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The Problem

• Data sizes too large to fit in primary memory

• Devices with small memory

• Access times to secondary memory are too
long for data to be processed in real time



Web crawlers

Network routers Databases

Sensor networks

Example scenarios



Model 1: External Memory Models

• Design and analyze algorithms in terms of
• Primary memory size
• Disk block size
• Page size
• Number of disk reads and writes

• Efficiency requires new algorithm designs.

• Problems: 
• Algorithms may not be real time.
• May not have secondary storage.



Sample application: Network of 
Sensors and Actuators

l Increasingly important in environmental and 
military applications.

l Sensors monitor physical entities.
l Voluminous monitored data needs to be  

analyzed in stream fashion.
l Commands to actuators generated based on

analysis.



Sensor networks --- cont’d

l Data Characteristics
– Varying rates of data arrival
– Many data sources transmitting data
– Large volume
– Data produced continuously ... infinite stream, but

only “recent” data is relevant.

l Constraints
– Query and analysis on demand as data arrive
– Actuators need to process commands



The Size of a Data Stream

l If the data stream is finite: n, the number of 
items in the stream.

l If the data stream is infinite?

Infinite amount of data does not make computational sense: we 
will be interested in a window of values which arrived in the last n 
time steps. 

Windowed data stream model. 



Model 2: Streaming Algorithms

Processor
(router?)
Memory
(small)

0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 

Compute interesting 
properties of
the data.

• Data processed in real time.
• Need to use randomized strategies and settle for

approximate answers



Example 1

Traffic data from successive days:
(source,destination,bytes,day)
... (A,B,20K,1),(A,C,64K,1),(C,D,56K,1) ...

... (A,C,32K,2), (A,D,48K,2), (B,C,10K,2) ...
Are traffic patterns anomalous from one day to the
next?
Stream of successive readings from a large 

number of sensors in a sensor network.
Has there been a “big” change overall?



Example 2

Stream of SYN and ACK packets flowing through a router:

How many SYN packets without corresponding ACKs
in last 10,000 packets?

Want to figure out the answer with much fewer than 10,000
words of memory.

This is a question in the sliding window model.



Lower Bounds

For exact computation many simple tasks need lots of
space. For example, computing number of 1’s in sliding 
window of size N requires N bits of storage.

Such bounds are proved by using theorems proving 
lower bounds on communication complexity. 

Need to allow approximate and randomized computation.



Algorithms-I

Median: Given stream of n integers compute median.
Theorem (Munro & Paterson):

With             space, we need p passes
and we can do it in p passes.

Frequency moments: Given sequence                where each
, let     denote number of      in sequence.

kth frequency moment:

Theorem (Alon, Matias, Szegedy) Can approximate the 0th

through 6th moments using log n space. However for
higher moments the space required is nearly n.
(Input of this form is called cash-register input.)
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Algorithms--II

Given two streams representing two vectors compute
the norm                of their differences.

(Feigenbaum, Kannan, Strauss, Viswanathan) show how to
do this with polylog space. (Indyk) extends result to
cash-register model.

Above results solve the problem posed in Example 1.

1 2(L , L , )K



Algorithms-III

Database applications:

• Computing histograms --- Given a function represented
by a stream approximate it by piecewise constant
functions. (Gilbert, Guha, Indyk, Kotidis, Koudas, 
Muthukrishnan, Srivastava)

• Quantile summaries --- Compute a summary or sketch of
stream of data to answer quantile queries such as
`find an element that is in the 30th percentile’.
(Greenwald, Khanna) 



Algorithms--IV

Transforms: Given a function as a stream, compute the
Fourier Transform. Compute a wavelet transform.
(Gilbert, Guha, Indyk, Muthukrishnan,Strauss)

Clustering: Given a stream of points in multidimensional
space, find a small number of cluster centers that are
nearly optimal. (Callaghan, Guha, Meyerson, Mishra,
Motwani).



