
Making Plug and Play Safe for Networked Medical Devices

Christopher D. Gill
cdgill@cse.wustl.edu

Center for Distributed Object Computing
Department of Computer Science and Engineering, Washington University, St. Louis, MO

Abstract

Building “plug-and-play” systems in which multiple devices
can be integrated on the fly, and new devices can be added,
removed, and modified dynamically during system operation,
offers significant potential benefits for the medical community.
However, due to the critical health and safety issues associated
with medical devices, it is essential to maintain high confidence
in the correct functioning of these systems, even as a running
system of interoperating devices is reconfigured dynamically.

To achieve high confidence for these systems, especially when
system correctness involves (1) ordering and timing constraints
on system events, and (2) security of system data and actions, a
new branch of systems research is needed. This paper proposes
a research agenda to establish a foundational set of formally
verified systems mechanisms, and formal tools through which
they can be combined to support high-assurance interoperation
of medical devices in the context of plug-and-play systems.

1 Introduction

Medical devices are rigorously designed to perform specific
tasks, but to integrate them effectively, particularly for seamless
plug-and-play interoperation among multiple devices, requires
significant additional system engineering. Collecting data from
a set of devices and displaying it post hoc in a common format
is already readily achievable by commercially available labora-
tory information management systems. However, this level of
integration falls well short of what is possible if outputs of some
devices were connected to inputs of other devices in real-time
with rigorous assurances of timing and security of operation.
Furthermore, to achieve the flexibility and scale of integration
needed, software must play a central role not only in the individ-
ual devices, but in their end-to-end integration.

Middleware, software that bridges multiple devices in a dis-
tributed system, is playing an increasingly important role across
a variety of application domains. Significant research over the
past decade has made middleware both modular and customiz-
able through the development of state-of-the art object frame-
works [1] and QoS-enabled component middleware [2]. Fur-
thermore, to address the complexities raised by timing and other
constraints outside the data and computational requirements of
a system, research has focused on applying model-driven devel-
opment techniques [3, 4] to middleware [5, 6], to allow a priori
modeling and analysis of system properties.

Challenges: The three most important challenges that must be
addressed to realize the benefits of middleware in the context
of dynamic plug-and-play medical device systems with strin-
gent timing and security constraints, are: (1) common low-level

mechanisms from which a wide range of middleware architec-
tures can be built, must be modeled using formal and rigorous
techniques at a much finer granularity than has been done pre-
viously; (2) tools for synthesis of high-assurance middleware
must be developed, which can perform analysis of those formal
mechanism-level models, and then compose and configure mid-
dleware mechanisms themselves based on that analysis; (3) these
tools and their constituent analysis techniques must be made ap-
plicable throughout the lifecycle of plug-and-play medical de-
vice systems, so that a suitable balance of timing, adaptability,
and rigor can produce systems that are both high-performance
and high-assurance. We call this approach “composable model-
driven middleware”.

Research needs: The three most important research needs
to address the challenges described above are: (1) suitable
mechanism-level abstractions must be selected and modeled,
based on their suitability for a particular middleware domain
and its associated timing, concurrency, security, and other con-
straints – we are working on this need in collaborative research
efforts described in Sections 2 and 3; (2) tools, including li-
braries of models and the mechanisms they represent, must be
designed and developed, verified via rigorous experimentation
with realistic systems, and integrated with other existing devel-
opment tools and methods, to promote transition of composable
model-driven techniques into mainstream engineering practice
for developing systems of medical devices; (3) the time and
space costs of model checking must be addressed, particularly
through hybridization of model checking with other analysis
techniques, to allow analysis on-line at run-time as devices are
added, removed, and modified dynamically.

Roadmap: A variety of middleware and operating system ab-
stractions are already widely used in the development of dis-
tributed real-time and embedded systems. Model-driven tools
for middleware configuration and analysis have also been proto-
typed in research settings. In the near term, two main research
efforts are needed to begin to apply these existing capabilities
to the domain of plug-and-play medical devices: (1) existing
model-driven middleware tools should be augmented with our
fine-grained composable model-driven middleware techniques
to support detailed analysis of concurrency, timing, and security
properties, and highly customized synthesis of exactly (and pos-
sibly only) the mechanisms needed by each application; (2) these
augmented tools must be evaluated rigorously and empirically
for developing realistic systems of medical devices, though in
the near term the context of evaluation should be limited to fairly
static combinations of devices. Longer term research, conducted
in collaboration between the theory and systems research com-
munities is needed to address the hard problems of performing
model analysis within scales of time and space that match the

1



constraints imposed by dynamic addition, removal, and modifi-
cation of medical devices at the time scales needed in various
medical contexts. One such collaboration is described in Sec-
tion 2, in which incorporating focused protocols whose proper-
ties can be proven formally has the potential to reduce the state
space that must be explored through model checking.

