subscription port, but will never leave a component via one.
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Figure 7: The Cadena MDCF module view

• DriverProfile - Components of this kind represent medical devices. DriverProfiless can have any number of subscrip-

tion and publication ports. In the future we anticipate placing a restriction on the types of messages a DriverProfile

component may subscribe to (e.g. device commands.)

• DataTransformer - Components of this kind represent software components that could be used in a coordination sce-

nario. Components of this kind also allow any number of input and output ports.

• DataSink - A DataSink component only permits subscription ports. Typically components of this kind would be heads

up displays or health informatics systems. Restricting this kind to only allow subscription ports permits lightweight

analysis of scenario descriptions to determine what class of regulatory oversight a given scenario may fall under.

4.2 Cadena MDCF Module Editor

The Cadena MDCF meta-language defines the kinds (type families) of scenario components that the scenaro developer is

permitted to build. The Cadena MDCF uses the meta-language to generate a MDCF specific module editor. MDCF component

developers use the module editor to define the type-signature for a MDCF module. (Figure 7 is a screen shot of the module

editor with several MDCF component signatures open.)

Component developers refine the component kinds from the meta-language by naming a component signature, explicity

specifying what ports that component signature will have, the names of those ports, and the types of interface those ports will

use. Constraints on the number and types of ports present in the meta-language are actively enforced by the module editor

(i.e. a component type based off of the DataSink kind can not have any ports where data is published.)

4.3 Cadena MDCF Scenario Editor

The Scenario Editor allows developers to combine modules defined in the module editor into cohesive coordination scenarios

by connecting ports on module instances via channel instances. The plugin actively type checks scenarios as they are being

constructed in the scenario editor. For example, developers will not be able to connect two publication ports together or two
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Figure 8: Simple Alarm propagation scenario in the Cadena scenario editor

subscription ports together. Constraints defined in the meta-language and module editor are actively enforced by the scenario

editor.

4.4 Building a coordination scenario - start to finish

In order to make the development workflow more concrete, we describe the development of a simple coordination scenario,

from the definition of the requisite modules to the assembly of the scenario from those modules. In this example we imagine a

simple coordination scenario where patient heart rate information is analyzed, if the heart rate drops below a certain threshold

then an alarm is generated and forwarded to a display at a nurses’ station. We also assume that modules for both the heart

rate monitor (HRMon) and alarm display (AlrmDisplayPanel) have been implemented and exist as component type signatures

in the development environment. In order to realize the described scenario the developer must define a component type

for the alarm generator (HrAlrmGen), implement its logic, and then combine all three components into a useable scenario

specification.

The type signature for HrAlrmGen is straightforward. HrAlrmGen will be a software component that subscribes to one

data stream (heart rate information) and publishes one data stream (alarm events.) The most appropriate kind from the meta-

language to refine for this component type is DataTransformer, which will permit this signature to have both publish and

subscribe ports. For clarity, we name the subscribe port heartRateIN and set its type to JMSChannel. Likewise, a publish

port will be defined called heartRateAlarmOUT which also has the type JMSChannel. This completes the type signature for

HrAlrmGen and the code skeleton can be generated. The plugin will place all of the necessary ’JMS plumbing’ into the source

code that is generated. Primarily, this means that the connection logic for a ’JMS Sender’ (heartRateAlarmOUTSender) and a

specialized message handler (heartRateINListener) will be present in the new source file. The developer simply needs to flush

out the sender with the relevent ’business logic.’ See Listing 1 for an excerpt of this code including the implemented logic.

When all necessary module type signatures are defined the developer can use the scenario editor to specify the scenario.

In this case, we place an instance of each of our component types into a fresh scenario. Next, connections between the ports

need to be created. In this case, two JMSChannel are used. The first between the HRMon and the HrAlrmGen and the second

between the HrAlrmGen and AlrmDisplayPanel. See Figure 8.
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p u b l i c c l a s s HrAlrmGen ex tends TransformerComponent{
. . .

Sender hear tRateAlarmOUTSender ;
. . .

c l a s s h e a r t R a t e I N L i s t e n e r implements M e s s a g e L i s t e n e r {
p u b l i c vo id onMessage ( Message message ){

TextMessage tMsg = ( TextMessage ) message ;
t r y {

S t r i n g msg = tMsg . g e t T e x t ( ) ;
i n t in tMsg = I n t e g e r . p a r s e I n t ( msg ) ;
/ / b e g i n b u s i n e s s l o g i c
i f ( in tMsg < 20){

hear tRateAlarmOUTSender . sendMessage ( ”ALARM HR < 20 ” ) ;
}
/ / end b u s i n e s s l o g i c

} ca tch ( JMSExcept ion e ) {
/ / TODO Auto−g e n e r a t e d c a t c h b l o c k
e . p r i n t S t a c k T r a c e ( ) ;

}
. .

Listing 1: HrAlrmGen component source excerpt with ’business logic’

5 Experiments and Performance

In this section, we summarize the experiment results previously reported in [7]. These experiments aim to show how the

MDCF might support the following clinical contexts in which device integration is used (Clinical Device Integration Contexts

- CDICs).

Two categories of experiments were designed to evaluate the viability of the framework: baseline experiments and clinical

scenario experiments. Baseline performance experiments use simple producer/consumer configurations to measure the raw

performance of the framework as it propagates data representative of clinical contexts. CDIC experiments use device/display

component configurations that correspond to the clinical integration contexts presented in [7] (e.g. operating room, ICU ward,

and alarm forwarding) to assess the ability of the framework to support typical usage modes.

Three categories of data were considered in our experiments: device data (point data and streaming data from monitoring

devices), alarm events (relatively infrequent anomaly events published by devices), and medical informatics data (relatively

infrequent and large data sets corresponding, i.e., to patient record data, drug dosing information, and medical images).

Parameter settings (i.e the rates at which device data are published) are set to account for perceived worst case assumptions

(maximum system requirements). For example, given a source device such as an electrocardiograph, a data update rate of

once every 50 ms is considered frequent enough for a physician’s data display to appear as if the data arrive in real time, so

the data transfer and display process will not affect the quality of the associated clinical assessment. Other types of sensor

data (i.e. blood pressure, heart rate, or blood oxygen saturation) can arrive much more infrequently. In our experiments, we

will simply assume that devices publish information at a minimum interval of once every 50 ms. Low latency is important for
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device and alarm data, but less so for informatics data.

Tests were performed on a single server representing the anticipated minimum machine configuration likely to be en-

countered in an enterprise-grade hospital information system (HIS) setting. We used a Sun Fire X4150 server with dual 2.8

GHz quad-core Xeon processors, 8 GB of RAM, a local 250 GB hard disk, and a gigabit Ethernet connection to the network

fileserver. The server runs Linux 2.6.23, Java 1.5.0 13-b05, and OpenJMS 0.7.7-beta-1. OpenJMS was configured for non-

persistent messaging unless otherwise noted. We observed that the current openJMS internal software architecture produced

strongly asymmetric results; we expect other JMS implementations to provide more balanced performance. All results were

averaged over multiple runs.

5.1 Baseline Performance

These experiments were designed to measure the throughput of the framework for single-step propagation (from a data pro-

ducer to data consumer) given different types and sizes of clinical data. Performance was measured as a function of the

numbers of producers/consumers under different connection topologies (fan-in/fan-out of producer/consumer relations).

5.1.1 Data Types and Connection Topologies

Three types of data were considered: simple event notifications, Health Level 7 (HL7) messages, and DICOM data.

Simple Event Notifications: These support the alarm notification scenarios (little or no payload), control instructions such

as the X-ray activation (workflow automation examples) as well as many forms of device data such as remote heart rate

notification (small payload). To simulate messages of this type, we use JMS ByteMessages with a payload of 10 bytes.

HL7: Health Level 7 is a messaging standard for the electronic exchange of medical information. HL7 messages use a text

format (frequently XML-based) to structure medical data, health record queries, and data from health records. Although

theoretically unlimited in size, these message typically range between several hundred and several thousand bytes. Our base

experiments use three sample HL7 messages from the CDC Immunization Record EXchange (iREX) project [5], where

messages range in size from 313 bytes to 4312 bytes. The small 313-byte message is an HL7 patient vaccine record query

message. The medium 2227-byte message contains a fragment of a patient record that notes adverse reactions to vaccinations

(a VAERS record). The large 4312-byte message is also a VAERS record, but with more vaccination events noted.

DICOM: The DICOM image exchange and storage format supports high resolution digital images tightly coupled with patient

information. For instance, a DICOM file or message will typically contain a digital image (JPEG or RLE/TIFF format), a

header containing the patient name or identification, and other metadata such as image dimensions, format, color depth,

manufacturer/software version, etc. [4, 6] For our experiments, we use sample DICOM data from [1]: “CR-MONO1-10-

chest” (379 kB), “MR-MONO2-16-knee” (130 kB), and “MR-MONO2-12-shoulder” (70 kB).

Connection Topologies: The base experiments evaluate the framework with components in topologies likely to appear in

real-world CDICs. These topologies consider that some devices, databases, or displays (i.e. a nurse’s station display) may

be shared within and across different scenarios. The topologies relating producers to consumers include 1 to 1, 1 to 50, 1
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Figure 9: Message throughput

Figure 10: OR scenario components

to 100, 50 to 1, 100 to 1. In each topology, producers operate at “full throttle” – emitting messages in a loop as fast as the

infrastructure can handle them.

