AirSim: A Powerful Simulator for Robotics Research

Yulai Weng

CIS 700/002: Topics in Safe Autonomy Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania

02/12/2019

Can we use such ML methods to build systems that operate in real-world?

Successes of Machine Intelligence Real World Flying Systems

Three Fundamental Challenges

Lack of large amount of data

 High Sample Complexity of ML Methods Computational Constraints

 Real-time Performance, Limited Memory and Compute Power Operating in the Open World

 Safety, Uncertainty, Mixed-Initiative Autonomy

Old Version of UAV Simulators

AirSim: The Next Generation Simulator

What Does Simulator Enables?

Generate lots of training data	 Wide variety of environment, day of time, weather patterns No legal hassle, much cheaper and safe
Develop autonomy algorithms	 Run exact same code that would be run onboard Slow down or accelerate simulated time
Test perception algorithms	 If it doesn't work in simulator then it won't work in real world Use sensors with varies parameters
Reinforcement Learning techniques	 Can fail thousands of time to learn patterns Run in cloud for distributed learning

Why Use Unreal Engine?

B KiteDemo (64-bit, PCD3D_SM5)

Actual footage captured from simulated drone in AirSim with Open World Environment

The Heart of the Vehicle

How Simulator Works?

What Does Physics Engine Do?

Linear & Angular Flavors Total of 3 + 3 = 6 vectors

The Physics Loop

May the Force & Torque be with You

$$F = MotorSignal * K_F \qquad K_F \propto \rho D^4$$
$$T = MotorSignal * K_T \qquad K_T \propto \rho D^5$$

Physics: Dynamics

$$acceleration_{next} = \frac{force}{mass}$$

 $acceleration_{next} = \frac{torque - \omega \times (I \ \omega)}{I}$

 $velocity_{next} += acceleration_{next} * dt$

$$\omega_{next} += acceleration_{next} * dt$$

$$position_{next} += velocity_{next} * dt$$

$$q_{next} = q_{prev} * Q(\omega * dt)$$

Simulating IMU

IMU = *Gyroscope* + *Accelerometer*

Simulating Barometer

$P = (101.325 \text{kPa}) \cdot (288.15 \text{K}/T)^{-5.255877}$	<i>H</i> ≤ 11 km
P = (22.632kPa)·exp[-0.1577·(H-11 km)] 11	≤ <i>H</i> ≤ 20 km

- $P = (5.4749 \text{kPa}) \cdot (216.65 \text{K}/T)^{34.16319} \quad 20 \le H \le 32 \text{ km}$
- $P = (0.868 \text{kPa}) \cdot (228.65 \text{K}/T)^{12.2011}$ $32 \le H \le 47 \text{ km}$

$$P = (0.1109 \text{kPa}) \cdot \exp[-0.1262 \cdot (H-47 \text{ km})]$$

 $47 \le H \le 51 \text{ km}$

Density, ρ (kg/m³) = P/(RT_M) Speed of sound, C (m/s) = (γ RT_M)^{1/2} Specific gas constant, R = 287.053 J/kg-K Specific heat ratio, γ = 1.400

PRECISE

Simulating Magnetometer

$$\cos\theta_m = \cos\theta\cos\theta^0 + \sin\theta\sin\theta^0\cos(\phi - \phi^0)$$

$$|B| = B_0 (\frac{R_c}{R_e + h})^3 \sqrt{1 + 3\cos^2\theta_m}$$

$$\tan \alpha = 2 \cot \theta_m \quad \text{and} \quad \sin \beta = \begin{cases} \sin(\phi - \phi^0) \frac{\cos \theta^0}{\cos \theta_m}, & \text{if } \cos \theta_m > \sin \theta^0 \sin \theta \\ \cos(\phi - \phi^0) \frac{\cos \theta^0}{\cos \theta_m}, & \text{otherwise.} \end{cases}$$

$$H = |B| \cos \alpha \qquad \qquad Z = |B| \sin \alpha$$
$$X = H \cos \beta \qquad \qquad Y = H \sin \beta.$$

