
End-to-End Design and Analysis of
Embedded Real-Time Systems

EndEnd--toto--End Design and Analysis of End Design and Analysis of
Embedded RealEmbedded Real--Time Systems Time Systems

Faculty: Kang G. Shin
Grad students: Sam Gu, Sharath

Kodase
Real-Time Computing Laboratory

EECS Department
The University of Michigan
Ann Arbor, MI 48109-2122

http://www.eecs.umich.edu/~kgshin

ObjectivesObjectivesObjectives

• Enable the designer to express system behavior
and e2e RT constraints at a higher level, closer to
domain knowledge and further away from
implementation details.

• Automate the process of mapping from application
structure models to runtime models subject to
high-level e2e timing constraints.

• Provide formal semantics for e2e extensions to
enable effective formal analysis.

Proposed Design FlowProposed Design FlowProposed Design Flow

e2e functional and
timing requirements

Detailed design
of subtasks

Decomposition

Sched analysis
(RMA or ACSR)

Distributed executables

Download to target

WCET analysis

High-level application
requirements

Code generator

Application WCET

Application components

Formal verification
(model checking)

Model Transformation and IntegrationModel Transformation and IntegrationModel Transformation and Integration

• Functional design model
includes
– Behavior model: control

specifications
– Structure model:

components/subsystems
– Runtime model: task graph

• Non-functional issues
should be considered
during transformation,
especially for runtime
model

Structure
Model

Runtime
Model

component allocation

task assignment

Behavior
Model

ECSW design

Software Structure Meta-ModelSoftware Structure MetaSoftware Structure Meta--ModelModel

software
architecture

component
connection

action

port

in

out

performance
requirements
(reference)

processor
(reference)

communication
mechanism
(reference)

1

*

1
*

1

*

1
*

performance
(reference) 1..*

1

1

*
1

1
1

*

performance
(reference)

**

flow

1

*

TacticalSteering :

pilotControl

airframe

updateDisaply
AddConnection();
Update();
GetData();
Publish_Change();

Structure Model Example Structure Model Example Structure Model Example

airframe :
BM __ LazyActiveComponent

tacticalSteering :
BM__ ModalComponent

navDisplay :
BM __ DisplayComponent

GPS : BM __ DeviceComponent

navSteering :
BM __ ModalComponent

navSteeringPoints :

BM__ PassiveComponent

navigator :
BM__ PushDataSourceComponent

pilotControl :
ModeSourceComponent

5Hz

1Hz

20Hz

update_mode

invoke_mode

Publish_data

Publish_data

Publish_data

publish_data

Mode_change

mode_change
update

update

Comm. Media: network
Comm. Type: asynch

Platform Meta-ModelPlatform MetaPlatform Meta--ModelModel

1

1..1

1

*

1 *

platform model1

1..* 1

0..*

processor

communication
mechanism

src

dest
1

1
memory

operating system

timing service scheduling
service

interrupt
service

IPC network

1

*

1

*

1

*

performance
characteristics

(reference)

*

*

*

*

*

*

*

*

*

*

*

*

Platform Model ExamplePlatform Model ExamplePlatform Model Example

CAN
1 Mbps

MPC555
20 Mhz
2 MB

Pentium
90 Mhz
16 MB

RTLinux
Scheduling
Interrupt
Comm

OSEKWorks
Timing
Scheduling
Interrupt
Comm

Runtime Meta-ModelRuntime MetaRuntime Meta--ModelModel

runtime model

task

communication

1

1..*

1

0..*

-src

*

-dest *

*

*

platform
(reference)

0..*

1
performance
(reference) *

*

action
(reference)

communication
mechanism
(reference)

performance
requirement
(reference)

