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It’s All Relative 
High-level programming languages are a misnomer in the construction of software systems 
in general and high-assurance software in particular.   High and low are relative terms, and 
today’s so-called high-level programming languages (such as Fortran, Pascal, C, C++, etc.) 
were “high-level” relative to the norm of the 60s where assembly language programming 
was common, and entire operating systems were written in assembly language.   Times 
have changed, better technologies have been created and expectations have increased.   We 
posit that two reasons underlie the core problems associated with these so-called high-level 
programming languages.   First, software systems are larger, and are more complex.   
Secondly, programming abstractions must match the complexity of the software systems 
being built.   In other words, as complexity grows, higher and higher levels of abstraction 
must be used.   This statement is recursive, one generation’s high-level abstraction will be 
the next-generation’s low-level abstraction.  And that is how it should be! 

Why Not Low-Level? 
A traditional argument against the use of higher levels of abstraction is that they impose 
additional performance overheads which can be costly in resource-constrained systems.  
For example, compilers for high-level programming languages adopt translation rules and 
conventions that may lead to sub-optimal performance relative to hand-coded assembly-
language programs.    This counter-argument does not bear much weight at best, and may 
even be false.  First, with Moore’s Law, overhead ratios drop exponentially over time.  
Secondly, while reaching the performance of hand-coded code was long considered the 
holy grail of compiler techniques and optimizations, in many specialized domains, 
automated compilers can actually do better than manually written assembly code.  Superior 
dataflow analysis, control flow analysis and VLIW parallelization techniques have been 
invented and supported.   Lastly, and likely most importantly, hand-coded code is 
extremely hard to read, understand and maintain.   In other words, productivity and 
verifiability become major problems and infeasible over time.   This exact set of arguments 
applies to why high-level programming languages must be considered too low-level. 

The Next Higher-Level of Abstraction 
The question then becomes “If high-level programming languages must be considered to be 
lower level today, what is the higher-level language to be used”?   We posit that model-



based design is the abstraction with which software systems must be built.   We argue that 
model-based approach is essential to the design, development and validation of high-
assurance software.  Such high-assurance requirements are critical for many application 
domains including medical devices and systems, control of critical infrastructures, 
aerospace, avionics and air traffic control.  A “model compiler” (or set of compilers) will 
translate the system models to the so-called high-level programming languages, which in 
turn can be compiled to the underlying instruction set architecture. 

Model-based Design for High-Assurance Embedded Systems 
In the context of software, the model is a precise description of the semantics of the system.   
First of all, semantics are multi-dimensional, and must describe functional or logical 
behavior and any operational modalities.  Functional behaviors may be modeled, for 
example, using state machines for event-based systems, dataflow graphs for stream-
oriented and signal-processing systems, feedback control diagrams for control systems, 
graph topologies for wireless sensor networks, and real-time tasking models for hard real-
time systems. For high-assurance embedded systems as used in applications such as 
medical devices, para-functional characteristics must also be specified.   These para-
functional aspects can include timing behavior, fault-tolerance and reliability, and security 
properties.   Secondly, the properties of the deployment target also can be captured, as are 
mappings between the software components and the hardware entities.   We refer to the 
latter as deployment characteristics.    
Once the semantics have been captured, various kinds of analysis (such as schedulability 
analysis and reliability analysis) can be carried out on both functional and para-functional 
aspects.   Analysis can also be complemented but not replaced by simulation approaches.   
The best model-based approaches will allow analytical properties to be composed, not 
require complete global knowledge, and exploit partitioning technologies that isolate 
independent sub-systems from one another.   
Deployment characteristics will play a significant role in performing detailed quantitative 
analyses.   First, deployment characteristics will be used to perform complete code 
generation (generating code in desired “high-level” programming languages).  
Dependencies on operating systems, communication protocols, middleware and specific 
programming languages will be dealt with by the model compiler.   Different back-ends 
will deal with a host of deployment configurations and their constraints. Secondly, a 
specialized model compiler test-generator backend will allow the injection of software and 
hardware faults, and test vectors to validate the behavior of the system when components or 
subsystems fail.   This feature is particularly crucial for safety-critical systems such as 
high-assurance medical devices.  Finally, measurement and profiling tools will be valuable 
in obtaining quantifying such elements as the worst-case, average-case and best-case values 
for execution times and spatial resources consumed.   Analytical approaches to obtain these 
target-dependent values represent a long-term research goal.    
From a software and system engineering point of view, groups of software components 
and/or hardware entities can be recursively composed to form larger components, 
subsystems, systems and systems of systems.    
 