Methods of Attack

1. Sample : Restrict input
2. Compress computation tree
3. Embed
4. All of the above …



A Sampling Approach

l Consider finding the median
l Sample                          values
l Sort and return the median of S
l Error is           with high prob. 
l Uses Hoeffding’s Inequality
l [MRL 98, 99]
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States of Computation

l Consider any offline computation
l Can we store intermediate results in succinct form ?

Targets
1. Divide and Conquer 
2. Dynamic Program



Divide and Conquer

l (GMMO ’00)
l Consider the following clustering algorithm

R-ary Tree. At each node cluster into K 
clusters and send to parent



l Consider a two level process

l Prove that combined new problem has solution close 
to original cost

l Find (approximate) it

Basic Building Block



The Dynamic Program

l Store the table in compressed form
l Approximate entries to indicate only the large 

changes

l For new element, search is reduced since the table 
is small



Adding points one at a time

l Incremental Algorithms in small space
[Vitter] Reservoir sampling
[CCFM ’97]   Incremental K-center
[GK 99] Selection in space 

l Linear Partitioning problems [GK 01, 02]

l Data Structure Questions as well …  
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Embeddings

Basically Dimensionality reduction
To compute f

– Reduce dimension of input to fit in the memory 
space available.

– Operate in new space to compute an appropriate 
function g.

– Lift g back to get f’ close to f



Linear Embeddings

l [JL Lemma ]

l A is a Random                       Matrix drawn from 
Gaussian distribution.

l Too many elements in matrix!

Use Pseudorandom Generators [I 00]
P-Stable distribution for 
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What it achieves 

l Computes Norm when       arrive out of order.

l [AMS 96, FKSV 99, I 00]
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Our current work

Can we make the data talk?

Often we don’t know what exactly we are looking
for, but can tell if an answer is significant...

Example: Intrusion detection --- can enumerate
each type of intrusion we can think about and
check if the stream of packets at a packet
sniffer constitutes this kind of intrusion... but
what about the types of intrusions we haven’t
listed?



Data Mining

We are doing data mining. What is it?

Searching for answers to questions we cannot
formulate?

Looking for statistically significant patterns
amidst a background of noise or other patterns?

Statistics is key --- otherwise we have no basis for
judging significance.



Rough Model Formulation

There are several processes... and we are
seeing the interleaved output of these processes.
(For intrusion detection some of the processes
could represent honest use and others represent
intrusion.)

How to model each process? Remember statistics
is key. But processes we deal with do have
memory. So, natural model is Markov Chains.



Markov Chains
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Some Basic Facts

•Ergodic Markov chains have a stationary
distribution.

•Random walks on n node graphs are “within” 
from stationary distribution in            steps.

•For a random walk, stationary probability of a
vertex is proportional to its degree.
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Our Problem

MC1

MC2

... 1 3 2 5 1 4

... 2 6 7 3 1

...2 6 1 3 2 7 5 3 1 4 1 

Observe ...2 6 1 3 2 7 5 3 1 4 1 ...
Infer: MC1 & MC2



For our problem we assume:

• Stream is polynomially long in the number of states of
each Markov chain (need perhaps          long stream).

• “Mixture” probabilities are bounded away from 0.

• Space available is some small polynomial in #states ---
possibly         .

• Assume we have a mixture of two Markov Chains, although
results generalize to more.

)( 6nO

)( 2nO



Our Results

• For Markov chains on disjoint state sets, we can
infer a mixture of an arbitrary number of them
under a very general interleaving process.

• For Markov chains on overlapping state sets, we
can currently deal with inferring a mixture of 2
chains under a technical condition...



Examples

• Computational biology

•Identifying exons and introns

•binding sites and other motifs

• Internet intrusion Detection

•Intruder traffic may have different

statistical properties from regular traffic.



Conclusions

Streaming continues to be a source of exciting
problems. They are here to stay.

With the interest from the database community
and the networks community many streaming 
algorithms will not remain purely on paper... they
will be implemented, empirically tested and
improved.

We are planning to implement some of our recent
work.