1
*

1
1..*

Runtime Model ExampleRuntime Model ExampleRuntime Model Example

GPS-ARFM Control Task
GPS
airframe

Display Control Task
navDisplay

Pilot Control Task
pilotControl

Navigation Control Task
navigator
navSteeringPoint

Steering Control Task
tacticalSteering
navSteering

Steering Control Task

tacticalSteering.
getData()

navSteering.
getData()

tacticalSteering.
update()

navSteering.
update()

tacticalSteering.
AddConnection()

navSteering.
AddConnection()

Runtime Model with Timing AnnotationsRuntime Model with Timing AnnotationsRuntime Model with Timing Annotations

GPS airframe navDisplay

Rate = 20 Hz

navDisplay:
GetData(): [(P1,10), (P2,13)]
update(): [(P1,50), (P2,80)]

GPS-ARFM Display Control

Pilot Control

Navigation
Steering Control

Rate = 20 Hz

Loc = P1
WCET = 10
Period = 50

Clock speed=20Mhz
Memory size=2MB

Timeroverhead = 5
Scheduling overhead =8
Interrupt latency = 10
IPC delay = 6

Delay=2
Jitter=2
Bandwidth=40

Transformation Between ModelsTransformation Between ModelsTransformation Between Models

Behavioral model

Structural model
Platform model

Performance modelRuntime model

Programming model

System partition
Component selection
Component integration

System thread identification
Task allocation
Performance attribute assignments

Code generation

Transformation AlgorithmsTransformation AlgorithmsTransformation Algorithms

• 2-step process
– Task construction
– Timing assignments

• Break dependencies by considering function
only in the first step, and then performance
in the second

• Design involves multiple iterations of 2-step
process

Task ConstructionTask ConstructionTask Construction

• Input: structural and platform models
• Process:

– Find e2e transactions (a.k.a. execution path)
– Allocate actions in transactions to platform

• Maximize utilization while preserving schedulability
• Refine later with communication cost

– Group actions on the same processor to form tasks
• Actions in the same transaction should be in one task
• Actions with the same priority should be in one task

– Allocate shared components in the faster task
– Construct task graph

• Derive dependencies according to structural model
• Assign timing constraints to e2e tasks

Timing AssignmentTiming AssignmentTiming Assignment

• Input: Task graph with e2e timing constraints
• Process

– Compute task WCET=Σeaction
– Find critical execution path P in task graph
– Distribute e2e deadline over P
– Break task dependencies by adding shared buffer
– Combine tasks with the same rate on the same

processor
– Verify the satisfaction of timing constraints
– Refine assignment by shortening the period of

task(s) on P until
• All constraints are satisfied
• Task set is found unschedulable (need more resource)

Timing Specification and AssignmentTiming Specification and AssignmentTiming Specification and Assignment

• Requirements are usually
given in an e2e form or a
rate for each component

• End-to-end constraints
should be partitioned and
assigned to each activity

• Schedules have to
consider these timing
spec as requirements

D1

D2

{r1,d1,p1} {r5,d5,p5}

{r2,d2,p2}

{r3,d3,p3}

{r4,d4,p4}

{r6,d6,p6}

{r7,d7,p7}

{r8,d8,p8}

{r9,d9,p9}

{r10,d10,p10}

r

Task
Generation

Functional
Constraints

Timing
Information

Deadline DistributionDeadline DistributionDeadline Distribution
• Objective

– Partition constraints at higher-level for timing assignments and
scheduling

• Deadline distribution supports hierarchical partitioning of
constraints

Inputs

· A task graph with WCET

· Timing constraints:

· e2e constraints: given a
sensor signal change X, the
new command for actuator Y
has to be outputted within t
time units

· Rate constraints: task T
has to be executed at a
particular rate R to satisfy
the requirements of
component C inside it

Outputs

· Deadlines and release times
for all intermediate subtasks

Deadline
Distribution

Deadline, release time, rate, and WCET are
sufficient for any scheduling algorithm to
generate a schedule

