
CORRECT-BY-DESIGN SOFTWARE IS FUNDAMENTAL TO
HIGH-CONFIDENCE DEVICES

S. J. PROWELL

ABSTRACT. Software is a fundamental and integral part of many med-
ical devices. While the doctor who performs an operation must be li-
censed, the developers who create the software used in these devices
undergo no such licensing. For this reason it is especially important that
designs which can be subjected to rigorous analysis be produced prior
to software development. Such designs are fundamental to effective and
efficient testing, analysis of systems-of-systems, and risk determination
and mitigation. This paper identifies challenges and potential research
directions to address these concerns.

1. MOTIVATION

In [3] the authors discuss the well-known Therac-25 accidents which re-
sulted in death and serious injury, and identify basic software engineering
principles that the Therac software designers violated:

• Documentation should not be an afterthought.
• Software quality assurance standards should be established.
• Designs should be kept simple.
• Ways to get information about errors—for example, software audit

trails—should be designed into the software from the beginning.
• The software should be subjected to extensive testing and formal

analysis at the module and software level; system testing alone is
not adequate.

Three of these principles mention documentation and design, and one men-
tions formal analysis of the design. Unfortunately these principles continue
to be violated for a variety of reasons:

• Software requirements are poorly-understood at the outset and
change as developers and customers learn about the system’s capa-
bilities. Thus early rigorous design work is often considered waste-
ful, since the design will inevitably change.

S. Prowell is with the Department of Computer Science, The University of Tennessee,
203 Claxton Complex, 1122 Volunteer Blvd., Knoxville, TN 37996-3450, USA. Email:
sprowell@cs.utk.edu.

1



CORRECT-BY-DESIGN SOFTWARE IS FUNDAMENTAL TO HIGH-CONFIDENCE DEVICES2

• Many software developers are unfamiliar with modern formal spec-
ification techniques and tools.

• As Parnas and others have noted [4], many of the existing formal
approaches focus on notation, but not content.

The notion that early design work is wasteful ignores the established idea
of incremental and iterative development [2] under statistical process con-
trol. This idea can be applied to the specifications as well as to the software,
itself. Thus the first objection above is more a matter of educating develop-
ers than of developing new techniques.

Software is a fundamental and integral part of many medical devices,
even where the software aspect of the device is not obvious (as with em-
bedded systems). Safety and regulatory requirements for software systems
must require rigorous verification and validation to ensure adequate relia-
bility to protect the public health. As software systems become increasingly
complex and interconnected, testing as the means to gain confidence in the
system necessarily becomes impractical. Further, the lack of a precise sys-
tem specification inhibits even the best testing approaches, and makes it
difficult for domain experts (cardiologists, neurosurgeons, etc.) to ascertain
whether the device will perform appropriately even if it has been thoroughly
tested.

While the doctor who performs an operation must be licensed, the de-
velopers who create the software used in these devices undergo no such
licensing. For this reason it is especially important that designs which can
be subjected to rigorous analysis be produced prior to software develop-
ment. Such designs are fundamental to effective and efficient testing, anal-
ysis of systems-of-systems, and risk determination and mitigation. This pa-
per identifies challenges and potential research directions to address these
concerns.

2. CHALLENGES

Three challenges inhibit the adoption of rigorous specification tech-
niques:

(1) New methods. We require straightforward, systematic methods
to create rigorous specifications from informal, poorly-understood,
and often incomplete and inconsistent initial requirements. These
methods should benotation independentwhere possible, to allow
the maximum use of existing tools and techniques.

(2) Understanding of the state-of-the-art. Where tools and notations
exist, their role in the engineering process, their limitations and ap-
plicability, and their fidelity must be understood. Especially when



CORRECT-BY-DESIGN SOFTWARE IS FUNDAMENTAL TO HIGH-CONFIDENCE DEVICES3

software is combined into systems-of-systems, the impact on under-
lying assumptions of the methods must be understood. As signifi-
cantly, the cost in terms of time and money for these methods must
be understood in order to adequately plan for and justify their use.