5.1.2 Baseline Experimental Results

Both message size and connection topology affect the rate at which messages will move through the framework. Larger

messages take longer to marshall/unmarshall, which reduces the rate at which the system can move messages. Interestingly,

throughput is greatly affected by the connection topology. Increasing the number of producers will not increase the message

throughput nearly as much as increasing the number of consumers. We suspect that this is because the JMS provider maintains

a queue of pending messages that is shared between the provider’s worker threads. In the case of many producers, many

different messages can arrive at the message queue at the same time, and some resource contention can occur. When the

number of consumers is scaled, the system merely has to remove one message from the queue and copy it to as many worker

threads as system resources allow.
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5.2 Critical Care Device Coordination

We begin the CDIC experiments with the Device Coordination Context discussed in [7]. Due to its safety-critical nature, this

context has stronger real-time requirements. As discussed in [7], we expect that hospitals or critical care providers will use a

dedicated server for each operating or critical care room, and the server will run one scenario instance at a time.

For this experiment, we imagine an operating room equipped with the following medical equipment networked to the

MDCF: an anesthesia machine with an integrated ventilator and electrocardiograph (e.g. an Ohmeda Modulus CD/CV) plus

a blood pressure cuff. The operating room is also equipped with a large heads-up display that renders device data streams.

In this scenario, we also incorporate a software component, a Transformer, that preprocesses the electrocardiogram data

stream prior to the stream’s rendering on the physical display. See Figure 10 for a graphical depiction of this scenario’s logical

components.

Mean latencies of the informational messages are excellent - typically 1 ms. Each producer generates one data message

on its output ports once every 50 ms (small numerical data messages that denote current sensor state, or a 50 ms subsection of

a continuous waveform). Alarm events are updated once every 5 seconds.

Although this experiment does not represent an explicit coordination activity, it is clear from the performance discussion

that our infrastructure would also be able to support critical care coordination activities such as those discussed in [7] when

OpenJMS is used as the JMS provider and persistent messaging is disabled. Enabling persistent messaging increases the

mean latency to 5 ms, but the peak latencies rise significantly, (in this case the peak latency was 7.42 seconds), indicating that

OpenJMS may not be appropriate for some critical care scenarios when persistent messaging is enabled.

Mode Mean % < 50ms % > 2×mean

Non-Pers. 1ms 99.99 1.0
Persistent 5ms 99.62 0.7

Table 1: Message latencies - OR scenario

5.3 Integrated Displays and Alarms

This experiment combines both the Room-Oriented Device Information Presentation and the Alarm Processing

CDICs. It demonstrates the ability of the MDCF to scale to ward level and still meet appropriate quality-of-service

standards.

In this scenario, we imagine a large ICU ward with multiple rooms – each equipped with a blood pressure cuff, cardiac

monitor, intravenous medicator, pulse oximeter, and ventilator. Each of these devices produces one or more data streams or

alarm events (see Figure 6 for details). Each room is equipped with a configurable in-room, heads-up display that renders

these data streams. The ward is equipped with a nurse’s station display, which subscribes to all alarm events generated by any

of the individual room’s devices. This experiment replicates the scenario 1 - 100 times and aggregates all alarm messages to

one nurse’s station instance.

17



Figure 11: ICU latencies

As can be seen from Figure 11, the framework easily scales to 20 rooms. Even when managing 20 rooms, the maximum

observed latency for any system message is 227 ms. The vast majority of the messages are transmitted much more quickly.

At 50 rooms, the mean latency remains good, but the maximum observed latency has increased to 3 seconds (the spread of

latencies has also increased, as can be seen by the increase in standard deviation). At 100 rooms, the maximum observed

latency has grown to 4 seconds, but most latencies are still within allowable bounds.

6 Open Test Bed

The MDCF is part of a broader effort to build components which would be available to researchers for testing and experimen-

tation of medical device integration. The MDCF described in this paper is a core component of this effort, as it supplies both

the actual integration infrastructure and a tool with which formal methods and process oriented development can be excercised

w.r.t. medical device integration systems.

We hope to build support for low cost or no cost (simulated) devices into the MDCF. Currently, work is underway to

produce software ‘devices‘ which ‘simulate‘ Electrocardiograms by streaming pre-recorded data ([10]) into the MDCF. We

hope that the availability of simulated devices will enabled researchers without the resources to obtain expensive medical

equipment to use the MDCF as an experimental platform or test bed.

In addition to these virtual or simulated devices, we are working to build support for low-cost sensors into the MDCF.

Such sensors include low-cost pulse-oximeters [12], thermometers, heart rate monitors, and multi-axis accelerometers avail-

able to us and currently used in vetinary telemedicine [13]. Lastly, we are exploring integrating pressure sensors found in

entertainment oriented computer interfaces (such as a Dance Dance Revolution pad) as a way to provide a low cost version of

a device which could be used to detect patient falls.

Finally, the MDCF programmers development environment is open; Researchers could further extend the tool to realize

different and varied analysis capabilities for both the integration scenarios and components.
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7 Conclusion

We produced an open (source) Medical Device Coordination Framework (MDCF) with the ultimate hope that it will be used

as a research artifact in the research community to explore issues related to automated medical device integration and coor-

dination. The underlying technologies (JMS) are also open and there exist implementations of JMS that are freely available.

Initial experiments indicate that the architecture is scalable enough to support many realistic device integration and coordina-

tion scenarios.

Available with the MDCF is an Eclipse plugin that provides the ’MDCF Programmer’s Environment’ - a model based de-

velopment tool thats aids integration scenario developers by allowing the definition of MDCF component types, the assembly

of MDCF components into workable integration scenarios, and provides code generation facility which auto-programs the

low level JMS connection code for any component specified. This plugin is also open; researchers could potentially extend

the tool to perform other analysis of the integration components and scenarios. The tool has already been used to rapidly

prototype several different device coordination scenarios.

We see the MDCF as complementary to efforts like the MD PnP Integrated Clinical Environment. While the MDCF

supports decentralized integration and coordination, it would be fairly straightforward to build centralized device coordination

facility the MDCF. The internals of the MDCF have also been designed in a modular fashion in order to more easily allow

developers to support the types of features which may require management of data at a lower level than what the programming

model on its own provides. (e.g. ICE proposes functionality such as QoS and a ‘device model‘ )

8 Future Work

We plan to extend both the MDCF and the accompanying programmer’s environment with more sophisticated analysis and

verification technologies. In addition to the active type checking, we will extend the the programmer’s environment to support

more precise specification of functional properties (e.g. numerical behavior of transformer components) of a scenario. The

scenario editor will be modifed to permit the developer to check the correctness of a given scenario vs. the scenario and com-

ponent specifications (compositional reasoning). We hope to integrate other analysis tools such as Bogor [11] and Kiasan [3]

so the programmer’s environment plugin can be used to verify the ‘business logic‘ integration scenario developers implement

are correct w.r.t. to the specifications applied at the modeling level.
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Abstract 

This paper describes the design and initial implementation of a modular framework for Clinical 

Decision Support Systems and highlights the need for medical device plug-and-play standards.  

The software handles the tasks of data acquisition and validation, visualization, and treatment 

management in order to enable the development of protocol guideline modules as “plug-ins” to 

the framework.  The system utilizes an asynchronous data-driven design to support real-time 

information flow and user interaction.  All components of the framework are modular and easily 

extendible, allowing for new data sources, visualization methods, and protocols to be inserted.  

The system is configured by assigning each protocol a manager that handles decision 

communication with the rest of the framework.  A set of classes has been created to allow 

communication between the different modules along with persistence of all data, decisions, and 

treatments to a database.  The initial prototype is a Clinical Decision Support System focusing on 

the treatment of Traumatic Brain Injury.  

 

Keywords 

Clinical Decision Support System; modular framework; visualization; Traumatic Brain Injury; 

plug-and-play  

 

Background 

Clinical Decision Support Systems (CDSS) are fifty years old (Ledley and Lusted 1959).  

Examples of CDSS range from the laminated pocket cards that outline cardiopulmonary 

resuscitation guidelines but more typically are paper or computer-based order-sets as well as 

reminder systems (e.g, a reminder that gentamicin doses be trimmed in a patient with a rising 



creatinine, or activated protein C be considered based on a multi-factorial score). 

 

Relevant to medical devices and requirements for device interactivity, a specific form of CDSS, 

closed-loop control of medical devices, has an even older history.  Almost 60 years ago, a paper 

was published describing the “robot anesthetist” describing earlier work using the 

electroencephalogram driving either ether or sodium thiopental (HAWARD 1952), (MAYO, 

BICKFORD and FAULCONER 1950).   A comprehensive literature review of closed-loop 

anesthesia was published in 1992 (O'Hara, Bogen and Noordergraaf 1992) and literally hundreds 

of articles have been since published (particularly in the domain of mechanical ventilation 

(Tehrani and Roum 2008). 

 

Two meta-analyses of CDSS recently reported remarkably similar findings. Garg et al searched 

multiple databases through September 2004 and found 100 studies of decision support systems 

meeting their rigorous entry criteria.  Fifty-two of those studies measured one or more patient 

outcomes.  Studies were evaluated for methodological quality and for study characteristics that 

predicted success (defined as at least a 50% improvement in the measured outcome) (Garg, et al. 

2005).  Only seven of 52 studies that attempted to examine patient outcomes showed an impact 

of CDSS.  Overall, two decision support system characteristics were associated with an impact.  

First, studies more often showed an effect when the authors of the CDSS were authors of the 

report.  The only extensible finding of this meta-analysis was decision support systems that 

automatically prompt users (compared to systems requiring user activation) were associated with 

improved outcomes. The second meta-analysis examined 70 studies for 22 CDSS features the 

authors believed important for successfully improving provider behavior (Kawamoto, et al. 

2005).  A multiple logistic regression analysis identified four of these features as independent 

predictors of improved provider behavior:  1) automatic provision of decision support as part of 

clinician workflow, 2) provision of recommendations rather than just assessment, 3) provision of 

decision support at the time and location of decision making, 4) and computer based decision 

support. 

