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Abstract

This paper proposesconstraint maintenance and transformations(CMT) as a basis for developing
high assurance software and systems. CMT goes from requirements to implementation through the appli-
cation oftransformation rulesthat(i) guarantee constraints are satisfied at each step(ii) supports changes
and upgrades through the modification of constraints (requirements) and their propagation through the
transformation rules and(iii) maintains a record of the transformations and proofs as documentation that
can be used for certification of the final implementation. We advocate the development of tools to support
CMT methods for full life-cycle development and maintenance of medical device software and systems
(MDSS). In addition to promising lower time and cost for developing high-assurance systems, CMT
offers direct support of standards currently being considered for MDSS development and certification.

1 Background and Motivation

The design space for high-assurance medical device software and systems (MDSS) has many dimensions, far
more than are faced, say, in conventional software engineering. Not only are there functional constraints, but
also constraints on safety, timing, cost, space, time to market, security and reliability to name a few. There
are also many dimensions to the solution space. One must choose from different software architectures and
different algorithms, as well as different hardware platforms and components.

The task for an engineer is to navigate through the design space, assess the tradeoffs among the different
design choices, and make decisions that satisfy the design constraints. This is complicated by the fact that
each decision changes the design constraints. For example, choosing a bus architecture may limit the choice
of DSPs downstream. Thus, managing design constraints is a major challenge

Although casting the design problem in terms of constraints and constraint refinement may seem intuitive
and perhaps obvious, there are relatively few tools that assist engineers in this process. There are tools and
methodologies that track requirements or introduce a degree of discipline, but nothing that actually checks
for consistency of design decisions or enforces a design discipline.

Languages and tools commonly used to design embedded systems are oftenmodel based(as opposed to
constraint based). These include languages like Stateflow, Statecharts, hybrid automata and data-flow lan-
guages like Simulink. The attraction of these languages is that they allow designs to be represented at a
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higher-level of abstraction (than say code) and the associated tools have with simulation and sometimes
verification capabilities. However, although these languages are well-suited for representing a particular de-
sign, they don’t help the engineer arrive at the design. This is because these tools cannot be used to express,
let alone simulate or analyze, incomplete models. Engineers are thus forced to commit to a particular design
prematurely.

The fact that current tools are model-based rather than constraint-based means that the design requirements
(the initial constraints) do not play a direct role in the design process. They serve only as a reference for
the engineer who has to invent a design for which it is hoped the constraints are satisfied. This disconnect
between requirements and design has a number of implications. First, validating, verifying and certifying
that a design meets its requirements become activities that are completely separate from the development
process. For safety critical systems, where a high degree of confidence is required, these are time consuming
and expensive tasks. Second, it means that any ambiguity that arises from unwritten, implicit and hence
unexamined requirements goes undetected until late in development. Similarly, it means that design errors
are often discovered late in development (often during testing). Finally, it becomes impossible to assess the
full implications of changes to the requirements. Often when the design requirements are not met or when
the requirements change, there are few options other than massive redesign and redevelopment. This cycle
may be repeated many times.

We conclude that failure to manage the design constraints in an effective way leads to increased development
time and costs. These problems will become only more acute with the increase in(i) hardware capabilities,
(ii) the demand for greater functionality in medical devices and(iii) the use of these devices in clinical
settings.

2 Beyond Model-Based Design

The discussion above suggests we consider an alternative paradigm for the development of medical device
software and systems (MDSS), where the designer begins with the requirements for a system expressed as
a collection of constraints. These constraints would deal with both functional and non-functional attributes
of the desired system and might include timing, reliability, and uncertainty. Then, as much as possible, a
system would be designed through the application of a collection oftransformation rules. Thus, the two key
themes in this paradigm areconstraint maintenanceandtransformations(CMT).

Each transformation rule would be a precise and formal encoding of some domain-specific design knowl-
edge, essentially a “design pattern.” The application of a rule would reify the abstract specification into
something more concrete. A rule might, for example, factor the problem into an architecture or select a
component, data-structure, or algorithm scheme. The tool supporting the paradigm must ensure that the
selected rule is applicable in the current context, manage the design constraints on behalf of the engineer,
and ensure that consistency is preserved with each transformation step. In CMT, the requirements and
“implementation” languages are combined, whereas hitherto they have been separate.

