Dataset Shifts in Autonomous Systems

CIS700: Safe Autonomy

James Weimer February 5, 2019

Outline

- Reading Material Recap
 - 2-3 minute impromptu overview
- What are Dataset Shifts?
 - Examples in medicine and anomaly detection
- Types of Dataset Shifts
 - Covariate shifts, prior probability shifts, concept drift
- Common causes of Dataset Shifts
 - Can these be used to improve detection?
- Common Assumptions in Dataset Shift Detection
 - What needs to be true to perform dataset shift detection?
- Research challenges in Dataset Shifts

Student Recap of Reading Material

- Sugiyama, Masashi, Neil D. Lawrence, and Anton Schwaighofer. *Dataset shift in machine learning*. The MIT Press, 2017.
 - Student/co-instructor: Jim Weimer
- Moreno-Torres, Jose G., et al. "A unifying view on dataset shift in classification." *Pattern Recognition* 45.1 (2012): 521-530.
 - Student: Ramneet Kaur
- Raza, Haider, Girijesh Prasad, and Yuhua Li. "EWMA based two-stage dataset shift-detection in non-stationary environments." *IFIP International Conference on Artificial Intelligence Applications and Innovations*. Springer, Berlin, Heidelberg, 2013.
 - Student: Tyler Oliveri
- Klinkenberg, Ralf, and Thorsten Joachims. "Detecting Concept Drift with Support Vector Machines." *ICML*. 2000.
 - Student: Kyle Leonard

Class Poll

- We monitor shifts in datasets as a proxy for classifier performance?
- Which is more susceptible to test data not matching training data, SVMs or DNNs?

– e.g., SVMs are simple linear classifiers, DNNs are more complex

• Is end-to-end control a good or bad idea? Why?

 – e.g., avoid feature engineering – just train a model to produce actuation commands.

What are Dataset Shifts?

- "... data experience a phenomenon that leads to a change in the distribution ..."
- "... the joint distribution of inputs and outputs differs between training and test stage."
- Space suffers from lack of standardized terminology
 - concept shift, changes of classification, changing environments, contrast mining, fracture points, fractures between data, sample bias, ...
 - Very hard to find solutions to existing problems

Notation and Terminology

- *x* are covariates
 - e.g., inputs, features, raw data, independent variables (?)...
- y are targets
 - e.g., outputs, labels, classes, dependent variables (?) ...
- p(x, y) is the joint distribution when training
- p'(x, y) is the joint distribution when testing
- Bayes' Law
 - p(x, y) = p(y|x)p(x) = p(x|y)p(y)
 - p'(x, y) = p'(y|x)p'(x) = p'(x|y)p'(y)

Causation vs. Correlation

- Lots of confusion about correlation and causation in data ...
 - Causality is an intrinsic property of the data generation process
 - Correlation is a relative property of the data
- Jim's Opinion: Safety critical autonomy should only consider causal features and labels
 - Just because two things happen, doesn't mean they are (or are not) related
 - Causation is usually a direct consequence of the covariate and label choices
- Two causal scenarios:
 - $X \rightarrow Y$ problems: labels are causally determined by covariates
 - Anomaly Detection: Detecting anomalous accelerometer data in cars
 - $Y \rightarrow X$ problems: labels causally determine covariates
 - Smart Alarms in Medicine: Silencing false heart rate alarms

This is why I don't like calling X independent and Y dependent variables!!!

Example 1: Medical Smart Alarms

- Patient movement is a problem for many medical devices
 - Leads to false alarms
- Lets build a detector to determine whether a patient is moving
- Defining features and labels
 - Heart Rate can be measured by a Pulse Oximeter and ECG independently
 - Lets define a feature to be the difference in heart rate
 - $x = |HR_{PO} HR_{ECG}|$
 - Often when the patient moves, pulse ox is wrong
 - Lets define a label to be whether the patient is moving
 - y = 0: patient is still
 - y = 1 : patient is moving
- Are they related causally? How?
 - Movement influences pulse oximeter heart rate, $Y \rightarrow X$
 - *"labels causally determine covariates"*

- You must understand your data generation process!!!
- What if we wanted to monitor a doctors response to alarms?