 

 



A major impediment to the extensibility of CDSS (beyond their largely unproved clinical efficacy 

(Garg, et al. 2005)), is the lack of widely implemented data standards.  Even efforts to share 

CDSS between sites running the same major health care IT company’s system can not simply 

“import” a rule set.  In the domain of medical devices, CDSS require hard-coded connections 

between input signals and output controls.  

 

The goal of the project described is to create a modular framework for a Clinical Decision 

Support System to facilitate the development of guideline protocol “plug-ins”.  Instead of 

focusing on creating a new method for defining guidelines or representing clinical knowledge 

such as in (Achour, et al. 2001), we address the issues of data acquisition and validation, 

visualization, and treatment management.  The basic concept is to develop a software framework 

that allows users to concentrate on implementing guidelines and protocols, with our system 

handling the data, management, and display aspects.   The initial prototype is focused on 

supporting the treatment of Traumatic Brain Injury (TBI) based on internationally agreed 

algorithms (Brain Trauma Foundation, American Association of Neurological Surgeons and 

Congress of Neurological Surgeons 2007) as a sample application of the framework.  As much of 

the data inputs are necessarily from medical devices (e.g. physiological monitors) and in its future 

closed-loop form the therapeutic devices are also medical devices, this project presents a complex 

use-case for identification of medical device plug-and-play efforts. 

 

One of the key components of the software framework is the acquisition and fusion of medical 

data from multiple sources. These sources include bedside monitoring devices, hospital electronic 

medical record databases, and manually entered information from clinical staff.  In the 

development and testing of the TBI CDSS software, the data is acquired from the physiological 

monitors (e.g. heart rate and blood pressure), stand-alone monitors (e.g. oxygen saturation and 

end-tidal carbon dioxide), and therapeutic devices (e.g. ventilators and infusion pumps).  Given 

the current lack of device data standards, we were forced to acquire real-time (5 second interval) 

data only from the devices on the monitoring network and it involved writing a module to 

continuously poll a set of text files generated by a third party solution (BedMaster, Excel Medical 

Electronics, Jupiter, FL ) and then extract and reformat this data, finally sending it to the TBI 



CDSS framework.  If plug-and-play standards were implemented, such a convoluted (and 

therefore risky) set of work-arounds would not be necessary.  The current lack of a universal 

interface for medical device I/O poses a significant difficulty to the continued development and 

use of our software framework. Every time a new device needs to be supported, a module 

designed for communication based on that device’s protocol and standards must be written. This 

roadblock would be removed with the implementation of a common communication interface for 

all medical monitoring devices.  

 

Besides monitoring device connectivity issues, access to lab results and the patient’s medical 

record also pose an issue. Currently, the electronic medical record module in the framework must 

continuously query the hospital’s databases for updated information. Each piece of information 

requested requires a separate query tailored specifically for the hospital’s database. This makes 

deployment to medical centers using a different electronic medical record system difficult, as a 

new module specific to their implementation must be written. A common standard for electronic 

medical records, lab results, and methods to access this data would greatly enhance the range of 

environments into which our software could be deployed.      

 

System Overview 

The framework utilizes a modular design to enable expansion and scalability.  Each module has 

an interface that defines which methods it supports. In addition, there are a number of classes that 

handle communication between the different modules (these are explained in the sections where 

they are relevant, and are loosely based on those used by the PROforma system (Sutton and Fox 

2003)).  The framework can be viewed as three different areas: data collection and processing, 

protocol and treatment management, and visualization (see Figure 1).  The communication 

between these three areas could easily be extended to include wireless or ad-hoc network 

capabilities.  Data collection and routing consists of DataSource and Validator modules, 

ProtocolManagers handle interaction with the Protocol modules that perform the medical data 

analysis and decision support, and the ProtocolDisplay and FeedbackManager modules interact 

with the user.  As previously mentioned, the framework is designed to make any data necessary 

available to the guideline protocol modules, and then display the decisions of these protocol 



modules through a graphical user interface that the user can interact with to provide feedback to 

the system.  

 

We chose an asynchronous data-driven design to support the real-time goals of our requirements, 

similar to the approach taken in (Van Den Bossche, et al. 2008). This allows each piece of 

physiological data or user input to be handled and received by the protocol modules as soon as it 

is available, along with allowing the recommendations of the protocols to be available to the user 

as frequently as possible, which is a key component of CDSS design. The framework is event 

based, following a push methodology (as opposed to a pull) where data is pushed to the protocol 

modules, which in turn push their decision outputs back to the framework.  This choice was made 

in an attempt to remove any timing or thread requirements from the protocol modules in an effort 

to simplify them.   

Therefore, to add a protocol module to the framework, it only has to be configured to listen for 

data using the required interfaces, and then to output its decisions in the specified format, as the 

framework handles timing and initialization.  The software is written in Java.  The following 

subsections discuss the different modules and communications mechanisms that the framework is 

built upon.   

 
 

Figure 1:  System Block Diagram 



 

Data Sources & Validation 

These modules interact with data sources, such as medical monitoring devices, patient record 

databases, and the clinical users of the system and transform the acquired data into formats that 

are recognizable by the rest of the framework.  These classes are defined by the DataModule 

interface.  DataModule objects generate DataSet objects, which are containers for the general 

DataPoint objects that hold different types of physiological data.  The DataSet class is the primary 

mechanism for delivering information to the Protocol Modules, and it contains methods that allow 

its consumer to extract the different DataPoints that it contains.  Each DataPoint consists of a 

source tag, a timestamp, the name of the data value it contains, and the actual data value itself.  

The relationship between DataSet and DataPoint is one-to-many (i.e., one DataSet can contain 

multiple DataPoints).  Each DataModule can be configured to optionally forward the DataSet it 

generates to a Validator, which checks that the data it receives is within pre-configured boundaries 

to help prevent erroneous data from disrupting the rest of the system. The Validator then forwards 

this error-checked data to other modules in the framework. 

 

 Protocol Managers 

Each ProtocolModule forwards the Decision objects it generates to its assigned ProtocolManager.  

These managers are responsible for handling the Decision and then forwarding its contents to the 

rest of the framework, allowing there to be a single point of communication between a Protocol 

Module and the rest of the framework.  Each Decision object contains Deviations, Conditions, 

Treatments, and Requests.  A Deviation is generated by a protocol when a physiological variable 

is outside of the guideline range (e.g. Intracranial Pressure > 20 mmHg).  The Deviation contains 

the name of the physiological variable, the actual value, the guideline value that was violated, and 

a timestamp.  A Condition is the medical condition that is indicated by one or more Deviations 

(e.g. Intracranial Hypertension). A Treatment is the medical procedure that should be taken to 

alleviate a given Condition.  Therefore, each Condition has one or more Deviations that triggered 

it, and one or more Treatments that will remedy it.  The ProtocolManager internally keeps track of 

what Conditions, Deviations, and Treatments are currently suggested, along with any pending 

Requests.  The Request class is used by a ProtocolModule to request any additional information 



that cannot be determined from the currently available data. A Request contains a source tag, a 

timestamp, the question to present to the user, a list of response options, and the name of the 

variable to fill with the user’s response.  An example of a Request would be “Does the patient 

have a skull fracture?” with responses being either yes or no.  If the response list is left empty, 

then a text field is provided for the user.  The ProtocolManager forwards any active Requests to 

the RequestDisplay, and a VisualUpdate is generated to tell the corresponding ProtocolDisplay 

module what to update.  The VisualUpdate class contains lists of which Conditions, Deviations, 

and Treatments to add and/or remove from the ProtocolDisplay (making it easier to develop 

displays). 

 

Visual Modules 

There are several different types of visual modules that allow the user and the system to interact. 

The first is the ProtocolDisplay, which provides a visual representation of the Deviations, 

Conditions, and Treatments that a Protocol generates, along with allowing the user to input their 

feedback about the suggested Treatments, specifically whether they were performed or not (see 

Figure 2). This feedback is sent in the form of a TreatmentFeedback object, which is handled by 

the FeedbackManager discussed in the next section. The default ProtocolDisplay can be extended 

to provide more in depth features, such as a flowchart representation of a specific protocol. Each 

ProtocolDisplay is tied to the corresponding ProtocolManager of the ProtocolModule that it 

represents.  Another visual module is the TreatmentHistoryDisplay, which is a timeline that gives 

the user a quick and simple overview of all the Treatments that have been performed on the 

patient during this session.  The third type of visual module is the GraphModule, which is a real 

time dynamic graph of one or more physiological vitals. (In the future we plan to incorporate 

guideline, raw, and average values into the graph also). The GraphModule provides the user a 

history of important physiological values to reference when viewing the suggested treatments.  

Finally, the RequestDisplay visual module presents any pending information requests to the user. 

The user provided data is treated as another DataSource. 



 

Feedback Manager 

The FeedbackManager collects and records all the treatment feedback from the user, such as 

if/when a treatment was performed.  The ProtocolDisplay modules send TreatmentFeedback 

objects to the manager based on user input.  The TreatmentFeedback class contains the Treatment 

in question, a timestamp, a tag indicating if the treatment was performed or skipped, and an 

optional explanation section the user can fill in.  The FeedbackManager forwards these feedback 

results to the ProtocolModules and the TreatmentHistoryDisplay, along with keeping an internal 

record. 

 

 

 
 

Figure 2:  Graphical User Interface 

This figure highlights some of the visualization and user interaction features of the framework. The title bars for each protocol 

are green if no conditions are detected and red otherwise. The buttons directly below each title bar show currently detected 

conditions. (A) The custom Brain ProtocolDisplay including the treatment flowchart. (B) The currently suggested treatment 

based on the Brain protocol, along with buttons to allow the user to choose direct the treatment flow. (C) Vital sign graphs. 

(D) The RequestDisplay allowing the user to choose which treatment path to take. (E) General patient information display 

area. (F) The default ProtocolDisplay for the Hemodynamic protocol. 



