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The field of dataset shift has received a growing amount of interest in the last few years. The fact that

most real-world applications have to cope with some form of shift makes its study highly relevant.

The literature on the topic is mostly scattered, and different authors use different names to refer to the

same concepts, or use the same name for different concepts. With this work, we attempt to present a

unifying framework through the review and comparison of some of the most important works in the

literature.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The machine learning community has analyzed data quality in
classification problems from different perspectives, including data
complexity [29,7], missing values [19,21,39], noise [11,64,58,38],
imbalance [52,27,53] and, as is the case with this paper, dataset
shift [4,44,14]. Dataset shift occurs when the testing (unseen)
data experience a phenomenon that leads to a change in the
distribution of a single feature, a combination of features, or the
class boundaries. As a result the common assumption that
the training and testing data follow the same distributions is
often violated in real-world applications and scenarios.

While the research area of dataset shift has received significant
attention in recent years (most of the work is published in the last
eight years), the field suffers from a lack of standard terminology.
Independent authors working under different conditions use
different terms, making it difficult to find and compare proposals
and studies in the field.

Contributions. The main goal of this work is to provide a
unifying framework through the review and analysis of some of
the most important publications in the field, comparing the
terminology used in each of them and the exact definitions that
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were given. We present a framework that can be useful in future
research and, at the same time, provide researchers unfamiliar
with the topic a brief introduction to it. Our goal with this work is
to not only unify different methods and terminologies under a
taxonomical structure, but also provide a guide to a researcher as
well as a practitioner in machine learning and pattern recogni-
tion. We use the notation in [44] as the base for the comparisons.
We also present a brief summary of solutions proposed in the
literature.

The remainder of this paper is organized as follows: Some basic
notation is introduced in Section 2. In Section 3, an analysis of the
name given to the field of study is presented. Section 4 details the
terminology used for the different types of dataset shift that can
appear. Section 5 presents examples demonstrating the effect of
these shifts on classifier performance. An analysis of some common
causes of dataset shift is presented in Section 6. A brief summary of
the solutions proposed in the literature is shown in Section 7.
Finally, some conclusions are presented in Section 8.
2. Notation

In this work, we focus on the analysis of dataset shift in
classification problems. A classification problem is defined by:
�
 A set of features or covariates x.

�
 A target variable y (the class variable).

�
 A joint distribution Pðy,xÞ.
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When analyzing dataset shift, the relationships between the
covariates and the class label are particularly relevant. Fawcett

and Flach [20] proposed a taxonomy to classify problems according
to an intrinsic property of the data generation process: the causal
relationship between class label and covariates. This particular
characteristic of a problem determines what kinds of shift can affect
a given problem, so the rest of the paper is structured regarding the
two different kinds of problems generated by this distinction:
�
 X-Y problems, where the class label is causally determined
by the values of the covariates. A typical example would be
credit card fraud detection, since the behavior of the user,
represented in the covariate space X, determines the class
label: whether there is fraud or not.

�
 Y-X problems, where the class label causally determines the

values of the covariates. Medical diagnosis usually falls in this
category, where the disease, which is modeled as the class
label Y, determines the symptoms, represented in the machine
learning task as covariates X.

The joint distribution Pðy,xÞ can be written as
�
 Pðy9xÞPðxÞ in X-Y problems.

�
 Pðx9yÞPðyÞ in Y-X problems.
In this prototypical classification problem, the output of the
system or learning algorithm takes on N (symbolic) values
y¼ f1, . . . ,Ng corresponding to N classes. A commonly used loss
function for this problem measures the classification error

Lðy,f ðx,oÞÞ ¼
0 if y¼ f ðx,oÞ
1 if ya f ðx,oÞ

(

where o denotes the set of classifier parameters. Using this loss
function, the risk functional

RðoÞ ¼
Z

Lðy,f ðx,oÞÞpðx,yÞ dx dy

quantifies the probability of misclassification. Learning then
becomes the problem of estimating the function f ðx,o0Þ (classi-
fier) that minimizes the probability of misclassification using only
the training data.

When we use the terms training and test stages, we refer to the
data available to train the classifier and the data present in the
environment the classifier will be deployed in, respectively. The
data distributions in training and test are denoted as Ptr and Ptst.
3. Dataset shift

The term ‘‘dataset shift’’ was first used in the book by
Quiñonero-Candela et al. [44], the first compilation on the field,
where it was defined as ‘‘cases where the joint distribution of
inputs and outputs differs between training and test stage’’ [49].

One of the main problems in the field is the lack of visibility
most works suffer, since there is not even a standard term to refer
to it. So far, each author has chosen a different name to refer to
the same basic idea. As an example, the following terms have
been used in the literature to refer to dataset shift:
�
 ‘‘Concept shift’’ or ‘‘concept drift’’ [57,17], where the idea of
different data distributions is associated with changes in the
class definitions (i.e. the ‘‘concept’’ to be learned).

