
Proofs as a Substrate for Tool Integration
Supporting High-Confidence Embedded Software

John Regehr Konrad Slind
School of Computing
University of Utah

Elsa Gunter
Department of Computer Science

University of Illinois, Urbana-Champaign

1 Problem Statement

As the size and complexity of software in safety-
critical embedded systems increases, the ability of
programmers to deliver these systems in a timely
fashion decreases. Specific difficulties are that em-
bedded software must interact with the physical
world in real time and that it must make efficient
use of resources such as memory and energy. Our
work is driven by the observation that the funda-
mental scarcity limiting our ability to create high-
confidence embedded software is human developer
time. A practical and incremental solution to this
problem istool-rich software developmentwhere
software tools such as verifiers, static bug find-
ers, stub generators, and optimizing compilers au-
tomate tasks that people are not good at.

A diversity of tools is important because for a
given embedded system, some tools will present
developers with a good value proposition and oth-
ers will not. For example, extremely low-power de-
vices with a few KB of main memory can benefit
from static stack overflow detection [6] while sys-
tems with megabytes of RAM are unlikely to. The
current state of the art is that tools are applied in-
dependently and sequentially to a software system.
This mode of operation has two important draw-
backs:

1. Each tool must discover all facts about a sys-
tem that it requires. This makes it difficult to
create new tools that deal with, for example,
arbitrary C++ or x86 code. Furthermore there

is considerable reinvention of low-level anal-
ysis infrastructure across software tools.

2. The correctness of program transformation
tools such as compilers, link-time optimizers,
and stub generators is often dependent on sub-
tle assumptions about their input. It is diffi-
cult to trust a long chain of sophisticated tools,
and difficult to debug problems that stem from
complex interactions between developer as-
sumptions and multiple tools.

2 Solution Outline

Research-level solutions to the first problem de-
scribed above exist [1,4], but the second problem—
trusting a collection of useful but certainly buggy
tools—remains completely unsolved.Our thesis
is that formal proofs can be used as a semantic
substrate for ensuring the soundness of cooper-
ating, independently developed program analysis
and transformation tools.In order to implement
this vision, useful tools must emit enough infor-
mation about their operation that a proof of sound-
ness can be reconstructed. Then, when a final ex-
ecutable system has been generated, the individual
proofs can be chained together and checked. By
reasoning about individual analyses and transfor-
mations, rather than about entire analysis and trans-
formation tools, the probably intractable problem
of verifying these tools is avoided.

We do not wish to expose embedded soft-



ware developers to theorem proving environments.
Rather, as in proof-carrying code [5], proofs are an
internal mechanism for verifying program proper-
ties. Proof-carrying code avoids the need to insert
dynamic checks when running untrusted code; our
goal is to prevent potentially untrustworthy tools
from breaking safety-critical software.

Our insight is that at some level, an analysis
or transformation tool must prove to itself that a
program property holds before making use of this
property. If it can be arranged that such tools can
formalize and externalize the steps that comprise
these informal and internal proofs, then more tools
can be used, with more confidence, in the construc-
tion of safety-critical software. We hope that many
of the pedantic aspects of dealing with proofs can
be contained in proof-manipulation tools that are
developed once, by experts, and that are separate
from the tools that support the timely production
of embedded software. Proofs are a suitable sub-
strate for reasoning about analyses and transforma-
tions because theorem provers are a mature, well
understood technology and because proofs should
be general enough to express any desired program
properties.

3 An Example

Consider an ongoing (not yet published) project
of ours that compiles higher order logic specifica-
tions of algorithms into ARM machine code, with
the side effect of automatically producing a proof
that the low-level code implements the high-level
semantics (translation validation). ARM is a par-
ticularly good target for this kind of work because
it is ubiquitous in embedded systems and because
a semantics for ARM has been developed in higher
order logic [3].

The binaries emitted by our compiler are un-
likely to be especially fast—our goal is not to im-
plement a highly optimizing compiler. Rather, we
would like to use the Diablo link-time optimizer for
ARM object code [2]. The problem is that this in-
validates the proof of correctness.

To make Diablo emit proofs, we observe that it
is structured as an abstract interpreter. Recent work
by Seo et al. [7] has shown how to turn abstract
interpretation results into proofs. This technique,
coupled with proofs of soundness and monotonic-
ity of abstract transfer functions for object code that
we are currently working on, will lead to automated
generation of proofs that a particular abstract in-
terpretation was sound. Subsequently, proving the
soundness of simple optimizations such as global
constant propagation (from which Diablo derives
much of its benefit) is not difficult.

We believe that chaining together two proof-
generating tools—our compiler and a modified ver-
sion of Diablo—will result in the creation of ver-
ified binaries that also make efficient use of re-
sources. Furthermore, we will achieve these goals
with less effort, and in a more modular fashion,
than would other means to the same end.

Higher order logic implementations such as
PVS, HOL, and Isabelle/HOL can be seen as pro-
viding semantic platforms upon which to stitch
together proofs generated by a variety of tools.
For example, they already provide mathematical
theories needed for precise specification of med-
ical software, such as number systems (integers,
reals, fixed and floating point); temporal logics
(CTL, LTL); set theory, etc. Proof tools such
as simplifiers, first order logic proof search, and
model-checkers can be programmed in such envi-
ronments, but our main focus is on adapting exist-
ing program analysis tools, such as Diablo, to gen-
erate proofs and work together soundly.

4 Questions and Answers

Our work addresses problems in infrastructure, re-
source management, and verification/validation for
medical device software and systems (MDSS).

What are the three most important research chal-
lenges?