Logging Subsystem 

The primary function of the LogModule is to persist all necessary values for record keeping 

purposes. Each ValidationModule uses the log to save any DataPoints that it determines are 

erroneous, and can be configured to save all DataPoints that pass through it in the event that the 

real time physiological data is not being simultaneously recorded on another system.  All of the 

ProtocolManagers record every new Deviation, Condition, Treatment, and Request that they 

receive in a Decision.  The FeedbackManager records all TreatmentFeedback objects it receives.  

The logging subsystem is implemented using Hibernate and a MySQL database.  A future goal is 

to be able to replay the treatment history of a patient using this framework for both analytical and 

training purposes, i.e. “flight data recorder” concept. 

 

Traumatic Brain Injury Application 

Two additional DataModules were written besides the standard user input module: one to query 

data from the hospital’s Electronic Medical Record database, and one to interface with the 

BedMaster software that integrates output from multiple bedside monitoring devices.  The 

BedMaster software provides real time physiological value monitoring by pulling data at five 

second intervals.  The traumatic brain injury guidelines (Brain Trauma Foundation, American 

Association of Neurological Surgeons and Congress of Neurological Surgeons 2007) were 

adapted into five separate ProtocolModules, focused on the brain, hemodynamic, respiratory, 

renal, and nutrition aspects of a patient.  The development and functioning of these protocol 

modules was previously presented in depth (Wu, et al. 2009).  The base ProtocolDisplay module 

was extended to support the sequenced treatment pattern from the brain protocol, while the default 

display was used for the other four protocols.  The screenshot in Figure 2 details some of the 

important elements of the visualization modules and how they interact with the user and the rest 

of the framework. 

 

Conclusions and Future Work 

This paper presented the initial progress on a framework for developing a Clinical Decision 

Support System, with an example application focused on treating Traumatic Brain Injury.  The 



focus of this framework is to enable guideline protocols to be written as plug-ins that take 

advantage of the data, treatment, and visual management provided by the framework.  The 

framework is built on a modular design that allows for easy expansion to include new data 

sources, protocol guidelines, and visual interfaces.  Programmers perform the initial configuration 

of connecting DataSources to provide information to ProtocolModules, connecting 

ProtocolManagers to handle the decision outputs of each guideline protocol module, and 

connecting the available VisualDisplay modules to interact with the user.   Future work includes 

continued testing on a larger variety of patient data and medical conditions, along with clinical 

trials with studies of patient outcomes.  Another goal is the development of additional protocol 

modules and to expand into areas other than TBI.    

However, without implementation of medical device plug-and-play standards, the ability for other 

investigators to replicate our efforts is impossible.  As such, progress in the development of CDSS 

and deployment will be impossible.  This project provides the community a robust and 

challenging use-case as these standards efforts continue.  
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Abstract—Physiological data is monitored and displayed on medical devices around the world every 

day, and the volume of this data is steadily increasing and newer monitoring devices enter the clinical 

setting. However, the vast majority of this data is lost since it is most often displayed once as it is 

recorded, perhaps replayed one or more times while it exists in the device’s volatile memory. What little 

data that is permanently recorded is most commonly saved through hand written annotations, in paper 

records and in some limited samples stored on hospital clinical information systems. Meanwhile, current 

methods of data analysis provide opportunities to utilize this data for improved care of these same 

critical care patients. A major inhibitor to this becoming reality is the lack of standards for the 

representation, transmission and storage of physiological data. HL7, for example, does not include 

definitions for time series data. Research into the use of these data will soon be reaching the clinical 

setting and the need for such standards to be defined is becoming urgent. 

Introduction 

Our research is focused on the collection and analysis of clinical physiological data streams both in real 

time and for later offline analysis [1]. The goal of this research is to use these streams for computer 

aided diagnostics using evidence based rules. However, the lack of standardized formats for 

transmission and archiving of these data limits access to these data ‐‐ and those collected by others ‐‐ 

and prevents significant amounts of analysis for the identification of such rules from being carried out. 



 

 

We are developing just such standards and exploring opportunities with Canada Health Infoway 

(www.infoway‐inforoute.ca) and the Canadian Neonatal Network (www.canadianneonatalnetwork.org) 

to develop such standards through a demonstration project with IBM Research’s TJ Watson Research 

Center, NY and the Hospital for Sick Children in Toronto [2]. 

Physiological Data Streams: A Case Study 

Within Intensive Care Units (ICUs), there are typically found several types of devices that are collecting 

physiological patient data rates of up one thousand sampled per second per sensor. In the example of 

monitoring brain electrical activity (electroencephalograms or EEG), this might include as many as 14 

streams of EEG at 1 kHz per stream. Simultaneous collection for other devices might produce another 12 

channels of heart activity monitoring (electrocardiographs or ECG) and 3 streams of intravenous blood 

pressure (iBP) monitoring, each also at 1 kHz. Additionally, these and other devices produce raw or 

derived streams of data (e.g. heart rate [HR] information at 1 Hz) also in real‐time. Modern medical 

devices typically allow for storage of these data for review by physicians, and, while many allow for 

transfer of these data for backup or inclusion in clinical information systems, it is very unusual to 

electronically archive more than a limited number of samples, statistics and/or snapshots of these data. 

On the other hand many studies have shown that there is significant information contained in these 

data which could be exploited for diagnostic purposes.  

In the Artemis project, we are working with IBM’s TJ Watson Research Center, NY to develop a system 

for real‐time event processing of precisely these data types, as well as offline storage for analysis and 

development of novel, evidence‐based diagnostic routines. While much of the data that is being 

produced can readily be stored in standard Health Level 7 (HL7) format, for example as snippets and 

snapshots, it is unclear how large amounts of continuous data will be stored. As an illustrative example 

of the challenges, a prematurely born baby might be in an NICU for months, while being continually 



 

 

monitored for nearly the entire time. Current medical data transmission, e.g. HL7 of Digital Imaging and 

Communications in Medicine (DICOM),  do not provide clear methods to transmit or store such 

continually monitored data, and current clinical information systems do now support storage of these, 

partially as a result. However, research and clinical experience show that such data can be very 

informative for immediate diagnostics and for development of new diagnostic methods. 

Within our research we have previously proposed two alternatives for the transmission of physiological 

data. Firstly, utilising the service oriented architecture based web services in [3] and secondly by 

extending DICOM principles in [6].  

Integration with Electronic Medical Records 

While the methods to use these types of data for diagnostic purposed are still at the early stages of 

development, the ability to record and store them is there and the potential benefit of doing so is 

significant [4, 5]. In the example of prematurely born babies, the ability to help them survive to maturity 

has improved drastically over the past several decades. However, the long term effects of both the 

premature birth itself and of the treatments required to help them survive are unclear [6]. For these 

babies, if more complete medical records of their birth and during their stay at the NICU can be stored, 

there is enormous potential in using these records for follow‐up treatment and studies to better 

understand how to treat these people as they grow to maturity and to improve treatment of future 

prematurely born infants. 

In order to allow for these data to be made compatible with electronic health record systems and with 

clinical research repositories, standards need to be selected and/or developed. Many different 

standards exist and several of them support aspects of continuous physiological data streams. As 

proposed previously, the DICOM standard can be used for these data if they are treated as 1‐

dimensional images, instead of the usual use of DICOM which is for 2‐ or 3‐dimensional images. DICOM 



 

 

furthermore supports “mosaics”, which is intended to allow for images which overlap and to allow them 

to be used to create a more complete image from several limited perspective images. The same idea can 

be used to store and transmit multiple segments of 1‐dimensional data streams, and to construct the 

larger stream from them [7]. However, it is not clear that this is a good approach to continuous, multi‐

rate and heterogenous data streams.  

Some other notable efforts to enable parts of this are, however, in progress. For example the Rosetta 

Terminology Mapping (RTM) profile aims to harmonize the use of existing ISO/IEEE 11073‐10101 

nomenclature terms for systems compliant with the Integrate Health Enterprise (IHE) Patient Care 

Device (PCD) profiles [8]. The RTM profile would facilitate safe and interoperable communication 

between devices and systems, an important step forward. 

The issues that exist in storing these data streams in EMRs also include questions of data compression 

[9] and methods of temporal abstraction [10, 11]. On top of these are issues of how these compression 

and abstraction methods might affect the quality of the data stored and how it can later be used. And so 

it is important to consider also the transmission of archiving of details on the methods used to 

accomplish these so that, if necessary, the effect of compression or abstraction on diagnoses can also be 

evaluated.  

In the Artemis project, NICU patient data is being collected and stored and will be used to develop new, 

evidence‐based clinical rules for diagnostics. The data is recorded and analysed in real‐time and through 

archiving of the data will provide a rich repository of data for clinical research. These data will also be 

made available to patient EMRs as soon as the standards can be determined on how to do so. 



 

 

 

Figure 1: Artemis system for real‐time event stream processing and archiving. Courtesy of IBM Research. 

Through the Artemis project a demonstration project is proposed with the Canadian Neonatal Network 

and Canada Health Infoways to show how physiological data streams can be include in EMRs in the 

Canadian health system. Existing standards will be leveraged and specifications will be developed on 

how to use those standards to allow for transmission and storage of these records in EMRs. 

Conclusions 

The potential for the analysis of physiological data streams to support real‐time clinical management 

and historical clinical research is significant. The classical nature of the electronic health record, 

supporting patient care by many providers in varied locations over their lifetime drives the need for 

standards to support this new area of medical support. Our research is working to develop standards for 

integration within the Canadian EHR commencing at birth through Neonatal Intensive Care Units. 
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1.  Purpose 

Interoperability of heterogeneous medical devices, clinical information systems and components of 

computer assisted surgery (CAS) has been recognized for its potential to improve the overall clinical 

workflow as well as ergonomic conditions by centralized access and control of the integrated system. 