Task Dependency ResolutionTask Dependency ResolutionTask Dependency Resolution
• Task dependencies should be broken to support scalable

scheduling and allocation algorithms
• Shared buffers are used to break dependencies
• After introducing shared buffers, rates need to be regenerated
• Tasks are clustered to reduce resource consumption

A
B

C E

D F(r,d,p)

(r,d,p)

(r,d,p)

(r,d,p) (r,d,p)

(r,d,p)

A
B

C E

D F(r’,d’,p’)

(r’,d’,p’)

(r’,d’,p’)

(r’,d’,p’)

(r’,d’,p’)

(r’,d’,p’)

Real-Time AnalysisRealReal--Time AnalysisTime Analysis

• Schedulability Analysis
– Commonly used scheduling policies: RMA, EDF,

DMA, etc.
– Processor utilization
– Resource consumption by

• Application tasks
• System software (OS and middleware)
• Communication messages

• Two approaches:
– Generalized Rate Monotonic Analysis
– ACSR/VERSA

Formal AnalysisFormal AnalysisFormal Analysis

• Map event-triggered software model in UML
Interaction Diagrams to Timed Petri-Nets.

• Syntax-directed automated mapping from
TPN to Timed Automata, implemented in GME
via mapping between meta-model elements.

• Use an existing model-checker UPPAAL to
check for system property violations.

• Map counter-examples back into UML
environment.

Automated TransformationAutomated TransformationAutomated Transformation

in

out

[lb, ub]

TPN Model

TA Meta-Model

Conforms To

Transformation via
mapping of meta-model
elements

TPN Meta-Model

in >= 1, go? c := 0

c >= lb, in := in – 1, out := out + 1

In == 0, go?
go!

c<=ub

TA Model

Conforms To

An Avionics Scenario in UML

TPN Model of EDG ScenarioTPN Model of EDG ScenarioTPN Model of EDG Scenario

Model Checking Results (Sample)Model Checking Results (Sample)Model Checking Results (Sample)

• Transform TPN to TA, then use UPPAAL for model-checking.
• End-to-end delay range of 1Hz thread is [275, 525] ms.
• 5Hz thread with deadline=200 ms has frame-overrun.
•UPPAAL can give a diagnostic trace for the execution
scenario that leads to frame overrun.

Deadline missed!

20 110 200

S11 S12 S13 S14 S15

S21 S22 S23

ConclusionsConclusionsConclusions

• ESW development is a multi-phase multi-iteration
process, and requires integration of tools based on
heterogeneous models
– Require a common modeling framework
– Require information loop

• The proposed framework supports semi-automated
model transformation
– Demonstrated by translating structural model to

runtime model while meeting e2e timing constraints
• Formal verification by automated transformation from

UML models to TPN and TA.

PublicationsPublicationsPublications

• An Integrated Approach to Modeling and Analysis of Embedded
Real-Time Systems Based on Timed Petri-Nets. ICDCS 2003.

• Analysis of Event-Driven Real-Time Systems with Time Petri-
Nets. DIPES 2002.

• Integrated Modeling and Analysis of Computer-Based
Embedded Control Systems. ECBS 2003.

• Improving Scalability of Task Allocation and Scheduling in Large
Distributed Real-Time Systems using Shared Buffers. IEEE
RTAS 2003.

• Transforming Structural Model to Runtime Model of Embedded
Software with Real-Time Constraints. DATE 2003.

• Automating embedded software construction and analysis with
design models. Euro-uRapide 2003

ENDENDEND

• Questions?

Timing AssignmentTiming AssignmentTiming Assignment

• Input:
– Dependent task graph with timing constraints
– Platform

• Process
– Compute task WCET=Σeaction

– Find critical execution path P in task graph
– Distribute end-to-end deadline over P
– Break task dependencies by adding shared buffers
– Combine tasks with the same rate on the same processor
– Verify the satisfaction of timing constraints
– Refine assignment by shortening the period of task(s) on P

until
• All constraints are satisfied
• Task set are unschedulable (need more resource)