It is important to note that that a tool supporting CMT records not only the current design and constraints,
but also the abstraction hierarchy and the history of steps that brought one from the initial requirements.
What is finally delivered is not simply a collection of code, state machines and paper documents, but a
highly structured formal, query-able document that weaves together the requirements and the design history
and hence the rationale for the design.

Note also that CMT is not simply a “top-down” design methodology. At any point, an engineer can backtrack



and explore and assess different design scenarios and tradeoffs in the design space. The transformation
records also support subsequent maintenance, including upgrades and changes in the design requirements.
Thus, CMT provides full life-cycle support.

Encoding design patterns as transformation rules is a key feature of CMT. Codifying patterns means that
the art of domain-specific design will be captured in the transformation rules. Creative effort will be spent
creating patterns rather than specific designs. These patterns will then be applied to specific cases. Using
design patterns also make it possible for knowledge to persist beyond a particular engineer’s involvement in
a project.

3 Certification of MDSS

At present, certification is not an active concept in the medical device world. Nevertheless, a number of
international standards are relevant to medical devices. These include AAMI/SW68 [1], IEC 60601-1-4 [2]
and the draft standard IEC 62304 [3].

Like the others, the draft standardIEC 62304 Medical device software - Software life cycle processesempha-
sizes levels of abstraction, verification of each level of abstraction, (informal) refinement, the development
process, and traceability (similar in some respects to DO-178B, but with fewer levels). The developer must
provide written documentation for the entire process.

It is interesting to note that formal methods play no role in any of these standards. Indeed, the draft standard
states “This standard does not require the use of a formal specification language”. In other words, certifi-
cation artifacts are to be written in natural language. This contrasts with the Common Criteria (CC) where
the highest assurance level (EAL 7) explicitly requires formal mathematical models and proofs. While few
systems are likely to be designed to meet level EAL 7, it is interesting that the CC at least has provision for
formal methods and associates such methods with the highest level of assurance.

We believe that standards and certification are likely to become more important for MDSS (in the same
way that DO-178B is for avionics). Moreover, we believe that as certification is imposed, formal methods
will be introduced to reduce the cost of developing high-assurance software and systems, despite the current
perception that formal methods are expensive. It will not be economically feasible to produce all the tests and
documentation required by current standards practices as systems become more complex and performance
criteria become more stringent.

In anticipation of this, it would be useful to transcribe and extend the IEC standard in a way that assumes
the use of formal methods. Wherever possible, it should prescribe that certification artifacts, such as proofs
of correctness, should be machine generated. Formal artifacts other than proofs should also be considered.

The CMT paradigm deliverscertification by design. The requirements for an embedded system are used
directly in the design process. This, plus the fact that the correctness proof for each refinement step is
recorded as the transformation rules are applied means that certification can be integrated with the design
process rather than be carried out through separate tasks.



4 Comparison of CMT to Formal Verification

It is useful to contrast the proposed CMT approach with formal verification. In verification, a theorem prover
or model-checker is used to establish that a system or component has, or does not have, some property of in-
terest. The challenge with verification technologies has been, and remains, scaling to larger problems. Even
with recent advances in model-checking technology and state-space abstraction techniques, post verification
of real-world systems is intractable. Systems are simply too large for exhaustive analysis.

By contrast, we anticipate that the reasoning necessary to support a transformation and refinement paradigm
will be relatively modest. Rather than applying post verification to a complete system, one must establish
only the correctness of a relatively smallchangeto a design brought about by a transformation. In this
case, proving correctness means proving that a design decision does not violate the current collection of
constraints. In this sense, the reasoning isincremental. The correctness of the final design rests on the
compositionof a sequence of verified refinement steps.

5 Conclusions

This position paper advocates the development of a new approach to the development of high-assurance
software and systems that emphasizes contraint maintenance and transformation-based design. We also
propose that a certification process be developed for MDSS that uses artifacts from the application formal
methods as the principal supporting documents in the certification process. CMT offers an attractive way to
generate these artifacts.
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