PRECISE

Example 2: Anomaly Detection

- Accelerometer data can be affected by all sorts of disturbances
 - May lead to bad decisions later if anomalies are not detected.
- Lets build a detector to determine whether the accelerometer data is anomalous
- Defining features and labels
 - Features are the recent accelerometer data measurements
 - x is the average of the last 10 measurements
 - Labels are whether the data is flagged to be anomalous
 - y = 0 : not anomalous
 - y = 1 : anomalous
- Are the features and labels related causally? How?
 - The features, representing recent behavior determines whether data is anomalous -- i.e., $X \rightarrow Y$
 - ``labels are causally determined by covariates"
- What if we wanted to detect a bias in the accelerometer?

You must understand your data generation process!!!

PRECIS

Types of Dataset Shifts

- Dataset shift defined as $p(x, y) \neq p'(x, y)$
 - In general too hard to do anything ... good luck
- Subclasses of dataset shift
 - Covariate shift:
 - p(y|x) = p'(y|x) and $p(x) \neq p'(x)$ in $X \rightarrow Y$ problems
 - Prior probability shift:
 - p(x|y) = p'(x|y) and $p(y) \neq p'(y)$ in $Y \rightarrow X$ problems
 - Concept shift
 - $p(y|x) \neq p'(y|x)$ and p(x) = p'(x) in $X \to Y$ problems
 - $p(x|y) \neq p'(x|y)$ and p(y) = p'(y) in $Y \rightarrow X$ problems
- Common causes of dataset shift
 - data generation: sample selection bias, missing data, etc.
 - non-stationary environments: seasonal changes, location, etc.
- Lots of literature on cause-specific dataset shift
 - more information = better detection

Examples to follow on all these

Could be a nice class project ...

Outline

- Reading Material Recap
 - 2-3 minute impromptu overview
- What are Dataset Shifts?
 - Examples in medicine and anomaly detection
- Types of Dataset Shifts
 - Covariate shifts, prior probability shifts, concept drift
- Common causes of Dataset Shifts
 - Can these be used to improve detection?
- Common Assumptions in Dataset Shift Detection
 - What needs to be true to perform dataset shift detection?
- Research challenges in Dataset Shifts

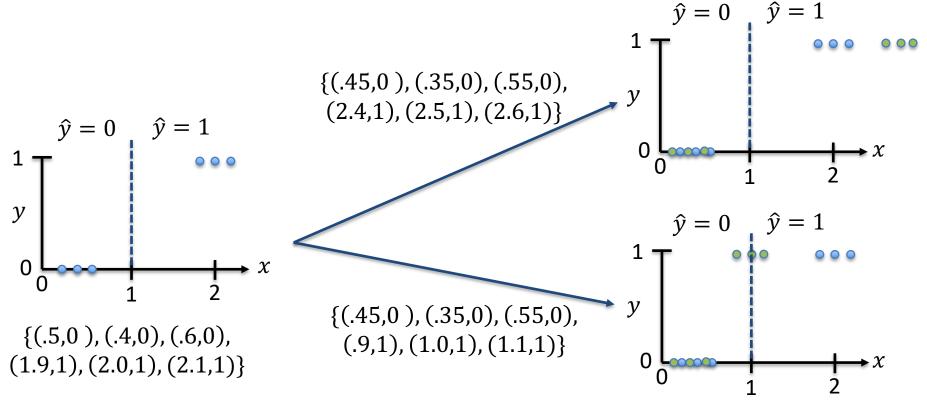
Examples Revisited – Building Classifiers

- Medical Smart Alarms
 - Detect movement from HR variability in PulseOx and ECG
 - $x = |HR_{PO} HR_{ECG}|$
 - $y \in \{0,1\}$
 - 0 = no movement
 - 1 = movement
 - Build a classifier
 - Collect training data: (x, y) {(.5,0), (.4,0), (.6,0), (1.9,1), (2.0,1), (2.1,1)}
 - Train a classifier
 - $\hat{y}(x): x \le 1 \leftrightarrow y = 0$
 - Perform testing and validation
 - What are the potential dataset shifts?
 - $Y \rightarrow X$ problem: Prior distribution shift Concept shift