The overall challenge is to start with an assort-
ment of tools dealing with MDSS at various levels
of abstraction—specifications, source code, object

2



code, and hardware—and augment them with the
capacity to defend the soundness of their analyses
and transformations through proofs.

Second, if proofs are to be used as a substrate
for tool integration, then proof-manipulation tools
must improve dramatically. Rather than expect-
ing tools (and tool developers) to generate actual
proofs, ways should be devised to conveniently cre-
ate proof certificates for existing analysis domains.

Third, partial program correctness is being at-
tacked from various angles: there exist proofs that
real-time deadlines are met, proofs of type-safety,
proofs of deadlock freedom, etc. These proofs
usually exist in isolation; it is often unclear that
they compose gracefully. Researchers should strive
to apply various partial correctness results to an
agreed-upon formal program semantics such as the
HOL model of the ARM ISA. This will be particu-
larly challenging for proofs that deal with very ab-
stract execution models such as those that are typi-
cal in the real-time scheduling literature.

What are the three most important information
technology research needs?

First, research on tools for embedded software
is impossible without access to source code. If
the MDSS industry is unwilling to make source
code available then the next best course of action
is to create a DARPA-style open experimental plat-
form (OEP) for each major class of medical de-
vice. Funding agencies should allocate resources
that will be used to create and disseminate high-
quality OEPs that include requirements, specifica-
tions, documentation, hardware designs, simula-
tors, and the embedded software itself. Research
based on these OEPs will be far more likely to
solve actual problems faced by industry, and fur-
thermore, different research efforts that use a com-
mon platform can be directly compared and evalu-
ated.

Second, open infrastructure for software tools is
critical to lowering barriers to entry for validation
and verification research. Bradley et al. [1] make
this point nicely.

Third, formal (and hopefully executable) seman-
tics for MDSS platforms should be developed.

Fox’s ARM semantics [3] is a good start. Mod-
els are also needed for other embedded processor
architectures, for sensors and actuators, for multi-
processor devices, for configurable logic devices,
for real-time operating systems, for embedded mid-
dleware, and for the environments in which MDSS
devices operate.

What is a possible roadmap for the next 5–10
years?

In the short term, the next three years, we want
to focus on the technical challenges outlined above.
In the longer term, incentives will need to be cre-
ated to convince tool vendors to generate proofs.

References

[1] A. R. Bradley, H. B. Sipma, S. Solter, and Z. Manna.
Integrating tools for practical software analysis. InProc.
of the 2004 CUE Workshop, Vienna, Austria, Oct. 2004.

[2] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and
K. De Bosschere. Link-time optimization of ARM
binaries. InProc. of the 2004 Conf. on Languages,
Compilers, and Tools for Embedded Systems (LCTES),
pages 211–220, Washington, DC, June 2004.

[3] A. Fox. Formal specification and verification of ARM6.
In Proc. of the 16th Intl. Conf. on Theorem Proving in
Higher Order Logics (TPHOLs), pages 25–40, Rome,
Italy, Sept. 2003.

[4] Institute for Software Integrated Systems, Vanderbilt
University. Analysis Interchange Format v1.5, Mar.
2004.

[5] G. C. Necula and P. Lee. Safe kernel extensions without
run-time checking. InProc. of the 2nd Symp. on
Operating Systems Design and Implementation, Seattle,
WA, Oct. 1996.

[6] J. Regehr, A. Reid, and K. Webb. Eliminating stack
overflow by abstract interpretation. InProc. of the 3rd
Intl. Conf. on Embedded Software (EMSOFT), pages
306–322, Philadelphia, PA, Oct. 2003.

[7] S. Seo, H. Yang, and K. Yi. Automatic construction of
hoare proofs from abstract interpretation results. In
Proc. of the 1st Asian Symp. on Programming
Languages and Systems, volume 2895 ofLecture Notes
in Computer Science, pages 230–245. Springer-Verlag,
2003.

3



A Biographies

A.1 John Regehr

John Regehr is an Assistant Professor in the School
of Computing at the University of Utah. He ob-
tained a PhD from the University of Virginia in
2001 in the area of real-time systems. His current
work focuses on creating better embedded software
based on combining techniques from operating sys-
tems, real-time systems, and program analysis and
transformation.

Contact info:
regehr@cs.utah.edu
801 581 4280

A.2 Konrad Slind

Konrad Slind is an Assistant Professor in the
School of Computing at the University of Utah.
He obtained a PhD from the Technical Univer-
sity of Munich, and was a Research Associate at
Cambridge University for five years. His research
interests include functional programming and for-
mal methods, especially the implementation and
application of higher order logic. He is an im-
plementor of the HOL-4 system (http://hol.
sourceforge.net ).

Contact info:
slind@cs.utah.edu
801 585 6795

A.3 Elsa L. Gunter

Elsa L. Gunter is a Research Associate Professor in
the Department of Computer Science of the Univer-
sity of Illinois at Urbana-Champaign. Her research
interests include formal methods, design and use of
automated theorem provers, and mathematical se-
mantics of programming languages. She received
her BA from the University of Chicago and her
PhD from the University of Wisconsin at Madison.
She was a post-doctoral research assistant at both
Cambridge University and the University of Penn-
sylvania. For ten years she was she was a Member

of Technical Staff at Bell Laboratories. She then
joined NJIT for 4 years, and has been at Urbana-
Champaign since 2004.

Contact info:
egunter@cs.uiuc.edu
217 265 6854

4

http://hol.sourceforge.net
http://hol.sourceforge.net

	Problem Statement
	Solution Outline
	An Example
	Questions and Answers
	Biographies
	John Regehr
	Konrad Slind
	Elsa L. Gunter