However, the installation of an integrated IT infrastructure with additional computer hardware, 

software, and network components heavily increases the overall technical complexity within the 

operating room (OR). The life critical domain within the OR demands safe and reliable operation of 

the integrated OR components. Therefore, an appropriate technical supervision framework is required 

that supports high confident functionality by facilitating systems monitoring and diagnosis of the 

networked hardware and software. System failures, network bottlenecks or unstable conditions should 

be detected to enable appropriate interventions and mitigation strategies. 

2.  Methods 

The structural design of our modular OR integration infrastructure follows the Therapy Imaging and 

Model Management System (TIMMS) meta-architecture, which was published by Lemke and Vannier 

in 2006 [1]. Our prototype TIMMS implementation interconnects standard CAS components such as 

tracking, PACS, display and video routing as well as navigation, patient modeller, workflow software, 

and the central surgical display. In contrast to existing proprietary integration solutions, we are 

focussing on the development of an open architecture using standard communication protocols (e.g. 

DICOM, RTP, SNMP, ZeroConf, TCP/IP) and standard network technologies such as Ethernet. The 

integrated system has a central management unit, the TIMMS Component Controller (TCC), which 

facilitates service discovery, session management, time synchronization and component control. The 



TCC also implements the supervisory control and data acquisition (SCADA) module (Figure 1), which 

realizes systems monitoring and supervision functionality for the entire OR network on three levels:  

1. Network Backbone Hardware, 2. Computer Hardware, and 3. Software Applications. The diagnostic 

information elements from the supervised systems are maintained in the form of Management 

Information Base (MIB) (RFC 1450) objects. The MIB tree index structure describes the hierarchical 

order of all monitored variables that can be obtained or modified, their data types and by which 

operations they can be accessed. Management agents handle the access to the MIB objects between 

managed components and the SCADA module using the Simple Network Management Protocol 

(SNMP).
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Figure 1: Supervisory control and data acquisition (SCADA) architecture for the integrated TIMMS 

OR network. 

2.1 Simple Network Management Protocol 

The transfer of diagnostic and management information among management agents and the SCADA 

module is based on the SNMP protocol standard (RFC 3411 – 3418), which is an application layer 

protocol within the OSI model. The SNMP network protocol is based on TCP/IP and thus directly 

applicable within the TIMMS network environment. SNMP provides few operations on MIB items 

such as SNMP GET and SNMP SET for retrieval or change of a MIB variable as well as SNMP 

TRAP for unsolicited event notifications sent by an agent to a management application. 



2.2 Monitoring of Hardware Components

Diagnostic information from network and computer systems is gathered by hardware management 

agents, which reside in the supervised components. Most of today’s standard network hardware such 

as routers or bridges already implement SNMP agents, which maintain access to configuration 

information and network traffic parameters (Level 1). Using the Agent++ Library [2], we developed a 

master agent for personal computers (PC) that acquires system and surveillance information from each 

TIMMS PC connected to the network (Level 2). These master agents obtain performance indicators 

such as CPU usage, hard disc load, physical and virtual memory load as well as network interface card 

traffic and translate these into the corresponding SNMP MIB objects (Figure 1). 

2.3 Monitoring of Software Applications 

Monitoring at code implementation level (Level 3) is facilitated using the Open Group Standard 

“Application Response Measurement - ARM 4.1” [3]. The ARM interface standard accommodates 

bindings for the programming languages C and JAVA. ARM enables the measurement of application 

performance by introducing transactions as “units of work”. The application calls the ARM API 

before a transaction starts, optionally an update during processing, and after it ends. We defined two 

custom transaction types for the SCADA framework: 1st) Transactions for measuring the duration of 

(critical) code sections and 2nd) Transactions that periodically report update events for the monitoring 

of the application’s alive status. To integrate the ARM functionality into the SCADA framework, we 

implemented an ARM compliant subagent library that communicates with the corresponding Level 2 

master agent using the Agent Extensibility (AgentX) Protocol (RFC 2741). Upon application start, the 

subagent registers the application and all transactions at the master agent, which creates the 

corresponding information items within its MIB. Watchdog alive heart beats from the application are 

processed by sub- and master agent and deployed using SNMP TRAP events to the SCADA module, 

which supervises the alive status of TIMMS applications. 

2.4 TIMMS Component Controller & SCADA Module 

Automatic Configuration and Plug-and-Play Service Discovery of TIMMS components are realized 

using the ZeroConf protocol [4]. Whenever a TIMMS component joins the network, the TCC connects 



to the component’s master agent and retrieves the corresponding management information base object. 

By passing through the MIB tree elements, the SCADA module periodically queries the particular 

diagnostic information elements from the master- and subagent. The diagnostic information is 

processed and analyzed, e.g. to raise alarms if a previously defined threshold for a given element is 

exceeded. The TCC also provides a database logger, which stores all alarms and events for 

documentation purposes.  

The resulting information from the SCADA module is visualized on different workstations according 

to the particular user group. Clinical users obtain an intuitive view of the overall system status at the 

surgical cockpit while the technical supervisor has access to all in depth information and control over 

configurable elements (Figure 2). 

Figure 2: TIMMS technical supervisor SCADA application displaying the networked TIMMS 

components (top right), the management information base of the selected component (middle right) 

and time course of the monitored variable (bottom right). 

3. Results 

We designed and implemented a technical supervisory control and data acquisition (SCADA) 

framework for the monitoring of networked medical hardware and software components. Information 

about the overall system status and controlling access is designed at different abstraction levels for 



different user groups (clinical/technical) with separate user interfaces. The master and sub-agents are 

implemented as C++ class library and are fully compliant with SNMP Versions 1 to 3. The first 

prototype of the SCADA module is able to retrieve diagnostic information from Ethernet network 

devices, computer hardware and TIMMS software applications. The user interface for the technical 

supervisor (Figure 2) comprises simple numerical values of performance measurements as well as 

graphical trend views for time-dependent values (e.g. network load). Methods of auto-configuration 

facilitate a highly automated monitoring process without the need for manual interaction.  

4. Conclusion 

The life critical environment within the operation room requires reliable and safe operation of medical 

device hardware and software, especially when a large number of different technologies are applied. 

The proposed SCADA framework is based on standard protocols and encounters these requirements 

by introducing technical means for the acquisition of performance indicators at hardware and software 

levels. The framework provides information to detect system anomalies such as network bottlenecks, 

cache and hard disc space exceeds or CPU consuming software processes and announces these using 

appropriate alarms to the corresponding user groups. The combination of AgentX subagents with 

ARM enables the assessment of software performance as well as the detection of hanging or crashed 

applications with the SCADA watchdog functionality. Further developments focus on automatic 

reasoning of the overall system status as well as appropriate user interface feedback for the clinical 

users at the surgical cockpit. 
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ABSTRACT 
This paper presents a study of the five best selling Smart Phones in 
terms of their applicability to Wireless Health.  Smart Phones are 
generally used as central controlling units in Wireless Health 
applications.  We carried out our investigation by implementing a 
wireless health application that performs sensor communication, 
data processing, and data visualization.  Our overarching goal is to 
develop a plug-and-play Wireless Health software platform.  Our 
task begins with an in depth study of Smart Phones: the central 
controller of Wireless health applications.  

KEYWORDS 
Wireless Health, Smart Phones, Bluetooth 

1. INTRODUCTION 
Over the past few years, researchers developed several wireless 
health platforms such as [3][14][16][17][22][23]. These platforms 
often include a mobile device (such as a PDA or cell phone) as the 
central controlling, processing, and visualization unit.  Figure 1 
depicts one such architecture.  Previous work is predominantly 
focused on overall architectures and lacks focus on the central 
processing unit.  Our goal is to analyze several commercial Smart 
Phones to determine the best targets for wireless health.  

 

Figure 1. A standard architecture for Wireless Health 
Applications.  The wearable system acts as a central processing 
unit for the patient. 

Our comparison is based on a set of libraries developed for wireless 
health. We feel that extending current wireless health platforms by 
offering an additional software component (set of libraries) for 
mobile devices would add tremendous value.  Reliability, code 
reuse, and decreased development times are just a few of the many 
benefits offered by such software.   

Implementing a set of libraries requires intimate knowledge of the 
target devices. This paper presents an examination of popular Smart 
Phone platforms, based off of the design of a simplified application 
that uses a few basic components of a wireless health library.  We 
design our libraries based on a few active research projects here in 
our labs at UCLA.  We describe these projects in section 2.  Next, 
we discuss the feasibility of implementing such an application 
(including libraries) on several commercial platforms.  Finally, we 
present the development of our simplified application and libraries 
to prove the feasibility of such a software platform. 

This paper does not present a complete wireless health software 
library.  Our library is only representative of a complete 
implementation.  We use this representative as a basis of 
comparison between Smart Phone platforms and prove the 
feasibility of a complete wireless health software library.  

All platforms compared in this paper support cellular connectivity 
(such as CDMA and UMTS).  Such devices offer far greater 
network coverage than devices that only support technologies such 
as Bluetooth and WiFi.  In a large number of wireless health 
applications, this constant connectivity is required, especially in the 
case of applications that require high mobility. 

During our comparison of platforms, we analyze feature availability 
as well as emulation and debugging environments.  We hope this 
comparison serves as a guide for those wishing to develop wireless 
health applications for deployment on smart phone platforms. 

The key contributes of this paper are three fold.  First, we provide 
an assessment of the five best selling Smart Phones platforms and 
their applicability towards wireless health.  Second, we determine 
the best software runtime environment in applicable to our five 
Smart Phone platforms.  Finally, we developed a wireless health 
application to prove the correctness of our assessments. 