- Anomaly Detection
 - Detect anomaly from accelerometer data
 - $x = \frac{1}{N} \sum_{n=1}^{N} |acc_n m|$
 - $y \in \{0,1\}$
 - 0 = no anomaly
 - 1 = anomaly
 - Build a classifier
 - Collect training data
 - $\{(.5,0), (.4,0), (.6,0), (1.9,1), (2.0,1), (2.1,1)\}$
 - Train a classifier
 - $\hat{y}(x): x \le 1 \leftrightarrow y = 0$
 - Perform testing and validation
 - What are the potential dataset shifts?
 - $X \rightarrow Y$ problem: Covariate shift Concept shift

Covariate Shift

- Recall our definition for covariate shift:
 - -p(y|x) = p'(y|x) and $p(x) \neq p'(x)$ in $X \rightarrow Y$ problems



What properties make a good covariate shift detector?

PRECISE

Detecting Covariate Shifts

- What makes a good covariate shift detector?
 - Relies predominantly on features (not labels)
 - Minimal additional assumptions
- Common tests used for Covariate Shifts
 - Parametric tests:
 - Typically use assumptions on distribution of sample average/variance
 - Student's t-test, F-test, Chi-squared test, etc.
 - If assumptions hold, can be optimal
 - Nonparameteric tests:
 - Minimal assumptions on underlying distributions
 - Wilcoxon Rank-Sum, Kolmogorov-Smirnov test, etc.
- Best tests tend to use techniques from both
 - Combine a parametric test as a trigger for a nonparametric test.
 - Raza, Haider, Girijesh Prasad, and Yuhua Li. "EWMA based two-stage dataset shiftdetection in non-stationary environments." *IFIP International Conference on Artificial Intelligence Applications and Innovations*. Springer, Berlin, Heidelberg, 2013.

Some Parametric Tests for Covariate Shifts

• Student's T-test: Given population mean μ

$$-t = \frac{\bar{x} - \mu}{s\sqrt{N}}$$
, $\bar{x} = \frac{1}{N} \sum x_n$, $s = \sqrt{\frac{1}{N} \sum (x_n - \bar{x})^2}$,

- Pros: asymptotically optimal when sample mean, \bar{x} , equals μ
 - Provides tight confidence estimate/interval
- Cons: susceptible to selection bias in data, requires known μ
- Lots of variations on this test good starting point.
- F-test / Analysis of Variance ANOVA:
 - F = explained variance / unexplained variance
 - One examples: $F = t^2$
 - Pros: good for comparing statistical models fitted to data
 - i.e., learned models
 - Cons: more data needed than a T-test, high variance results in low testing power.
 - ANOVA is widely used in situations where testing conditions can be controlled

Some Nonparametric Tests for Covariate Shifts

- Wilcoxon Rank Sum Test:
 - Tests whether two samples are from populations with the same distribution
 - Given two samples (test and training data), test whether a random sample from one is greater than the other
 - Pros: non-parametric version of T-test, almost as powerful
 - Cons: requires features, x, to be ordinal
 - Can introduce bias in multiple dimensions
 - Variants include: Wilcoxon signed-rank test
- Kolmogorov-Smirnov Test:
 - Tests whether data came from the same distribution
 - Tests whether the cdf's are the same
 - Pros: Sensitive to location and shape, very general and useful
 - Cons: requires features, x, to have a single dimension
 - See also Anderson-Darling and Shapiro-Wilk test

16

Hybrid Tests for Covariate Shifts

- Why a hybrid test?
 - Parametric tests use data more efficiently
 - Nonparametric tests are robust to assumptions of parametric tests
- A common approach:
 - Use a general model to filter data to produce i.i.d. measurements (null hypothesis)
 - Apply chi-square, t-test, or F-test, etc.
 - If null hypothesis is rejected, trigger nonparametric test

PRECISE

17

• Apply Wilcoxon Rank Sum, Kolmogorov Smirnov, etc.

