
Enhancing Dependability of Medical Software Systems

Oleg Sokolsky
Department of Computer and Information Science

University of Pennsylvania
Philadelpia, PA 19104-6389

April 15, 2005

Challenges to dependable design of medical systems. Medical software-based sys-
tems represent an important class of embedded systems. Along with many other classes of
safety-critical embedded systems, such as avionics and automotive controllers, manufactur-
ing, and mobile communication systems, medical systems are facing a number of challenges
to their design process.

There are two major factors that complicate the design and implementation of software-
based medical systems. First, the software complexity of medical systems has been increasing
steadily as microprocessors become more powerful and demands on them grow along with the
expectations of their capabilities. To mitigate the development cost of software, embedded
systems are being designed to flexibly adapt to different environments. The requirements for
increased functionality and adaptability make the development of embedded software com-
plex and error-prone. Second, medical devices, like all other kinds of embedded systems are
increasingly networked to improve functionality, reliability and maintainability. Networking
makes embedded software even more difficult to develop, since composition and abstraction
principles are poorly understood.

Modern software engineering methods that are increasingly applied in other application
domains go a long way towards improving quality of software-centric systems. These methods
are often based on modeling. Such modeling languages as the Unified Modeling Language
(UML) and such development methodologies as Model-Driven Architecture (MDA) provide
early discovery of design problems, help to ensure that independently developed components
work well together, etc. Embedded systems benefit from model-based approaches as well.
However, two features of medical systems, and embedded systems in general, stand in the
way of realizing the full potential of model-driven development. On the one hand, correctness
requirements for medical systems often include detailed behavioral requirements. Therefore,
commonly used modeling languages, which tend to concentrate on structural properties of the
system, fall shorts of the design needs. To make things even more complex, medical devices
work in complicated, dynamically changing environments. Without adequate modeling of
the environment, reliable model-based design of medical systems is impossible.

1



Second, the safety-critical nature of medical embedded devices requires a higher degree of
validation than most regular software engineering processes provide. Therefore, verification
and validation need to be at the core of the modeling technology for medical software systems
design.

Therefore, we need to develop means of behavioral modeling for medical systems that
would naturally support behavioral specifications and enable rigorous verification, and incor-
porate these methods into existing design processes. The quest for such modeling techniques
and practices is probably the biggest challenge to the design of software-based medical sys-
tems.

Enabling technologies for rigorous medical system development. Verification of
even the design model of complex embedded systems is intractable and furthermore, does not
provide any guarantee that the implementation is correct. Model-based testing is a useful
technique but does not provide guarantees about the correctness of the system. A third
approach, model-based run-time verification has recently gained significant attention.

Run-time verification is applied directly to a running implementation and hence does not
suffer from the drawback of analysis techniques which work on a design model of a system.
In addition, because the goal of run-time verification is only to certify the current run of a
system, this methodology does not suffer from the combinatorial explosion problem faced
by approaches that attempt to exhaustively test a system. Methodology and tools for the
run-time verification of software systems are being actively developed.

Medical systems must be designed to interact with complex physical processes in the
human body, where some parameters of the system change continuously. In other words,
they exhibit hybrid behaviors that are characterized by dynamics that are continuous and
by mode transitions that are discrete. Hybrid systems combine continuous dynamics that
have been well-studied in control theory and continuous mathematics with discrete commu-
nicating systems that have been extensively studied in computer science. We can use such a
hybrid system model against which we will check the run-time behavior of our system. This
presents challenges in determining the frequency at which to observe continuous variables,
interpolating such variable values between observations, etc. In addition, physical systems
develop faults and fail over time. We can use such fault and failure models in our hybrid
model which will then have normal modes as well as various fault modes. The run-time
monitor will be able to identify the mode the system is in and initiate corrective action
(steering) when necessary.

We can also use run-time monitoring to diagnose the source of errors in the behavior
of the system. A typical medical system will have many distinct components — sensors,
actuators, physical devices, and software system, — and we would like to get a more precise
diagnosis in monitoring such systems. In order to do this, we will need to introduce some
fault-tolerance capability into the system of sensors and actuators deployed and perform
checks on individual units against the aggregate.

2



Current research on dependability of medical software systems. Several directions
of the current research in our group at the University of Pennsylvania seek to address the
needs of dependable design of medical software systems. One such direction is the design of
modeling languages for hybrid systems and tools that support development and analysis of
models in these languages. In particular, we have defined a language for hierarchical hybrid
systems called CHARON [2, 3]. CHARON supports state-of-the-art modeling concepts such
as encapsulation, reuse, preemption, and hierarchy. We also implemented a toolset that can
be used to develop models, perform their simulation, and apply formal verification to explore
their properties [1]. The work on the CHARON toolset continues with the development of
additional analysis techniques, in particular tools for test generation.

Another direction deals with the development of techniques for run-time verification of
software-based systems. We have implemented a tool for monitoring and checking of complex
systems, called MaC [4]. We use a formal language to specify behavioral requirements of
a system. The tool then performs automatic instrumentation of the system to extract the
necessary information. At run time, MaC observes the stream of events and checks that
the observed behavior satisfies the requirements. We have applied MaC to validation of
embedded systems [5]. However, in order to make MaC more useful in the design of medical
software systems, we currently are exploring extensions of MaC that would allow us to
monitor hybrid behaviors, and use hybrid systems models, such as CHARON models, as
behavioral requirement specifications.

References

[1] R. Alur, T. Dang, J. M. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. J.
Pappas, and O. Sokolsky. Hierarchical modeling and analysis of embedded systems.
Proceedings of the IEEE, 91(1):11–28, Jan. 2003.

[2] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specifications of hybrid
systems in CHARON. In Proceedings of Hybrid Systems: Computation and Control,

Third International Workshop, volume 1790 of LNCS, pages 6–19. Springer-Verlag, 2000.

[3] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional refinement for hierarchical
hybrid systems. In Proceedings of Hybrid Systems: Computation and Control, Fourth

International Workshop, March 2001.

[4] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a run-time
assurance approach for Java programs. Formal Methods in Systems Design, 24(2):129–
155, March 2004.

[5] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Monitoring, checking, and
steering of real-time systems. In 2nd Workshop on Run-time Verification, July 2002.

3