2.  WIRELESS HEALTH APPLICATIONS 
The following section presents a few wireless health projects under 
development at UCLA. We use these projects as inspiration for a set 
of wireless health libraries.  These projects by no means represent 
all wireless health applications.  However, they do establish a 
baseline for comparison. 

2.1 SmartCane 
Falls are the leading cause of death in the elderly.  To mitigate this 
phenomenon, The Wireless Health Institute at UCLA has developed 
the SmartCane System [27].  This system performs a series of signal 
processing algorithms to assess the users current state.  These 
algorithms assess various attributes such as improper cane usage, 
high-risk behaviors, and potential injuries (such as falling).  Once 
these attributes are detected, the SmartCane can propagate these 
attributes to patients, care givers, clinicians, as well as emergency 
services.  To accomplish signal processing and network 



connectivity, the SmartCane connects to a PDA, Cell Phone, or 
tablet PC via Bluetooth.   This central controlling unit can predict 
hazards, store behavioral data, notify health care professionals, as 
well as display visual feedback to the user [27]. 

3. Smart Shoe 
Smart Shoe is an orthotic shoe developed in our labs at UCLA 
[8][21].  Through the use of gyroscopes, accelerometers, and a few 
well-placed pressure sensors, Smart Shoe is able to monitor feet 
motion and pressure distribution to evaluate the state of a patient.  
The Smart Shoe can currently detect the formation of foot ulcers in 
patients with diabetes.   Similar work has been done in other labs.  
For instance, [19] have developed a shoe-integrated sensor system 
for gait analysis. Like the SmartCane, Smart Shoe wirelessly 
connects (via Bluetooth) to a cell phone or PDA for data processing, 
visualization, and network connectivity.  

4. Developing Wireless Health Applications 
Projects presented in section 2 share many of the same 
requirements.  The following lists a series of features required by 
the aforementioned projects: 

• Short Range Connectivity (such as Bluetooth or Zigbee) 
• Internet Connectivity (through Wifi, CDMA, etc…) 
• Visualization (such as OpenGL ES) 
• Data Storage (such as SQL) 
• GPS Services 

Usability is an important addition to our technical requirements. 
End users range from health care professionals to patients (who are 
often elderly).  Therefore, we can expect a large percentage of non-
technical users who are not computer savvy.  A successful wireless 
health application must provide a usable experience that integrates 
seamlessly into a patient’s life.  Otherwise, we risk low adoption 
rates. 

4.1 Sample Application 
To provide a basis of comparison, we created a wireless health 
application that interfaces with UCLA’s Smart Shoe.  This 
application connects to wireless sensors via Bluetooth and displays 
their output graphically. This application requires four main 
modules: 

• Connectivity module for Bluetooth (Zigbee was not supported by 
any of our Smart Phones) 
• Graphical module for displaying data 
• Data storage module for archiving sensor data 
• GPS module for associating locations with data  
 
Our comparison is limited to Smart Phones to account for Internet 
connectivity.  Other mobile platforms such as PDAs typically 
connect to the Internet through WiFi.  Wireless Health Applications 
require a constant level of connectivity regardless of locality.  This 
requirement cannot be satisfied with WiFi alone.  Therefore, we 
require a more ubiquitous network such as CDMA or GSM.  With 
such networks, patients are constantly connected regardless of their 
locations.  However, even cell coverage has its limitations in remote 
locations and may experience dead spots in urban areas.  However, 
we feel that there is no technology that offers a higher level of 
connectivity.  Also, dead spots could often be mitigated through 
WiFi (supported by many Smart Phone platforms). 

 
Figure 2. Our Simplified Library Architecture 

5. Mobile Devices 
The list of potential wireless devices is practically endless.  In order 
to provide a useful survey, we limited our set of devices to five.  
Our devices include Symbian, Rim Blackberry, Windows Mobile, 
Android, and iPhone.  Symbian, RIM Blackberry, and Windows 
Mobile have the three highest world market shares at 57.1%, 17.4%, 
and 12% respectively [1].  iPhone holds the fifth largest market 
share at 2.8% and offers a unique user interface paradigm unlike the 
four preceding platforms (Linux being number 4 at 7.3%).  We 
chose Android to represent the Linux platform.  There are several 
Linux platforms in the mobile market.  Android was chosen due to 
its openness, support, and standardization offered by Google; 
thereby lending itself as an attractive research platform.  Android 
also offers a similar user experience to the iPhone and serves as a 
suitable comparison.  Android was also chosen due to Google's past 
record and market penetration by their other products. 

 Figure 3.  Smartphone market share 

5.1 BlackBerry/Symbian/Windows Mobile 
Blackberry, Symbian and Windows Mobile support a standard 
J2ME port.  Applications can be compiled to a jar file and loaded to 
all three devices without the need for recompilation.  However, 
while developing for such platforms, we must verify support for 
required JSRs for each device.  Many JSRs are optional such as JSR 
82 for Bluetooth support.  However, we found that many of the 
latest devices (such as Nokia’s N95) advertise support for all JSRs 
listed above. 

5.2 Android 
Android is built upon an open Linux Kernel and consists of a virtual 
machine optimized for mobile environments.  Android uses the Java 
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programming language.  However, their JAVA port is for the 
Dalvik JVM.  This port consists of a mix of standard JAVA and 
Android specific APIs.  Therefore, JAVA applets compiled against 
standard ports, such as J2ME, are not compatible with Android. 

Android is open source lending itself nicely to research and 
industry. Developers can run their custom Android builds on 
unlocked hardware available through Google.  Android also makes 
no distinction between applications; all applications, whether static 
core applications or dynamic third-party applications, are treated 
identically and have equal access to the device's functionality [2]. 

5.3 iPhone 
iPhone OS offers a similar platform to MAC OS X.  IPhone OS 
runs a variant of the same Mach kernel used by MAC OS X.  This 
enables iPhone to support standard core services such as BSD 
Sockets and POSIX Threads.  Also, objective C is a superset of C 
and C++.  For these reasons, open source projects can be trivially 
ported to the iPhone.  While working with this device we ported a 
simple JSON interpreter [12].  The port consisted of importing the 
necessary headers and source files and compiling.  We found this 
functionality an attractive feature of iPhone.  Unfortunately, it was 
the only platform in our selection to offer standard core OS 
services. 
6. Platform Comparison 
To host our sample application, our platforms must provide several 
APIs including Security, Bluetooth, GPS, storage APIs (such as 
SQL), standard networking APIs, and graphical APIs.  Platforms 
must also provide a user-friendly interaction model.  While not 
required, a large touch screen is highly attractive for such 
applications.  Large touch screens allow us to display large text, 
graphics and controllers (such as buttons and lists).  Much of our 
work is often targeted towards the elderly where vision and finger 
acuity is diminished.  Large touch screen displays afford an 
experience much better suited to such users. 

Both iPhone and Android had no programmatic support for any low 
power wireless protocols (such as Bluetooth and Zigbee). Wireless 
sensors are typically connected via Bluetooth or Zigbee. Support for 
such APIs is a strong requirement for wireless health.  Without such 
APIs, wireless platforms are severely limited.  Unfortunately, 
Zigbee was supported by none of our Smart Phone platforms.  This 
is quite a drawback since Zigbee provides an extremely energy 
efficient wireless alternative to Bluetooth [6].  However, it is 
important to note that Google has announced Bluetooth support in 
future SDKs. 

Our initial goal was to choose a single mobile device to serve our 
research interests.  However, as we researched several devices, we 
found that many of these devices are extremely similar and creating 
a library that extends several platforms was possible. 

For these reasons, we targeted Symbian, BlackBerry, and Windows 
Mobile.  Each of these mobile platforms supports J2ME. This 
allows us to create libraries that we can share across all 3 platforms 
without the need for recompilation.  Also, J2ME offers JSRs that 
support security (JSR 219), Open GL ES (JSR 177/239), GPS (JSR 
179) and Bluetooth (JSR-82) [15].  By choosing J2ME as our target, 
we include a much larger set of mobile devices than those we 
present in this paper.  These include mobile devices mot considered 
Smart Phones (such as low end cell phones and other embedded 
devices). 

Figure 2 lists our APIs of interest and their respective support by 

our five Smart Phones.  (Symbian, Windows Mobile, and 
BlackBerry were merged to J2ME). 

Table 1: List of supported APIs 

 J2ME iPhone Android 
Bluetooth √ - - 

WiFi - √ √ 
ZigBee - - - 

GPS √ √ √ 
Open GL ES √ √ √ 
Security Suite √ √ √ 

SQL √ √ √ 
Touch Screen √ √ √ 

 
6.1 Ease of Deployment 
Ease of deployment refers to a developers‘ ability to deploy 
applications to a handset.  For our purposes, applications are often 
cable loaded.  We found loading applications to J2ME and Android 
trivial.  Neither platform required any licensing.  Tools were free 
and easy to access.  iPhone, on the other hand, requires developers 
to join their Developer Program.  This process required an 
application as well as a nominal fee.  For us, the entire process took 
several weeks.  While we understand the business justifications for 
such a process, we feel that it quite a deterrent to the academic 
community. 

6.2 Emulation and Debugging 
We found Androids debug environment impressive.  First, Android 
emulates several features such as GPS coordinates, network speeds 
(such as UMTS and GSM), SMS, and voice calls.  Android also 
contains a debugger for stepping through code while monitoring 
various attributes such as thread states, heap usage (with manual 
garbage collection), and file system state.  All of this is 
accomplished through the Eclipse IDE with no external tools with a 
minimal startup time.  We were able to load an application and start 
using all these features in about 45 minutes with a little help from 
Androids documentation. 