EWMA Covariate Shift Detector

Input: Submit the training dataset to the training phase and compute the parameters for testing.

Receive new data in the testing phase sample-by-sample and perform the check as follows.

IF (Shift detected)

THEN (Report the point of shift and move to stage-II for validation)

ELSE (Continue and integrate the upcoming information).

Output: Shift-detection points.

Stage-I

Training Phase

1. Assign training data to $x_{(i)}$ for i=1:n, where *n* is the number of observations in training data

2. Calculate the mean of $x_{(i)}$ and set as $z_{(0)}$.

3. Compute the *z*-statistics for each observation $x_{(i)}$ in training data for a range of λ values.

 $z_{(i)} = \lambda x_{(i)} + (1 - \lambda) z_{(i-1)}$

4. Estimate λ by minimizing over the training dataset the square of 1-step-ahead prediction error: $err_{(i)} = x_{(i)} - z_{(i-1)}$.

5. Finally estimate the variance of error for the testing phase.

Testing Phase

1. For each data point $x_{(i)}$ in the operation/testing phase

- 2. Compute $z_{(i)} = \lambda x_{(i)} + (1 \lambda) z_{(i-1)}$
- 3. Compute $err_{(i)} = x_{(i)} z_{(i-1)}$
- 4. Estimate the variance $\hat{\sigma}_{err_{(i)}}^2 = \vartheta \, err_{(i)}^2 + (1 \vartheta) \hat{\sigma}_{err_{(i-1)}}^2$
- 5. Compute *UCL*_(i) and *LCL*_(i):
- 6. $UCL_{(i)} = z_{(i-1)} + L\hat{\sigma}_{err_{(i-1)}}$
- 7. $LCL_{(i)} = z_{(i-1)} L\hat{\sigma}_{err_{(i-1)}}$
- 8. IF $(LCL_{(i)} < x_{(i)} < UCL_{(i)})$ THEN (Continue processing)

ELSE (Go to Stage-II)

Stage-II

1. For each $x_{(i)}$

2. Wait for *m* observations after the time *i*, organize the sequential observations around time *i* into two partitions, one containing $x_{((i-(m-1)):i)}$, another $x_{((i+1):(i+m))}$.

3. Execute the hypothesis test on the partitioned data

4. IF (H=1)

THEN (test rejects the null hypothesis): Alarm is raised ELSE (The detection received by stage-I is a false and discarded) Design Time:

- 1) Assign order to training data
- 2) Fit model to data
 - i.e., pick model parameters
- 3) Calculate error and variance
 - i.e. pick test threshold

Run Time (Phase 1):

- 1) Assign order to test data
- 2) Apply model to test
- 3) Compare with threshold
 - 1) It alarm, GOTO Phase 2

PRECISE

Run Time (Phase 2):

1) Divide data into pre-alarm

and post-alarm.

- based on Phase 1

2) Check using non-parameteric test

Covariate Shift Detection Summary

- Covariate shifts are on the features
 - Features are observable online
- Not all covariate shifts cause the classifier to fail
 - In fact, classifier performance has nothing to do with detecting covariant shifts
- Key insights to designing monitors for covariate shifts
 - Understand your data generation process
 - Do your labels depend on your features? (The answer has to be yes)
 - If no, then you may be able to change your problem ...
 - Make sure your assumptions are valid
 - Parametric vs. non-parametric tests

