
Examining the CARA
Specification

Elsa L Gunter,
Yi Meng

NJIT

Capturing Tagged Req As LTL Spec

l Goal: Express tagged requirements as LTL
formulae to enable model checking

l LTL not expressive enough, so we must
approximate

l Choice A: Give weaker statements and prove
that those weaker statements hold
» Know that is doesn't guarantee that the

original requirements hold

Capturing Tagged Req As LTL Spec

l Choice B: Give stronger statements
» Not always possible (may force the new

requirements to always be false)
» May rule out desired implementations

l Choice C: Give statements that may be weaker,
but which when combined with domain
knowledge implies the original requirements

Limitations of LTL for Composite Systems

l Can only specify that something happens now,
next, eventually or always (and until)

l Next usually too strong – irrelevant actions in
independent parts of system can intervene

l Generally forced to use Eventually when
something stronger is wanted

l Can’t adequately relate values from one point in
time to another

Example

8: The CARA will monitor the Air OK line
whenever the pump is plugged in

8.1 If the Air OK signal remains low for 10
seconds

8.1.2 A level 1 alarm is issued

Example

l This roughly becomes
l Always ((PlugIN = true /\ AirOK >= limit and

Next (timer = 0 and (AirOK < limit Until
timer >= 10))) implies Eventually (timer >=
10 and AirOK_Alarm = 1))
l Relies heavily on domain knowledge

»Values for timer increments, reflecting
“true” passage of time in seconds

Example

l Correctness depends on visibility and
control of variables
l System controlled: AirOK_Alarm
l Environment controlled, system visible:

Plugin, AirOK
l Envoronment controlled, system hidden:

timer
l Constant: limit

Modeling Environment

l Correctness depends on valid modeling of
required domain knowledge
»Verification?

l Typically need new model for each new
modeling language for the system
l Each model should be motivated by the

requirement, not the implementation
»Only expressed using environment controlled

variables and system variables exported

Specification Analysis:

l LTL Spec can be checked with model
checker/thoemr prover such as Spin, Pet, Dove

l Must input functional model based on tagged
requirements (EFSMs)

l Must also input approximate functional model of
system environment
» Thereby capturing needed domain knowledge

l Prove every behavior of combined functional
satisfies the formal logical statements

Upshot

l Captured most of tagged requirements by
approximate LTL formulae (using combination of
Choice A and Choice C)

l Found many places where more than one
interpretation was possible

l Ongoing work on checking EFSM specification
against LTL formulae in Pet and Dove

l Need modular approach to avoid state space
explosion

Formalizing Original Spec

lReasons:
» To facilitate checking the

specification for self-consistency

» To allow checking other forms of
specification against the tagged
requirements

DOVE

DOVE is a tool built on theorem
prover Isabelle to construct,
simulate and prove LTL properties
of Finite State Machines

Graphical interface for building FSMs
Isabelle used for proving properties

Developed by DSTO in Australia

CARA in DOVE

Work with Yi Meng

Translate CARA EFSM Spec into DOVE
Translate LTL formulae into DOVE
Prove they hold (or rather find that they

don’t
Difficulty: Needed to add support for

composing FSMs in DOVE

PET

l Path Evaluation Tester – Elsa Gunter
and Doron Peled

l Based on translating code to control
flow graphs

l Combines automatic theorem proving in
HOL with model checking

l Programs input in simple concurrent
language, compiled to visual flow
graphs

l Model checking based LTL fomulae

Findings

l Been able to prove some requirements
hold of Penn EFSM spec

l Found collections of places where it
does not
» Cause is typically raise conditions

l Discrepancies tend to highlight
questionable aspects of requirements