(3) Barriers to adoption. Existing practitioners must be educated on the
methods and tools, and curricula must be developed for software
engineering programs. If existing practitioners and students do not
understand the relevance and utility of the methods, they will not be
adopted.

Each of these challenges is of a different nature, and these challenges are
neither finite nor sequential, but define an ongoing research program.

Tools such as model checkers and theorem provers, coupled with formal
notations such as Z [6] and CSP [1], provide a way for developers to create
and analyze software designs prior to implementation. Unfortunately, if the
methods used to create designs in these notations are poorly-understood,
then writing a design in Z or CSP becomes just another kind of program-
ming. Approaches such as [5] can be applied to generate a traceable spec-
ification from initial requirements, and the result can be transformed into a
variety of different notations for analysis using existing tools.

The most significant of all these challenges is the education challenge. If
software developers do not see the relevance and utility of the techniques,
they will resist adoption, and will “work around” these techniques. This
leads back to the first of Leveson and Turner’s basic principles: documenta-
tion should not be an afterthought. Unless documentation contributes mean-
ingfully to the process and is seen as helpful, it will continue to be an af-
terthought. Thus Parnas’ argument that the content of documents matters
morethan the notation.

3. MOVING FORWARD

There seems to be a common misconception that formal methods cannot
be widely adopted and used for developing software. This is demonstrably
false. Rate-monotonic and deadline-monotonic analysis techniques are for-
mal, and are widely-adopted to create real-time schedules. The construction
of parsers is based on formal grammatical notions. These formalisms are
then hidden by well-understood methods and tools, which free developers to
work at a higher level of abstraction. The tools and notations are understood
to contribute, and are thus widely adopted. Another example is database
normalization. The importance of normalization is understood by develop-
ers and thus the normalization rules are widely adopted.straightforward

Methods which result from the research program must meet this “adopt-
able” criterion and developers must be actively educated in their use and



CORRECT-BY-DESIGN SOFTWARE IS FUNDAMENTAL TO HIGH-CONFIDENCE DEVICES4

applicability. Not every technique is universally applicable. Engineers must
understand not just how a technique helps, but under what conditions it will
help. Managers must understand the cost and benefits of each technique.
Such an analysis is difficult to do. In order to facilitate this, a protocol for
sharing the results of applying the techniques must be established. Because
companies have little incentive to share good techniques with their compe-
tition, there is an important role for regulatory agencies in collecting and
evaluating the results of applying these techniques.

Moving forward, the following approach is suggested:
(1) Survey fundamental theory relevant to the specification of software

systems. It is likely that current theory is sufficient to the specifica-
tion of modern software systems.

(2) Identify practical, straightforward, and teachable practices based on
sound theory. The theoretical assumptions determine the applica-
bility of the practices, and guarantee the correctness of their results.

(3) Implement tools which support the application of these practices
and connect them directly to the generation of product code.

REFERENCES

[1] C. A. R. Hoare.Communicating Sequential Processes. International Series in Com-
puter Science. Prentice Hall, 1985.

[2] Craig Larman and Victor R. Basili. Iterative and incremental development: A brief
history.Computer, 36(6):47–56, June 2003.

[3] Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25 accidents.
IEEE Computer, 26(7):18–41, July 1993.

[4] David Parnas and J. Madey. Functional documentation for computer systems.Science
of Computer Programming, 25:41–61, 1995.

[5] Stacy J. Prowell and Jesse H. Poore. Foundations of sequence-based software specifi-
cation.IEEE Transactions on Software Engineering, 29(5):417–429, May 2003.

[6] Mike Spivey.The Z Notation: A Reference Manual. International Series in Computer
Science. Prentice Hall, New York, 2nd edition, 1992.


	1. Motivation
	2. Challenges
	3. Moving Forward
	References