Potential Covariate Shift Research Directions

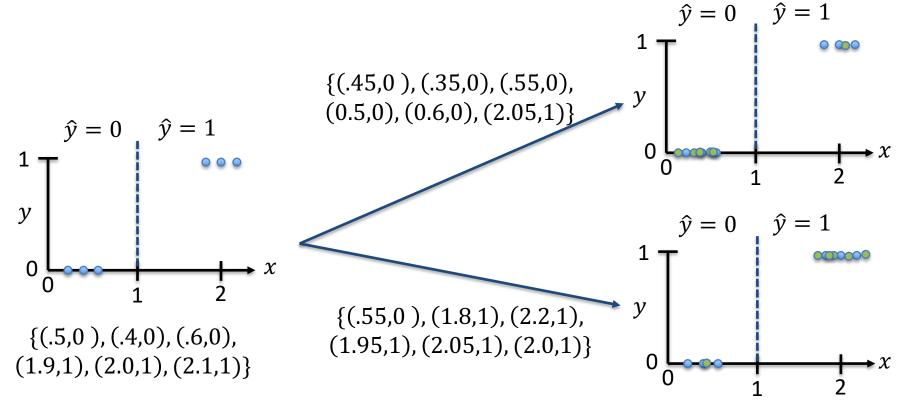
- Apply Covariate shift detectors to existing classifiers
 - Talk to us for a list of potential classifiers
- Utilize more complex models of data generation dynamics
 - Autoregressive moving average with exogeneous inputs (ARMAX)
 - Autoregressive integrated moving average (ARIMA)
- Identify nuisances in underlying data generation process and remove their effect from features post-training
 - Especially interesting if the trained classifier is also invariant to nuisances
- Online quantification of covariate shift detection performance
 - Add nuisances to the features (induce covariate shifts) and monitor the ability to detect them.

Outline

- Reading Material Recap
 - 2-3 minute impromptu overview
- What are Dataset Shifts?
 - Examples in medicine and anomaly detection
- Types of Dataset Shifts
 - Covariate shifts, prior probability shifts, concept drift
- Common causes of Dataset Shifts
 - Can these be used to improve detection?
- Common Assumptions in Dataset Shift Detection
 - What needs to be true to perform dataset shift detection?
- Research challenges in Dataset Shifts

Prior Probability Shift

- Recall our definition for prior probability shift:
 - -p(x|y) = p'(x|y) and $p(y) \neq p'(y)$ in $Y \rightarrow X$ problems



When is a shift in prior probability a concern?

Detecting Prior Probability Shifts

- When are prior probability shifts a concern?
 - When priors on the labels affect classifier performance
 - When does this happen? Baysian techniques for learning.
 - More precisely, anytime the frequency of labels affects what is learned.
- How to detect prior probability shifts?
 - Scenario 1: We can request labels online
 - e.g., ask for intermittent labeling from an Oracle
 - Scenario 2: We can not request labels online
 - Only features are observed not labels
 - to optimal testing for distributions with discrete support
- Scenario 1: Requesting labels at runtime
 - Active area of research:
 - semi-supervised learning, active learning, etc.
 - Most techniques are devoted to minimizing the need for labels to perform learning
 - Keep in mind: you can always do better with more information
 - Only makes sense in autonomy if labeling incurs high cost
 - For prior probability shifts this allows us to pursue different classification techniques
 - Many labels are discrete, allows for distribution monitoring
 - Another active area of research devoted to optimal testing for distributions with discrete support