However, we found two areas of improvement for Android. First, 
we would like to see a graphical CPU monitoring that works on the 
device as well as the emulator.  CPU monitoring only worked on the 
emulator.  Also, the output was a small line drawn on the upper part 
of the screen.  A graphical display that allows us to save info and 
correlate CPU usage to its respective code segments would be quite 
useful.  Second, GPS simulations only worked for the emulator (as 
for all devices presented by this paper).  We would like to see GPS 
simulation supported by the device as well. 

For J2ME, on device debugging is quite device specific.  Several 
manufacturers do release their own device specific debugging tools 
that integrate with common IDEs such as EclipseME [9] and 
Netbeans [20].  However, we found this fragmented experience to 
be quite a limitation of J2ME.  While the other two platforms 
provided a uniform and robust debugging framework, J2ME's on 
device debugging support relied solely on the device manufacturer 
(granted, iPhone is developed for only Apple hardware). 



 
Figure 4. Android's Debugging Environment 

We used the Java Debugger (jdb) from sun while debugging on the 
Simulator.  We ran this tool from the command line as well as 
NetBeans and found the debugger to be quite rudimentary.  We 
were able to set break point, check variables, and step through code 
as with most debuggers.  However, we felt that jdb lacked the 
advanced features offered by Android and iPhone.  The emulator 
supported standard simulated features, such as GPS and telephony 
features 

 
Figure 5. Apple's Instruments Tool 

iPhone had the most impressive statistical tools out of the mobile 
devices we compared.  Apple offers their Instruments tool that 
allows developers to graphically monitor several features such as 
memory usage, CPU usage, frame rate, etc. Instruments also allows 
developers to save traces to later analyze or send to fellow 
developers.  Instruments not only worked for the simulator, but for 
the device as well.  For intensive applications that require a high 
level of optimizations, we rank iPhone as the clear winner for 
support tools. 
However, we were unable to emulate GPS coordinates from the 
simulator.  While we were able to create an instance of their 
Location API, the API consistently returned the same coordinates at 
Cupertino, Ca. 

7. ANALYSIS 
While comparing mobile platforms, we quickly realized that 
development of Wireless Health libraries could extend across 
multiple mobile platforms using Java.  With Java's compile once run 
anywhere environment, we gain a level of standardization that not 
only improves our code portability, but also provides a set of 
standard APIs shared across mobile devices.  Of the five platforms 
compared, three supported a standard Java implementation 
(specifically J2ME).  We found these three platforms tended to 
provide necessary APIs we need for Wireless Health such as 

security, Open GL ES, GPS and Bluetooth.  We also found that 
functional requirements such as threads and background 
applications were supported.  Through providing a standard 
environment, Java has not only provided a portable platform, but an 
environment inclusive of our requirements for Wireless Health. 

Interesting to note, we also ran our initial libraries on standard 
Windows XP and Mac OSx laptops.  Porting to such platforms 
involved a simple integration with the BlueCove library provided by 
[5] and some changes to our visual APIs.  This exercise provided us 
with a much higher level of optimism for our Wireless Health 
libraries.  As Java moves across many new embedded platforms, 
our libraries can be leveraged not only in mobile devices (such as 
mobile phones and PDAs) and laptops, but also by any embedded 
device supporting a standard implementation of Java. 

With these observations, it was abundantly clear that J2ME offers 
the best runtime environment for wireless health applications.  This 
does leave out both Android and iPhone in the interim.    Since 
iPhone runs a similar kernel (Mach) as standard OSX, it is possible 
for apple to include a standard Java virtual machine (J2ME or 
J2SE).  As for Android, the Dalvik JVM is not a far reach from 
Sun's J2ME standard.  In fact, much of our code on both J2ME 
implementations and Android could be shared.  We feel that our 
Wireless Health libraries could extend to Android with increased 
API support from Android as well as some ingenuity from us. 

Android and iPhone currently have limitations that severely hinder 
wireless health applications.  The most noticeable limitation was the 
lack of a low power networking APIs for technologies such as 
Zigbee or Bluetooth.  While these devices do support WiFi, we feel 
this technology is too power hungry for wireless health applications.  
However, both of these devices do offer hardware support for 
Bluetooth 2.0 and could very well provide API  support in the 
future.  iPhone also lacks the ability to run background applications 
(without using discouraged means such as jail breaking).  Wireless 
Health applications are often required to constantly monitor their 
environment.  However, when using a mobile device such as a 
mobile phone, we must remember that these devices are intended 
for multiple purposes.  While our medical monitoring is extremely 
important we cannot completely control the device rendering other 
functionalities inaccessible.  As stated earlier, one of our 
requirements is the ability to seamlessly (as possible) add our 
applications into patients' lives. 

7.1 User Experience 
As noted earlier, user experience is critical to wireless heath 
applications.  End users may or may not be technically savvy.  
Therefore, applications should be intuitive.  In addition, many 
wireless health applications are intended for the elderly, such as 
SmartCane and Smart Shoe (described in section 2).   In general, 
eyesight and finger dexterity decrease with age.  Enhanced features 
such as larger attributes (such as fonts, images, and inputs) and 
better color contrasts are necessary to address the needs of the 
elderly [10][11].  Large touch screens cater to these attributes quite 
well.  Fortunately, all five platforms presented in this paper support 
such displays. Hardware support was the largest limiting factor 
when considering user experience.  We found that both Android and 
iPhone excelled in the area of user experience.  While Blackberry, 
Windows Mobile, and Symbian support similar displays, there are 
few commercial products that utilize such a display. 

8. SECURITY 
This paper has purposely left out an in depth comparison of security 



related features.  We feel that security is extremely important and 
includes such a broad area, that this topic deserves its own 
dedicated analysis.  For the purpose of this paper, we only 
compared whether each application supports a suite of security 
APIs.  It is important to note that security in wireless health as well 
as mobile/embedded devices is an area of ongoing research. 
 Authors in [4][13] have noted several areas of security concerns in 
protecting health information (wireless health info for [13]) such as 
authentication, confidentiality, secure links for data exchange, data 
integrity, and access protection for stored data.  Authors in [26] 
have noted several potential solutions for these issues.  Authors in 
[7][18][24] have discussed how resource constrained embedded 
platforms offer a new set of requirements for security measures 
beyond their "wired" counterparts.  We feel that future work should 
include a survey of all these aspects and how current mobile 
platforms and their respective security suites help alleviate issues in 
security for wireless health. 

9. IMPLEMENTATION 
Our Analysis was completed with an implementation of a simplified 
library on the J2ME platform.  J2ME lends its self quite nicely to 
developing wireless health libraries.  As noted earlier, Bluetooth, 
GPS, SQL, OpenGL, and a security suite are all supported by 
J2ME. 

9.1  Implementation Details 
We used a similar configuration as [26] in our implementation.  Our 
shoe consists of one MicroLeap [3] processor for both the left and 
right shoe.  This processor connects two pressure sensors (one in the 
heel and toe) as well as an accelerometer and gyroscope in all three, 
X, Y, and Z, axes.  Figure 9 shows our application running on the 
Nokia N95. 

 
Figure 9. J2ME Application running on the Nokia N95 

Our JAVA library consists of MicroLeap, data storage, graphic, and 
data processing abstractions.  Each of these abstractions hides the 
intimate details of their respective functionalities.   We also retrieve 
and store GPS data through the data storage APIs.  

Once activated, the application retrieves sensor input from the 
pressure sensors, accelerometer and gyroscope.  We sampled data at 
about 50Hz (although, much higher sampling rates are possible).  
This data is processed by the data processing API and stored by the 
data storage API.  We performed basic analysis of the shoe’s 
sensory data at runtime to determine the person’s current balance.  

We used a basic algorithm that compared data from the left and 
right shoe to determine symmetry.  This was accomplished by 
comparing the standard deviation of the X, Y, and Z accelerometer 
data for each foot.  This rudimentary algorithm was able to 
determine if a person was walking abnormally (such as limping, 
stumbling, or shuffling). 

Data stored on the device was later transferred to a PC where we 
could do more complex data processing.  We implemented a 
playback mechanism for our PC using the same Java libraries.  This 
mechanism allowed us to visually replay data retrieved by our 
Smart Phones 

9.2 Implementation Analysis 
We found some discrepancies while deploying our libraries on 
Windows Mobile, BlackBerry, and Nokia devices.  For Windows 
Mobile, we used an HP iPaq.  While the device has Bluetooth and 
GPS support, JSR 82 and JSR 179 were not a part of their JVM.  
For Blackberry, we used the Blackberry Pearl.  This device 
fortunately does support JSR 82 and JSR 179.  However, some 
minor features were not supported. For example, when using 
Bluetooth serial port profile (btspp) we could not set the server as 
the master node.  This issue was also present on the Nokia N95.  
Fortunately, we were able to work around this dilemma with our 
implementation.  However, this could be an issue for other 
implementations. 

Several mobile devices and laptops require a passkey when pairing 
with a Bluetooth device.  Typically embedded devices account for 
this with a hard coded passkey in their firmware.  However, we 
found lacking support in some of our prototype hardware.  While 
this is an issue of the embedded hardware, developers should be 
aware of such technicalities. 

Overall, we still feel that J2ME is the best target for developing 
wireless health libraries.  However, we found that some devices had 
no support for GPS and/or Bluetooth (even when hardware support 
was present).  

We also feel that J2ME’s debugging utilities are lacking.  While the 
current jdb is sufficient for debugging issues (such as the Bluetooth 
discrepancies we described earlier), the experience is quite 
fragmented.  iPhone and Android, on the other hand, offer a 
completely seamless debug experience with a series of tools for 
optimization.  We hope to see similar support in J2ME in the future. 

iPhone and Android are severely limited by their lack of low power 
connectivity APIs (such as Bluetooth and Zigbee).  However, their 
platforms may suite intensive data processing quite well due to their 
optimization tools (especially iPhone).  However, iPhone also lacks 
the ability to run background processes; a requirement necessary for 
wireless heath applications similar to those described in section 2. 