We now describe two specific areas of concern for plug-and-
play medical device systems, (1) the assurance of timing prop-
erties and (2) the assurance of security for system data and ac-
tions, to help illustrate some of the challenges and potential so-
lutions for composable model-driven middleware. Section 2 de-
scribes work on timing assurance being conducted in collabora-
tion with Venkita Subramonian at Washington University, and
Cesar Sanchez, Henny Sipma, and Zohar Manna at Stanford
University, in which we are developing fine-grain models of
composable middleware mechanisms and evaluating composed
models through model checking and other principled analysis
techniques. Section 3 describes work on integrated security of
system data and actions being conducted in collaboration with
Armando Migliaccio from the Universita degli Studi di Napoli
Federico II (currently a visiting scholar at Washington Univer-
sity), Douglas Niehaus at the University of Kansas, and Ravi
Sandhu at George Mason University, in which well-known tech-
niques for access control can be integrated with new approaches
to scheduling and with the techniques described in Section 2, to
facilitate assurance of security of system data and actions.

2 Timing Assurance

Formal models have been used traditionally to uncover flaws
in application design early in system development. However, to
ensure those models continue to reflect the system being built
these application-level models must then be elaborated and re-
fined throughout the entire system development lifecycle. For
example, as decisions regarding (1) the deployment of appli-
cation components, (2) the topology of dependencies between
components and devices, and (3) settings for policies and mech-
anisms at the middleware level are made, these decisions must
also be modeled and the complete model re-evaluated for adher-
ence to design constraints as each such decision is made.

Fine-grain models of middleware elements: We focus our
modeling efforts on middleware abstractions that are sufficiently
fine-grained for both (1) rigorous concurrency and timing analy-
sis, and (2) widely used across different middleware implemen-
tations and configurations. The choice of abstractions to model
also has implications for the cost and scalability of analysis. We
are currently modeling canonical abstractions from ACE [1], as
a suitable basis for building middleware.

Figure 1 illustrates a scenario in which application compo-
nents are deployed across two interoperating devices. Each com-
ponent is implemented as an event handler (EH1, EH2, and
EH3). On each device, system events are dispatched to handlers
by a “reactor”, which is a middleware mechanism for dispatch-
ing events arriving from multiple sources. Client components
external to the devices (for example, on PDAs used by health-
care personnel) can interact with the components on each device
by sending events through its reactor.

Client1


Client2


EH1
 EH3
 EH2


Reactor1
 Reactor2


Figure 1. Component Deployment

Rigorous analysis of composable models: We have selected
timed automata [7] as the formalism with which to build mod-
els of canonical ACE abstractions. We then use model-checking
techniques [8] to detect potential constraint violations or dead-
locks. Model checking tools such as UPPAAL [9] and IF-
toolkit [10] are available for development, simulation, and anal-
ysis of timed automata models.

We now illustrate how timing properties of the system are af-
fected by even such simple choices as the deployment of com-
ponents and their interdependencies. Consider a scenario based
on Figure 1, in which Client1 sends an event to event handler
EH1 and Client2 sends an event to event handler EH3. Assume
EH1 and EH3 must each perform a specific computation when
invoked, and each return a result to the source of the event by
a given relative deadline as illustrated in Figure 2. Whether or
not the relative deadlines can be met depends on a variety of fac-
tors including the relative execution times and deadlines for the
event handlers, the the relative order in which the reactor is al-
lowed to dispatch events to them, and possibly other factors such
as multi-threading within a reactor or thread scheduling policies
enforced by the middleware and operating system.

Client1
 EH1
 EH3


5


7


9


11


13


s1
 s2


msec


Client2


Deadline


Figure 2. Client/Handler Interactions

Our models are designed to reflect such factors and to allow
potential interactions between devices to be explored to deter-
mine conditions under which constraints may be violated, or
to verify that the system as modeled is free of constraint vi-
olations. For example, we can analyze whether there are any
deadline misses in the scenario above by checking temporal
logic expressions in UPPAAL (e.g., E Client1.DeadlineMiss
or Client2.DeadlineMiss – that is, is there any state of the sys-
tem where the Client1 automaton is in its DeadlineMiss state or
the Client2 automaton is in its DeadlineMiss state?).

If an expression evaluates to true, then the model checker can
show a trace of the sequence of automaton transitions that led to
the system state in which the expression became true. For exam-
ple, if the reactor could dispatch events concurrently to EH1 and
EH3, and just meet their deadlines, but when EH2 (on a com-
pletely separate device) was invoked it in turn also sent an event
to EH1, a deadline miss in Client1 could occur if Client1 sent an
event to EH1 just after EH2.