The Architecture of AirSim

AirSim is Open Source

Unreal Engine 4

- Designed as UE4 plugin
- Just drop in to 100s of realistic environments

APIs for Dozens of Languages

- Get camera images
- Send commands to the vehicle

C++ Header-Only Library

- Eigen library as only dependency
- Cross-platform

Highly Extensible

- Add new vehicles models
- Add new modes

Microsoft/AirSim: Op: C++ Sh	rsim ell 📒 Menus & Hours 🚿 Aerial Informatics and 🥤 🕅	Rashington 2017 U 🗲 Typing Practice	for Pro 📴 YouTube 🊏 air admin in Microe
C This repository Search	Pull requests Issues	Gist	💰 +- 🔯-
Microsoft / AirSim		O Unwatch * 201	★ Unstar 2,404 ¥ Fork 394
♦ Code ① Issues (22)	The Pull requests (a) I Projects (a) III W	Wri 🚸 Pulse 📊 Graphs 4	0 Settings
Open source simulator bas	ed on Unreal Engine for autonomous vehicles	from Microsoft Al & Research	Edit
alronaes al self-debelog-car	autoromou-vehicles autonomous-quadcoptor	research computer-vidues artific	id-intelligence Manage topics
(2) 350 commits	P 7 branches	© Z releases	Lt 22 contributors
Branch: master • New pull re	oquest	Create new file Uploar	I files Find file Clone or download *
sytekus integrated start/end	d offboard mode		Lafest commit fd#5#77 30 minutes ago
En AirLib	integrated start/end offboard mode		30 minutes ago
III DroneServer	more fixes in DroneServer as well as MavLinkDroneController		an hour ago
III DroneShell	Add ability to download eigen and unzip in the insbuild targets. 6 days		
IIII HelloDrone	Add support for Team Blacksheep Discovery quadrocopter physics model 3 days /		
its LogViewer	publish new version	publish new version	
In MexLinkCom	Fx pull version info and fix a bug in telemetry msg handling.		9 hours ago
Unreal/Plugins/AirSim	avoid unnecessory joystick messages, check engine version, scale joys		23 hours ago
III cmake	Add will RSSI to the telemetry that is captured by MavLinkConnection. 2 days		Z days ago
IIII docs	add faq on connecting pixhawk.		9 hours ago
illi external	added rpclib submodule		21 days ago
i gitignore	Add ability to download eigen and unzip in	the misbuild targets.	6 days ago
🖹 .gitmodules	added rpclib submodule		21 days ago
🗎 AirSim.sln	Fix bugs in DroneControlEase control of mar	vlink vehicle.	28 days ago
E LICENSE	readme and license update		e month ago
ID README.md	docs update and cleanup		22 hours ago

Experiment: Simulation vs. Reality

Simulated trajectory in purple, real trajectory in red

AirSim Has APIs

from PythonClient import *
import cv2
import sys

```
client = AirSimClient('127.0.0.1')
```

```
# get depth image
result = client.setImageTypeForCamera(0, AirSimImageType.Scene)
```

```
# show image in opencv
rawImage = np.fromstring(result, np.int8)
png = cv2.imdecode(rawImage, cv2.IMREAD_UNCHANGED)
cv2.imshow("Camera Image", png)
```

Few lines of Python code can get you FPV image from drone!

Scene from Unreal Boy with a Kite environment

Make Drone Move in AirSim Using APIs

```
from PythonClient import *
import sys
client = AirSimClient('127.0.0.1')
# Stay 5 meters above ground
z = -5
# Fly!
client.moveOnPath([(0,-253,z),(125,-253,z),(125,0,z),(0,0,z)],
15, 0, DrivetrainType.ForwardOnly,
YawMode(False,0), 20, 1)
```

Same code can be ran from offboard computer on real drone! Other languages available: C++, C#, Java and many more!

AirSim Extensibility

You can contribute on GitHub: <u>https://github.com/microsoft/airsim</u>

AgloT: Precision Agriculture

Scan farm using drone to capture low level details on daily basis, analyze differences each day and fuse with sensor information to identify areas that needs specific work

AgloT: Vision

AgloT: System Architecture

Autonomous 3D Scanning of Large Structures

3D reconstruction in simulator using a simulated drone flight

3D reconstruction in real world using actual drone

Expands AirSim AI Simulator to Include Autonomous Car Research

End-to-End Deep Learning for Autonomous Driving

Deep Reinforcement Learning for Autonomous Driving

JustAssets (64-bit, GLSL_430)

AirSim on Unity

Thanks !

