
High-Level Programming Languages are Too Low-Level

A Position Paper

Raj Rajkumar
Departments of ECE and CS
Carnegie Mellon University

raj@ece.cmu.edu

It’s All Relative
High-level programming languages are a misnomer in the construction of software systems
in general and high-assurance software in particular. High and low are relative terms, and
today’s so-called high-level programming languages (such as Fortran, Pascal, C, C++, etc.)
were “high-level” relative to the norm of the 60s where assembly language programming
was common, and entire operating systems were written in assembly language. Times
have changed, better technologies have been created and expectations have increased. We
posit that two reasons underlie the core problems associated with these so-called high-level
programming languages. First, software systems are larger, and are more complex.
Secondly, programming abstractions must match the complexity of the software systems
being built. In other words, as complexity grows, higher and higher levels of abstraction
must be used. This statement is recursive, one generation’s high-level abstraction will be
the next-generation’s low-level abstraction. And that is how it should be!

Why Not Low-Level?
A traditional argument against the use of higher levels of abstraction is that they impose
additional performance overheads which can be costly in resource-constrained systems.
For example, compilers for high-level programming languages adopt translation rules and
conventions that may lead to sub-optimal performance relative to hand-coded assembly-
language programs. This counter-argument does not bear much weight at best, and may
even be false. First, with Moore’s Law, overhead ratios drop exponentially over time.
Secondly, while reaching the performance of hand-coded code was long considered the
holy grail of compiler techniques and optimizations, in many specialized domains,
automated compilers can actually do better than manually written assembly code. Superior
dataflow analysis, control flow analysis and VLIW parallelization techniques have been
invented and supported. Lastly, and likely most importantly, hand-coded code is
extremely hard to read, understand and maintain. In other words, productivity and
verifiability become major problems and infeasible over time. This exact set of arguments
applies to why high-level programming languages must be considered too low-level.

The Next Higher-Level of Abstraction
The question then becomes “If high-level programming languages must be considered to be
lower level today, what is the higher-level language to be used”? We posit that model-

based design is the abstraction with which software systems must be built. We argue that
model-based approach is essential to the design, development and validation of high-
assurance software. Such high-assurance requirements are critical for many application
domains including medical devices and systems, control of critical infrastructures,
aerospace, avionics and air traffic control. A “model compiler” (or set of compilers) will
translate the system models to the so-called high-level programming languages, which in
turn can be compiled to the underlying instruction set architecture.

Model-based Design for High-Assurance Embedded Systems
In the context of software, the model is a precise description of the semantics of the system.
First of all, semantics are multi-dimensional, and must describe functional or logical
behavior and any operational modalities. Functional behaviors may be modeled, for
example, using state machines for event-based systems, dataflow graphs for stream-
oriented and signal-processing systems, feedback control diagrams for control systems,
graph topologies for wireless sensor networks, and real-time tasking models for hard real-
time systems. For high-assurance embedded systems as used in applications such as
medical devices, para-functional characteristics must also be specified. These para-
functional aspects can include timing behavior, fault-tolerance and reliability, and security
properties. Secondly, the properties of the deployment target also can be captured, as are
mappings between the software components and the hardware entities. We refer to the
latter as deployment characteristics.
Once the semantics have been captured, various kinds of analysis (such as schedulability
analysis and reliability analysis) can be carried out on both functional and para-functional
aspects. Analysis can also be complemented but not replaced by simulation approaches.
The best model-based approaches will allow analytical properties to be composed, not
require complete global knowledge, and exploit partitioning technologies that isolate
independent sub-systems from one another.
Deployment characteristics will play a significant role in performing detailed quantitative
analyses. First, deployment characteristics will be used to perform complete code
generation (generating code in desired “high-level” programming languages).
Dependencies on operating systems, communication protocols, middleware and specific
programming languages will be dealt with by the model compiler. Different back-ends
will deal with a host of deployment configurations and their constraints. Secondly, a
specialized model compiler test-generator backend will allow the injection of software and
hardware faults, and test vectors to validate the behavior of the system when components or
subsystems fail. This feature is particularly crucial for safety-critical systems such as
high-assurance medical devices. Finally, measurement and profiling tools will be valuable
in obtaining quantifying such elements as the worst-case, average-case and best-case values
for execution times and spatial resources consumed. Analytical approaches to obtain these
target-dependent values represent a long-term research goal.
From a software and system engineering point of view, groups of software components
and/or hardware entities can be recursively composed to form larger components,
subsystems, systems and systems of systems.