2



Reducing the cost of analysis: Tools such as IF-toolkit which
allow dynamic introduction and removal of automata from the
model also help to prune the size of the state space that must be
checked at any point in the system lifecycle, compared to tools
like UPPAAL that require all automata to be composed stati-
cally and thus require additional modeling (and thus checking)
to emulate dynamic addition and removal of automata. Also, hy-
brid analysis techniques that apply other formalisms can reduce
the state space that must be explored by model checking. For
example, we have modeled deadlock avoidance protocols [11].
Whenever a request comes in to the reactor, the protocol deter-
mines whether or not a thread can be allocated to the incoming
request using information about the dependency graph – if not
the request must be delayed until allocating a thread to it would
not risk deadlock. Although a formal proof that this protocol
prevents deadlock [11] relieves the model checker of the need to
test for deadlock, the protocol itself adds new sources of delay
and thus must be modeled to check for deadline misses.

3 Security Assurance

Despite the importance of security of both system data and
behavior, traditional system development approaches treat ac-
cess control and execution control as separate areas of specifica-
tion and enforcement, resulting in (1) rigid architectural bound-
aries across which it is difficult to integrate security policies and
mechanisms, and (2) unanticipated “loopholes” that can weaken
or even bypass security enforcement.

To assure security properties within the composable model-
driven middleware approach described in Section 2, we have de-
veloped a novel security approach based on integrated access,
admission, and execution control. Access control can increase
security of system data by ensuring that event handlers must
have appropriate permissions to be able read, remove, transmit,
or modify any datum. However, for medical devices access con-
trol is only the first of several control decisions that must be
made to ensure secure execution of those handlers. For exam-
ple, once permission to send an event to a handler is granted, an
admission decision must be made so that execution of the han-
dler is not initiated if it will result in a violation of timing or
other constraints. The run-time scheduling [12, 13] of handlers
completes the sequence of decisions needed to ensure secure op-
eration. Scheduling may enforce complex systems of timing and
ordering constraints, for example to meet relative deadline [14]
or progress [15] requirements.

Our approach is to extend the well-established role-based ac-
cess control (RBAC) security model to include enforcement of
admission and execution control decisions. As in the RBAC
model, a role associates a set of permissions and other control-
related data with a group of users so that the permissions for a
group remain stable while users are allowed to join and leave
groups dynamically. However, each role is then extended to in-
clude its own chain of decision functions for access, admission,
and execution control, as illustrated in Figure 3.

References

[1] D. C. Schmidt, “An Architectural Overview of the ACE Frame-
work: A Case-study of Successful Cross-platform Systems Soft-
ware Reuse,” ;login:, Nov. 1998.

Figure 3. Integrated Role Structure

[2] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian, “Config-
uring Real-time Aspects in Component Middleware,” in Proceed-
ings of the International Symposium on Distributed Objects and
Applications (DOA’04), (Agia Napa, Cyprus), pp. 1520–1537,
Oct. 2004.

[3] J. Sztipanovits and G. Karsai, “Model-Integrated Computing,”
IEEE Computer, vol. 30, pp. 110–112, Apr. 1997.

[4] J. Liu, X. Liu, and E. A. Lee, “Modeling Distributed Hybrid Sys-
tems in Ptolemy II,” in Proceedings of the American Control Con-
ference, June 2001.

[5] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Ca-
dena: An Integrated Development, Analysis, and Verification En-
vironment for Component-based Systems,” in Proceedings of the
25th International Conference on Software Engineering, (Port-
land, OR), May 2003.

[6] G. Madl, S. Abdelwahed, and G. Karsai, “Automatic Verification
of Component-Based Real-Time CORBA Applications,” in Pro-
ceedings of the 25th IEEE International Real-time Systems Sym-
posium (RTSS 2004), (Lisbon, Portugal), IEEE, Dec. 2004.

[7] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[8] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled, Model
checking. MIT Press, 1999.

[9] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UP-
PAAL,” in Formal Methods for the Design of Real-Time Systems,
no. 3185 in LNCS, pp. 200–236, Springer–Verlag, 2004.

[10] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, “The IF
Toolset,” in Formal Methods for the Design of Real-Time Systems,
Springer-Verlag LNCS 3185, 2004.

[11] C. Sanchez, H. B. Sipma, V. Subramonian, C. Gill, and Z. Manna,
“Thread allocation protocols for distributed real-time and embed-
ded systems,” in Submitted to FORTE 2005, oct 2005.

[12] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,” Real-
Time Systems, The International Journal of Time-Critical Com-
puting Systems, special issue on Real-Time Middleware, vol. 20,
Mar. 2001.

[13] C. Gill, D. C. Schmidt, and R. Cytron, “Multi-Paradigm Schedul-
ing for Distributed Real-Time Embedded Computing,” IEEE Pro-
ceedings, Special Issue on Modeling and Design of Embedded
Software, vol. 91, Jan. 2003.

[14] R. Gerber, W. Pugh, and M. Saksena, “Parametric Dispatching
of Hard Real-Time Tasks,” IEEE Transactions on Computers,
vol. 44, Mar. 1995.

[15] T. Aswathanarayana, V. Subramonian, D. Niehaus, and C. Gill,
“Design and performance of configurable endsystem scheduling
mechanisms,” in Proceedings of 11th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), 2005.

3