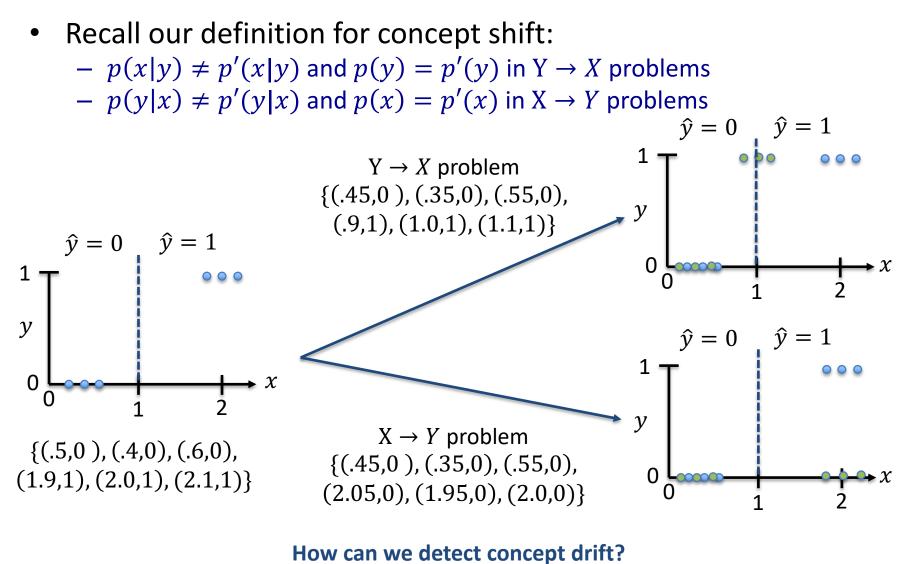
Detecting Prior Probability Shifts

- Scenario 2: We can not observe the labels online
 - All the techniques used for covariate shifts can be applied
 - Need to assume: $p(x) \neq p'(x) \leftrightarrow p(y) \neq p'(y)$
 - assumes that the prior probability shift affects feature distribution
 - If features are informative, this is a property of the data generation process
- What if the prior probability shift doesn't affect the feature distribution?
 - You have performed a poor feature selection
 - Performance could be significantly different than expected
- If we are just going to use the same techniques why distinguish between covariate shifts and prior probability shifts?
 - Because it requires an additional assumption
 - Requires a more restrictive data generation process

Outline

- Reading Material Recap
 - 2-3 minute impromptu overview
- What are Dataset Shifts?
 - Examples in medicine and anomaly detection
- Types of Dataset Shifts
 - Covariate shifts, prior probability shifts, concept drift
- Common causes of Dataset Shifts
 - Can these be used to improve detection?
- Common Assumptions in Dataset Shift Detection
 - What needs to be true to perform dataset shift detection?
- Research challenges in Dataset Shifts

Concept Shift



Penn Engineering

26 PRECISE

Detecting Concept Drift

- Detecting concept drift is the most challenging
- In $X \rightarrow Y$ problems: concept drift is unobservable
 - Assumes same feature distributions
 - Can not be detected without test data labels Can we use a labeler?
- In $Y \rightarrow X$ problems: concept drift has low specificity
 - Assumes same label distribution
 - Unlikely to be satisfied (especially in rare event scenarios)
- How do people make this problem easier?
 - Use estimated labels as opposed to actual labels
 - Klinkenberg, Ralf, and Thorsten Joachims. "Detecting Concept Drift with Support Vector Machines." *ICML*. 2000.

Detecting Concept Drift using a Classifier

- In $X \rightarrow Y$ problems, use labels generated by a classifier
 - Can not be used for $Y \rightarrow X$ problems
- Approach:
 - Estimate the next batch distribution using history of prior batch distributions
 - Pros: a good heuristic for jumps in concept
 - Cons: limited ability to monitor slow concept drifts
 - Requires significant change between batches
 - May not detect because concept drift affects classifier as well
 - Very likely since classifiers are trained based on labeled samples

Summary of Dataset Shift

- Dataset Shift detection has **NOTHING** to do with trained classifier performance.
 - Evidence that something about your training isn't consistent with testing.
 - A safe guard on the most fundamental assumption of machine learning (or any data-driven approach)
 - i.e., the test and training data are drawn from the same distribution.
- Dataset Shift: $p(x, y) \neq p'(x, y)$
 - Typically too hard to solve generally regarded as impossible and avoided
 - There are likely exceptions, but those are tailored to specific scenarios
- Covariate Shift: p(y|x) = p'(y|x) and $p(x) \neq p'(x)$ in $X \rightarrow Y$ problems
 - Lots of ways to detect effectively (see literature)
 - Consider hybrid (or ensemble) techniques to mitigate errors from a single test
- Prior Probability Shift: p(x|y) = p'(x|y) and $p(y) \neq p'(y)$ in $Y \rightarrow X$ problems
 - Can be solved using same techniques as Covariate shift
 - Requires either:
 - 1) ability to collect testing data labels
 - 2) assurance that changes in label distribution affect feature distribution

