
Introduction to Model Checking
of Hybrid Systems

Oleg Sokolsky

CIS 700-002

• Systematic evaluation

– of formally specified system behaviors

– with respect to a formally specified property

– using state space exploration

• Need a model of the system and a property specification

– Use hybrid systems to represent behaviors

– Use temporal logics to represent properties

• Verification vs. falsification

– Verification constructs a proof that every behavior of the
system satisfies the property
• When verification fails, a counterexample is produced

– Falsification systematically searches for counterexamples
2

Model Checking

• Hybrid systems modeling with hybrid automata

• Property specification with STL

• Set-based reachability analysis

• Simulation-based analysis

3

Outline

A lot of content is borrowed without permission from G. Frehse, E. Abraham, G. Fainekos

• Combination of continuous and discrete behaviors

• Continuous behaviors “flow”

– Values of variables gradually change with time

• Discrete behaviors “jump”

– Variables instantaneously change values

• Hybrid systems are a modeling device

– Physical entities are continuous
• Unless quantum effects are considered

– Discrete changes (e.g., digital computations) take time

– Hybrid systems abstract away very fast dynamics
• Simpler models with sufficient accuracy

4

Hybrid Systems

• Three phenomena:

– String extension

– Free fall

– Collision

• How do we model collision?

– Dynamics of hitting a wall
are quite complex
• Material deformation?

– Discontinuous flows using DAEs?

5

Example: Bouncing Ball

• Flows are captured by ODEs

• Jumps use “next value”

• Equations of motion
– Free fall, x ≥ xr

• m is mass, g is gravity constant

– Extension, x ≤ xr

• k is spring constant, d is damping

– Collision, x = xr + L

• c ∊ [0,1] is absorbtion factor

6

Bouncing Ball Dynamics

Behavior (xr = 0)

7

8

Phase Portrait

• States (locations) pass time

– Variables evolve according to flows

• Transitions are instantaneous and represent jumps

9

Hybrid Automata

Hybrid Automata Syntax

10

• Hybrid automaton behaviors are given by a set of runs

• A run is an alternating sequence of flows and jumps

11

Hybrid Automata Semantics

12

Phase Portrait

• Jumps in hybrid automata introduce discontinuities in
trajectories

– Often discontinuities are not needed

• A typical control system:

• Modes (locations) are implicit in the controller

13

Switched Systems

Plant with continuous dynamics
ż = f(z,a,b,c)

Discrete controller

z

c

b

a

• Hybrid systems modeling with hybrid automata

• Property specification with STL

• Set-based reachability analysis

• Simulation-based analysis

14

Outline

• A property is a set of behaviors

– A behavior satisfies property P iff it is included in the set

– A system satisfies the property iff all its behaviors satisfy P

• Safety vs. liveness

– Safety: something bad never happens
• Never hit an obstacle

– Liveness: something good eventually happens
• Successfully complete a mission

– An arbitrary property can be expressed as intersection of a
safety and a liveness property
• Complete a mission while avoiding obstacles

15

Properties

• Properties are temporal relations between signal
predicates

• Examples:

– Velocity will be non-negative
until a collision occurs
• True

– Collision will not occur
• False

16

Signal Temporal Logic (STL)

• Syntax:

– Xi is a system variable

– I is an interval [a,b]

– U is the until operator

• Examples:

– Velocity will be non-negative until a collision occurs
v ≥ 0 U[0,∞] x ≥ L

– Collision will not occur
□[0,∞] x < L
• Its negation is a reachability property

17

STL Syntax

Common syntactic sugar:
□I φ = true UI ¬ φ

◊I φ = ¬ □I ¬ φ

• STL formulas are evaluated over execution traces

– A trace is a set of signals

– Signal is the value of a variable as a function of time:
ℝ≥0→ ℝ∪{⊥, ⊤}

• From runs to traces

– For 0 ≤ t ≤ d0, w(t) = x0(t-d0-…-di)

– For d0+…+di ≤ t ≤ d0+…+di+1, w(t) = xi+1(t-d0-…-di)

18

STL Semantics

19

Boolean STL Semantics

• Whenever the signal is below -10 [p1: x<-10], it will be
above 10 within 2 seconds [p2: x>10]

– □(p1→◊[0,2]p2)

• Both s1 and s2 satisfy
the property

• s2 is not robust

– Small perturbation will
lead to violation

20

Robustness

21

Robustness STL Semantics

• Checking liveness for hybrid systems is very hard

– Need to reason about infinite behaviors
• I.e., loops in the state space

• Bounded liveness is safety

– A mission will be completed in 10 minutes

• Any safety property can be reduced to reachability
checking

– Using an “observer” technique – ask me after class

• Bottom line

Reachability is what we usually check

22

Final Comments on Properties

• Two main techniques

– Set-based reachability

– Simulation-based reachability

• Set-based reachability

– Overapproximation
• “Safe” means safe

– Primarily used for verification

• Simulation-based reachability

– Underapproximation
• “Unsafe” means unsafe

– Primarily used for falsification

23

Reachability Analysis

• Hybrid systems modeling with hybrid automata

• Property specification with STL

• Set-based reachability analysis

• Simulation-based analysis

24

Outline

• Extend numerical simulation from points to sets

• Building blocks:

25

Set-Based Reachability

• Basic algorithm:

R0 = PostC(Init)
iterate

Ri+1 = Ri ∪ PostC(PostD(Ri))
until Ri+1 = Ri

• Deceptively simple

– If state space is unbounded, may not terminate

– If jumps are nondeterministic, need to keep a queue of
unprocessed states

– Usually require an additional termination condition
• Bound elapsed time or number of jumps

