
Assurance and Certification of Software Artifacts for
High-Confidence Medical Devices

Mark P. Jones
OGI School of Science & Engineering, Oregon Health & Science University

Beaverton, OR 97006
Telephone: (503) 748 7554, Email: mpj@cse.ogi.edu

Position Paper, April 2005

Introduction Advances in technology have enabled the development of new generations
of computer-based medical devices that offer high levels of functionality and interoperability.
The primary purpose for these devices, of course, is to improve the quality and the effec-
tiveness of patient diagnosis, treatment, and monitoring. To many of their users—which
includes both the caregivers and their patients—the notion of a ‘high-confidence’ medical
device is an oxymoron: just as they expect a sterile dressing to be, indeed, sterile, or a needle
to have a point, so they expect computer-based devices to work correctly and safely, trusting
in the physicians, manufacturers, and industry and government agencies that develop them,
build them, and regulate their use.

On the face of it, these are not unreasonable expectations. However, the evidence suggests
that it will become difficult to meet these goals as the sophistication and complexity of
medical device software continues to increase. For example, many general purpose, desktop
computers are prone to software bugs that cause frequent failures and crashes, and a high
proportion are not correctly configured or patched to provide protection even against known
vulnerabilities. Large-scale, professionally administered systems also suffer from many prob-
lems, including high-profile virus and worm infections and the persistent rumors of leaked
personal data from compromised e-commerce sites and health centers.

Unless we take steps to address these failures, there is every reason to expect similar problems
with the software that controls medical devices. Some users accept the failure of a desktop
computer as a minor irritation that can usually be remedied, apart from some loss of time
and work, by rebooting the system. Clearly, however, this is unacceptable in the domain
of medical devices where a failure could result in compromised patient safety or security,
potential injury, or, in the worst case, loss of life.

Software Validation and Assurance Process-oriented software validation, as described
by the Code of Federal Regulations (21 CFR 820), is just one component in a broad spectrum
of issues that are required for FDA approval of a medical device. However, according to the
published FDA guidance on “General Principles of Software Validation,” 242 of the 3140
medical device recalls that occurred between 1992 and 1998 were attributable to software
failures, and, in a point that we will return to later, 192 of those were caused by defects
introduced when changes were made to software after initial production & distribution.
Process-oriented techniques are extremely valuable, but these numbers, and other related

1



reports, are clear indicators that there is a need to do more. In particular, artifact-oriented
techniques, which focus directly on software artifacts, will become an increasingly important
counterpart to techniques that focus on the processes by which it is constructed.

Software validation, like other parts of the Quality System Regulation, is driven by the need
to protect patients, and to provide them with assurance that the medical devices used in their
care are both safe and effective. However, there is also a real need to provide developers and
manufacturers with tools to meet these stringent goals. Without such support, there is a real
risk, driven by ethical concerns as much as the threat of expensive lawsuits, that innovation
will be stifled and that the potential of new functionality—which should ultimately be in
the best interests of patients—will not be realized.

Candidate Technologies For several decades, industry and academia have invested sig-
nificant effort in exploring techniques for building software systems that are worthy of their
designer’s and user’s trust. These include process-oriented methodologies, testing, formal
methods, and programming language technologies.

In the past, there have been difficulties in scaling some of these approaches to cope with
problems of real-world, engineering significance. Recent work, however, confirms that this is
changing. Intel Corporation, for instance, is now a significant consumer of theorem proving
technology, which it is applying in several different areas, including the verification of software
and microcode for new microprocessor designs. Elsewhere, Microsoft Corporation is now
preparing internally prototyped tools from its SLAM project—which is based on software
model checking—for inclusion in the next release of the Windows Device Driver kit. The
resulting toolkit will empower driver writers to verify their code against the important—but
previously informal—contracts that are needed to protect against the critical failures that
can result when buggy driver code is executed in kernel mode.