 $- \quad p(y) \neq p'(y) \leftrightarrow p(x) \neq p'(x)$

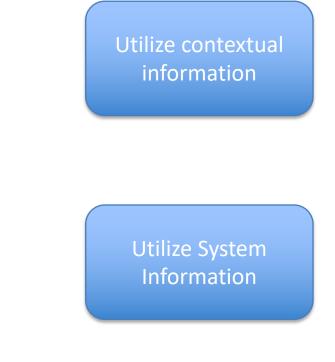
- Concept Drift: Hardest of all dataset shift sub-problems
 - $p(y|x) \neq p'(y|x)$ and p(x) = p'(x) in $X \rightarrow Y$ problem
 - $p(x|y) \neq p'(x|y)$ and p(y) = p'(y) in $Y \rightarrow X$ problem
 - Usually requires either testing data labels, or a classifier used to predict labels
 - Be careful when claiming to detect concept drift using predicted labels!!!

Outline

- Reading Material Recap
 - 2-3 minute impromptu overview
- What are Dataset Shifts?
 - Examples in medicine and anomaly detection
- Types of Dataset Shifts
 - Covariate shifts, prior probability shifts, concept drift
- Common causes of Dataset Shifts
 - Can these be used to improve detection?
- Common Assumptions in Dataset Shift Detection
 - What needs to be true to perform dataset shift detection?
- Research challenges in Dataset Shifts

Common Causes of Dataset Shift

- Now that we know how to classify Dataset Shift lets discuss causes – and how we might monitor the causes?
- Non-stationary environments
 - Flat tire on a car
 - People with different physiology
- Data generation process
 - System faults
 - Missing data
 - User error



Common Assumptions when Detecting Dataset Shifts

- Detecting dataset shifts is still a statistical test
 - All tests (even nonparametric) are based on assumptions
- Common assumptions include:
 - Independent and identically distributed (i.i.d.)
 - Exchangeable data (time-series version of i.i.d.)
 - Given a sequential sample, any permutation of the sample is drawn from the same distribution
- No tests for these assumptions in autonomy scenarios
 - Must be an intrinsic property of the data generation process
 - To test would require the ability to "re-run" the scenario
- Additional assumptions are necessary for some tests
 - E.g., t-test, F-tests, etc.

How can we Facilitate Dataset Shift Detection?

- Understand the data generation processes
 - You need to understand causality of your data and features.
 - Exploit anything else that can be useful
- Constrain your feature space.
 - Don't include additional data just because it is available.
 - Leads to poor dataset shift performance = lots of false alarms!!!
 - Exploit natural invariants in the data provided by application context
- Sample data sufficiently to prevent concept drift
 - Active area of research devoted to monitoring concept drift
- Redundancy in testing
 - Rarely is one test always optimal, try multiple test as an esemble

Class Poll - Revisited

- We monitor shifts in datasets as a proxy for classifier performance?
- Which is more susceptible to test data not matching training data, SVMs or DNNs?

– e.g., SVMs are simple linear classifiers, DNNs are more complex

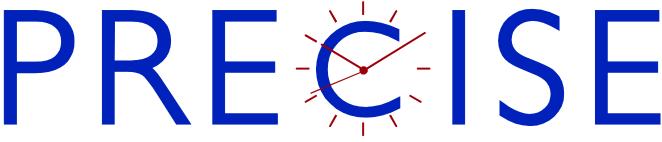
• Is end-to-end control a good or bad idea? Why?

 – e.g., avoid feature engineering – just train a model to produce actuation commands.

Research Challenges in Dataset Shifts

- Develop monitors for specific data sources
 - The data from a camera/lidar is different than accelerometer
 - How can the specific data source influence dataset shift monitoring?
- Develop application-specific dataset shift monitors
 - e.g., develop a dataset shift monitor for an anomaly detector/medical alarm
- Explore worst-case and bounded dataset shift monitors
 - Many monitors are statistical in nature what about applying techniques based on bounded errors?
- Investigate time-series dataset shift monitors in real systems
 - How do underlying dynamics affect time-series dataset shift detection?
- Learning in the presence of dataset shifts
 - Lots of work here already (e.g., active learning, etc.)
 - Could be interesting to apply to anomaly detection

THANK YOU!



PENN RESEARCH IN EMBEDDED COMPUTING AND INTEGRATED SYSTEMS ENGINEERING

http://precise.seas.upenn.edu