26

Reachability Algorithm

• Need to choose

– Representation of R

– Implementation of PostC and PostD

• Depends on the continuous dynamics

– In most cases, PostC cannot be computed exactly

– Need to ensure overapproximation

• Tradeoff between accuracy and scalability

27

Implementing reachability

• Key requirement: shape preservation

– If the shape does not fit, need to overapproximate

– If the shape gets complex, scalability suffers

• Common state representation for linear systems

– Polyhedra

– Ellipsoids

28

State Set Representations

• Halfspace: {x | Ax ≤ b}

• Polyhedron: intersection of finitely many halfspaces

• Convex polyhedra

– Much easier to manipulate

– Usually introduce more conservatism
• Or require you to have more of them

29

Polyhedra

• Piecewise-constant dynamics

– Derivatives of state variables are constrained by constants

– State set representation: convex polyhedra

• PostC and PostD can be computed exactly

30

Important Classes of Hybrid Systems

• Linear hybrid automata

– Affine dynamics

– Linear assignments in jumps

– Initial states and invariants are convex polyhedra

• Solutions to affine ODEs are exponential functions

– Need to incorporate
effects of inputs

31

Important Classes of Hybrid Systems

• A flow can be approximated by
a single polyhedron

– Too conservative

32

Computing PostD

• A flow can be approximated by
a single polyhedron

– Too conservative

• Instead, select a time step d

• Partition flow into time slices

33

Computing PostD

• A flow can be approximated by
a single polyhedron

– Too conservative

• Instead, select a time step d

• Partition flow into time slices

• Approximate each slice by
a polyhedron

34

Computing PostD

• A flow can be approximated by
a single polyhedron

– Too conservative

• Instead, select a time step d

• Partition flow into time slices

• Approximate each slice by
a polyhedron

35

Computing PostD

• Extensible platform for verification of continuous and
hybrid systems

• Based on a web interface

• Modules

– Visual model editor

– Analysis engine
• APIs for new state representations

and set operation implementations

– Visualization

36

SpaceEx

• Networks of hybrid automata

• Automata specified as parameterized templates

37

SpaceEx Models

http://spaceex.imag.fr/

http://spaceex.imag.fr/

• Hybrid automaton
model

• Phase portrait

38

Bouncing Ball in SpaceEx

http://spaceex.imag.fr/

http://spaceex.imag.fr/

• What’s missing?

– Mathematical results that yield geometric abstractions for
successor computation

• Polynomial hybrid systems

– Some support in SpaceEx

• Approximation of non-linear dynamics

– Polynomial approximations
• Taylor models – polynomial approximations of Taylor expansions

• Flow* tool – next lecture

– Hybridization
• Local approximation with simpler dynamics

39

Non-Linear Hybrid Systems

• Split a flow into multiple subflows with simpler dynamics

– Time-based or space-based

• Can be done statically or adaptively

– Trade-off between accuracy
and scalability

• Hyst – hybrid system model transformation tool

– Implements static hybridization

– Generates SpaceEx format

– http://verivital.com/hyst/

40

Hybridization

http://verivital.com/hyst/

• Most systems are not designed as hybrid automata

– E.g., Simulink/Stateflow, and many other design tools

• Extracting a hybrid automaton is not easy

– Requires an accurate and complete translator

– May not scale

41

Implicit Hybrid Systems

Plant with continuous dynamics
ż = f(z,a,b,c)

Discrete controller

z

c

b

a

• Hybrid systems modeling with hybrid automata

• Property specification with STL

• Set-based reachability analysis

• Simulation-based analysis

42

Outline

• Reachability and beyond

• Works on implicit hybrid systems

– Use simulator within the design tool

– Or even a real implementation

• Any problem found through simulation is a real problem

– No inherent conservatism

– Assuming that simulations are accurate enough

• From flows to sampled traces

– Analysis becomes monitoring of a trace

• Main challenge

– Coverage

43

Simulation-Based Analysis

• Trace violates property □x≤0.9

44

Simulation-Based Analysis

• Find equivalent initial states

45

Simulation-Based Analysis

• Repeat until desired coverage is reached

46

Simulation-Based Analysis

• Allows us to extend analysis from one simulation to a set
of simulations

• If a trace s satisfies a property with roustness e

– Every trace s’ no more than e away from s also satisfies

• Calculate how variation of
initial state influences
robustness

• Breach

– Matlab toolbox

– Use sensitivity from the
ODE solver

47

The Importance of Robustness

• (Historic) goal for verification tools

– Scale up towards exhaustive exploration

• Exhaustive verification rarely succeeds

– But verification tools are very efficient in finding bugs

• Goal for falsification tools

– Improve search for counterexamples

• Robustness-driven falsification

– Select next initial state to minimize robustness

– Tool: S-TaLiRo

48

Falsification

• Falsification based on robustness minimization

– Matlab toolbox

• Calculation of robustness

– Dynamic programming
formulation

• Calculation of
simulation inputs

• Closing the loop

– Simulator

– HW in the loop

49

S-TaLiRo

https://sites.google.com/a/asu.edu/s-taliro/

https://sites.google.com/a/asu.edu/s-taliro/

50

Robustness Exploration

• Model checking techniques allow us to analyze
properties of system models

• Hybrid systems are widely used to model cyber-physical
systems

– Express rich sets of continuous and discrete behaviors

• Set-based reachability supported by many tools

– Variety of linear and non-linear dynamics

– Many different set representations

• Simulation-based analysis allows to check more complex
properties

– Enables effective falsification techniques for black-box systems

51

Summary