10. CONCLUSIONS 
Our initial intent was to find the best mobile platform for wireless 
health applications.  We based our comparison on the development 
of a simplified wireless health library.  The requirements for this 
library were based on several ongoing research projects in our labs 
at UCLA.   

We developed these libraries (where possible) on five mobile 
platforms (Windows Mobile, Blackberry, Symbian, iPhone, and 
Android).  Through this process, we became quite familiar with all 
five environments.  During this process, we noticed several 
advantages afforded by J2ME such as a unified runtime 



environment across a large number of devices.  These advantages, 
along with the lack of necessary functionality by both iPhone and 
Andoird, led us to a J2ME implementation. 

This exercise proved that J2ME was indeed a prime candidate for 
developing wireless health applications.  However, we found 
support for GPS and Bluetooth varied across devices. Therefore, the 
number of devices that can actually host such applications is smaller 
than preferred.  We hope to see a more unified support for 
Bluetooth and GPS on J2ME devices.  We also hope for a better 
debugging environment, similar to that of Android and iPhone. 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Abstract 

RFID location systems are often used in real-time location systems that come up with the problems 
like multipath phenomenon and layout changing. These make locating difficult because most of the 
location systems are based on fixed mathematical calculation that cannot take these situations into 
account. Using artificial neural network, our location scheme can learn the geography features to 
adapt to the real world. It could avoid multipath phenomenon effect and be flexibly applied to any 
environment. The experimental processes and result are shown in the end of the paper. 

Keywords: Real-time location system (RTLS), Radio frequency identification (RFID), Back 
propagation network (BPN), Received signal strength indicator (RSSI). 

1.  Introduction 

Radio Frequency Identification (RFID) is a fast growing automatic data retrieval technology that 
has become very popular in supply chain, retail logistics, and other applications [1]. Nowadays, 
RFID location and tracking application is also important that can be helpful to support the asset 
tracking and equipment management. 



RFID location systems are often be used in Real-time location systems (RTLSs). Location systems 
come up with the problems that signal reflection of walls, ground, and objects are received from 
various directions over a multiplicity of paths, called multipath phenomenon [1][2]. Moreover, the 
layout of objects is likely to be changed in many cases. These make locating difficult because that 
most of the location systems [3][4][5] are based on fixed mathematical calculation that the 
calculation model should be reconstructed when the layout of objects changing. 

Artificial neural network is a learning algorithm that can automatically learn the features of input 
and create appropriate output. In this paper, we locate the user’s position by applying the Back 
Propagation Network (BPN).  

The rest of the paper is organizes as follows. In section 2, the brief introduction of Received Signal 
Strength Indicator (RSSI) and the Artificial Neural Networks (ANNs) will be given. Section 3 
describes our proposed scheme. The experimental processes and result are discussed in section 4. 
Finally, we provide some conclusions in the last section. 

2.  Related Works 

In this section we brief introduce the Received Signal Strength Indicator (RSSI) and the Artificial 
neural networks (ANNs). 

2.1  Received Signal Strength Indicator (RSSI) 

Many location systems use the Received signal strength indicator (RSSI) to calculate the distance 
between user and reader. RSSI is the signal strength received from the reader antenna [1]. RSSI 
decrease by the distance between the user and reader according to the path loss model. But the path 
loss model is not fixed, it impacted by geography condition, reflection of walls, ground, and even 
layout of objects like barriers or a big desk. That is, maybe two RSSIs are the same, but indeed their 
distance to reader are different. These features make the fixed mathematical model difficult to 
construct. Moreover, if we use fixed mathematical model to locating the user’s position, we may 
have to reconstruct a new model for location when the geography condition changing manually. 

2.2  Artificial neural networks (ANNs) 

Artificial Neural Networks (ANNs) are information processing tools inspired by the learning ability 
of the human brain. About the theories and functions we can find in Hecht-Nielsen’s paper [6]. 
ANNs can automatically learn the features of inputs and create appropriate outputs that users don’t 
need to know the hidden processes between them. 



There are three layers in the ANNs: the input layers, the hidden layer, and the output layer. In this 
paper, the ANN used is the Back propagation network (BPN). There are two phases in BPN, the 
training phase and the predicting phase. When we get the training data set, we define the input and 
the corresponded expected output. BPN would automatically create the model that satisfies the 
training data set as much as it can, calls the training phase. After the model is created, we can use it 
to predict the outputs corresponded to the new inputs, calls the predicting phase. 

Using this feature, we collect the RSSIs of RFID readers as the inputs of BPN, and let the 
corresponded position be the expected outputs to train the collecting data. After the model is created, 
we apply it to predict the positions by giving new RSSIs. Therefore, our scheme doesn’t compute 
the mathematical model and virtually take the geography condition into account because that the 
RSSIs in the specific zone is the result of multipath phenomenon and other condition effect. 

3.  Proposed Scheme 

Proposed scheme locating the user’s position by using BPN modeling that can real-time locate 
which zone the user is. Proposed scheme can be divided into three phases: the data collection and 
pre-processing phase, the neural network training phase, and the neural network predicting phase. 
The three phases are described in the following paragraphs. 

3.1  The Data Collection and Pre-processing Phase 

We put three RFID readers in the location area, and all of them can sense the signals in the whole 
location area. Firstly, we divide the location area to predefined n zones, calls Z1 to Zn. For example, 
we divide the location area to 2x3 zones, shown in Figure 1. The marked numbers 1 to 6 are the 
dividing zones of the location area Z1 to Z6, and R1 to R3 are RFID readers. 

 

 

Figure 1: Example of the location area map 

 



Then we record the RSSIs of each reader in every zone. There are two ways to collect the training 
data: one is going around in the whole zone to collect real data, and another is stay in the center of 
zone to get more intensive data. In our experiment, stay in the center of zone make the location 
more accurate than the another one. 

We should normalize the collecting data because that data input and output in BPN are in the range 
of 0 to 1. We perform the normalization to the received RSSIs according to the following Equation 
(1). The variable ix  is the original received RSSI, and 'ix  is the normalized RSSI. maxx  and 

minx  are the maximum and minimum of all the received RSSIs in the whole location area. 
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3.2  The Neural Network Training Phase 

BPN is a learning model that consists of three layers: the input layers, the hidden layer, and the 
output layer. In this paper, the input units are the received RSSIs of the readers R1, R2 and R3. The 
output units represent the user’s position. We use the normalized RSSIs calculated in previous phase 
as the input unit so that there are 3 units in the input layer, corresponded to the three readers. 

We use the zone number of the location area as the output of BPN. If the location area is divided to 
n zones, there n units in the output layer, corresponded to the n zones. The value 1 represents that 
the user’s position is the corresponded zone, whereas the value 0 means that the user is not in the 
corresponded zone. For example, if the zone number is 1 and the location area is divided into 6 
zones, the output units should be 100000; if the zone number is 2, the output units should be 
010000. 

The number of hidden layer unit is generally defined by the following two approaches: 

2
+

=
Ninput NoutputNhidden

                            (2) 

 = ×Nhidden Ninput Noutput                           (3) 

In our scheme, the number of hidden layer unit is defended according to the Equation (3). 

In this example, there are 3 units in the input layer, 4 units in the hidden layer, and 6 units in the 
output layer. The structure of BPN is shown in Figure 2. 

Then we can use the data set collected in the previous phase to train the BPN, and after training we 
would get the locating model of this location area. 



 

Figure 2: Example of Neural Network Structure 

3.3  The Neural Network Predicting Phase 

After the locating model created, we can use the model to predict the user’s position. Firstly, we 
load the parameters of the model to BPN, and then normalize the newly received RSSIs as the input. 
The output is the prediction of the user’s position. 

When the geography or layout of objects is changed, we can simply retrain the BPN to get the new 
model, and then load the new model to locate the user’s position. These processes can be 
automatically done so that we don’t need to reconstruct the mathematical model manual. 

4.  Experimentation 

Our experimental location area is in the outdoor lawn, the ground has dimension of 9 m by 18.3 m. 
The location area is divided into 6 zones that each zone has dimension of 4.5 m by 6.1 m, as Figure 
1 shown. The gray marked regions are trees, stones and other big barriers, and R1 to R3 are RFID 
readers. The users take the RFID tags in the hand and stay in the center of zone to record the RSSIs. 
In each zone, we record 10 sets of RSSIs and then go to the next zone. The specification of RFID 
readers and tags we use are shown in Figure 3, Table 2 and Table 2. 

The 60 sets of RSSIs are used to train the BPN. There are 3 units in the input layer, 4 units in the 
hidden layer, and 6 units in the output layer. The structure of BPN is shown in Figure 2. 

In our experimentation, the correct rate is instable, generally between 60% and 90%. We find out 
that the accuracy is decreased when the weather change. For example, the model created in a dry 
and hot day performs well in the sunny days whereas performs poor in the raining days. The 
temperature and humidity would be important features in our experimentation that affect the 
accuracy of model. In the future work, the temperature and humidity should be taken into account. 
The inputs of BPN should be the RSSIs, temperature and humidity. 



    

Figure 3: RFID readers and tags in experimentation 

Table 1: Specification of experimental RFID readers 

 

Table 2: Specification of experimental RFID tags 

 



5.  Conclusion 

Using artificial neural network, our location scheme can learn the geography features to adapt to the 
real world. It would take the geography and reflection of walls, ground, and layout of objects into 
account. Therefore, it could avoid multipath phenomenon effect and be flexibly applied to any 
environment. If the geography or layout of objects is changed, we can simply retrain the BPN to get 
the new model to locate the user’s position. In the experimentation, the accuracy of scheme is 
generally between 60% and 90%. We find out that the temperature and humidity would be 
important features that should be taken into account. In the future work, the inputs of BPN should 
be the RSSIs, temperature and humidity. 
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