New programming language technologies also show considerable promise for increased soft-
ware reliability as well as programmer productivity. In the Timber project at OGI, for ex-
ample, we developed a domain-specific language (DSL) for configuring components in large,
distributed systems, which resulted in significantly smaller code (by a factor of more than
thirty in the largest examples) while also preventing hundreds of defects that were detected
in a corresponding non-DSL version.

Certification and Change As mentioned previously, changes to previously developed
software systems have been recognized as a major cause of medical device recalls. Indeed,
‘change’ is one of the only constants in software development where the operational re-
quirements, underlying platform, and assurance needs can all vary significantly during the
lifetime of a product. In some domains, such as aviation, where stringent standards for
software certification are already in place, the costs of recertification, even after just a small
change, have considerably slowed the adoption of new technology. Of course, safety critical
systems, including medical devices, warrant a conservative approach. However, it would also
be preferable to avoid a model that delays or discourages the introduction of beneficial new
developments (perhaps even bug fixes) so as to avoid or amortize certification costs.

Several commercial software packages have been developed in support of the Quality System
Regulations, providing process-oriented tools to track the evolution of a medical device in
response to many different forms of data gathered during its design, evaluation, and use in

2



the field. Software like this can be used to help in preparing the supporting documentation
that is needed for FDA approval of a new medical device.

As we extend the scope of validation and verification to include artifact-oriented techniques,
we will also need to extend these tools to help manage the complexity inherent in real-
world software systems. From a programmer’s perspective, such tools provide ‘make’-like
functionality for quality systems that support analysis and, as much as possible, automate the
construction of evidence of validity. In the Programatica project at OGI, for example, we are
developing a prototype tool like this that integrates a broad and open spectrum of assurance
techniques in a development environment for security-critical applications. Among other
features, the Programatica tools incorporate fine-grained, automated dependency tracking
to reduce the cost of recertification. Tools like these provide an evolution path for the
introduction of artifact-oriented methods. At the same time, work in this area will play a
key role in informing the development of new standards for meaningful, tractable, and agile
certification of medical devices.

Platforms for Evaluation Many researchers with a background in artifact-oriented tech-
niques for verification and validation are drawn to the potential of applying those methods
to assure the safety and reliability of medical device software and systems. To be effective,
however, this community needs access to open, and representative experimental platforms
that can be used: as case studies; as baselines for comparison and evaluation; as drivers
for development and application of new tools and prototypes; and as a focus for integration
with work on high-fidelity organ and patient models. Unfortunately, it is currently hard to
find suitable examples, mostly as a result of commercial pressures in the device industry,
including issues of licensing and IP. This is one key area where high-level government funding
might be used to enable broader access to industrially relevant examples. While it might be
easier to provide access to a suitable platform within the scope of a single research program,
the ideal would be to follow the model of “open source.” The Linux operating system—
widely adopted by operating systems researchers, but also by many other ‘normal’ users—is
a well-known and compelling demonstration of the benefits of leveraging a large community
of interested developers and users. Although the initial costs would almost certainly be high,
it would be hard to overestimate the potential long term benefit to device manufacturers,
and, more importantly, to society as a whole.

Biography Dr. Mark Jones is an Associate Professor at the School of Science and En-
gineering at Oregon Health & Science University (OGI). His area of expertise is in the
design, implementation, and application of programming languages. He obtained a doctor-
ate (D.Phil.) from the University of Oxford in England, and has worked as an Associate
Research Scientist at Yale University, and as a Reader at the University of Nottingham,
where he founded and led a research group on Languages and Programming. Jones was the
Principal Investigator on the DARPA-funded Project Timber, dealing with the development
of new programming language technology to support the design of reliable, real-time embed-
ded systems. He is now leading the Programatica project, which is using the construction of
a microkernel implementation with strong security properties to demonstrate and inform the
design of tools for evidence management and validation of complex, high-confidence software.

3