�
 ‘‘Changes of classification’’ [55], where it is defined as ‘‘In the

change mining problem, we have an old classifier, representing
some previous knowledge about classification, and a new data
set that has a changed class distribution.’’
�
 ‘‘Changing environments’’ [4], defined as ‘‘The fundamental
assumption of supervised learning is that the joint probability
distribution pðxJdÞ will remain unchanged between training
and testing. There are, however, some mismatches that are
likely to appear in practice.’’

�
 ‘‘Contrast mining in classification learning’’ [60], a slightly

different take on the issue: ‘‘Given two groups of interest, a
user often needs to know the following. Do they represent
different concepts? To what degree do they differ? What is the
discrepancy and where does it originate from?’’

�
 ‘‘Fracture points’’, defined in [14] as ‘‘fracture points in pre-

dictive distributions and alteration to the feature space, where a
fracture is considered as the points of failure in classifiers’
predictions - deviations from the expected or the norm.’’

�
 ‘‘Fractures between data’’, used in [40], defined as the case

where ‘‘we have data from one laboratory (dataset A), and
derive a classifier from it that can predict its category accu-
rately. We are then presented with data from a second
laboratory (dataset B). This second dataset is not accurately
predicted by the classifier we had previously built due to a
fracture between the data of both laboratories.’’

Such inconsistent terminology is a disservice to the field as it
makes literature searches difficult and confounds the discussion
of this important problem. We recommend the term dataset shift

for any situation in which training and test data follow distribu-
tions that are in some way different. Formally, we define it as

Definition 1. Dataset shift appears when training and test joint
distributions are different. That is, when Ptrðy,xÞaPtstðy,xÞ.

4. Types of dataset shift

In this section, we present an analysis of the different kinds of
shift that can appear in a classification problem. Section 4.1 deals
with covariate shift, while Sections 4.2 and 4.3 explain prior
probability shift and concept shift, respectively. A graphical example
is introduced to illustrate each of these cases. The section is closed
with Section 4.4, where other potential types of shifts are explained.

4.1. Covariate shift

The term covariate shift was first defined ten years ago in [47]
where it refers to changes in the distribution of the input
variables x. Covariate shift is probably the most studied type of
shift, but there appears to be some confusion in the literature
about the exact definition of the term. There are also some
equivalent names, such as ‘‘population drift’’ [31,26]. Some
definitions of covariate shift found in the literature are:
�
 ‘‘Case when the population distribution can change over time’’
(this concept is defined as ‘‘population drift’’ in [31]).

�
 ‘‘Let x be the explanatory variable or the covariate, (y). Let

q1ðxÞ be the density of x for evaluation of the predictive
performance, while q0ðxÞ be the density of x in the observed
data. The situation q0ðxÞaq1ðxÞ will be called covariate shift in
distribution.’’ [47].

�
 ‘‘Change in the data distributions’’ [26], uses the term ‘popula-

tion drift’.

�
 ‘‘The input distribution p(x) varies but the functional relation

pðy9xÞ remains unchanged’’ [59].

�
 ‘‘Differing training and test distributions’’ [8], who define it as

follows (the two definitions appear in different places in the
same paper):
– ‘‘The training instances are governed by a distribution that

is allowed to differ arbitrarily from the test distribution.’’
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– Training and test distribution may differ arbitrarily, but
there is only one unknown target conditional class distri-
bution pðy9xÞ.’’
�
 ‘‘The conditional probability pðy9xÞ remains unchanged, but the
input distribution p(x) differs from training to future data’’ [4].

�
 ‘‘The data distribution generating the feature vector x and its

related class label y changes as a result of a latent variable t.
Thus, we may state that covariate shift has occurred when
Pðy9x,t1ÞaPðy9x,t2Þ’’ [14].

The concept of covariate shift is not standardized enough, as
can be seen from the differences between the definitions shown
above. The definition given by Cieslak and Chawla [14] states that
Pðy9x,t1ÞaPðy9x,t2Þ, while Yamakazi et al. [59] or Alaiz-Rodrı́guez
et al. [4] state that pðy9xÞ remains unchanged. Even within the same
paper, the two definitions given by Bickel et al. [8] are not equivalent.

In [49], covariate shift is defined as something that occurs
‘‘when the data is generated according to a model Pðy9xÞPðxÞ and
where the distribution P(x) changes between training and test
scenarios.’’ This seems to capture the essence of the term as
it is most commonly used. Thus, we propose the following as a
consistent formal definition.

Definition 2. Covariate shift appears only in X-Y problems, and
is defined as the case where Ptrðy9xÞ ¼ Ptstðy9xÞ and PtrðxÞaPtstðxÞ.

The analogous issue in Y-X problems is prior probability shift,
studied in Section 4.2.

Assume we have an X-Y problem where there is one
covariate x0 and a target y. The training data distribution Ptrðx0Þ

is composed by the union of two Gaussian distributions with
variance 0.5 (one with mean x0 ¼�2 and the other with mean
x0 ¼ 2) and Ptrðy9x0Þ is defined as

Ptrðy9x0Þ ¼
1

1þexp �x0
0:2

� �
Consider now that in the test data, Ptstðy9x0Þ remains

unchanged, but the Gaussian distributions that compose Ptstðx0Þ

are now centered in x0 ¼�1 and x0 ¼ 1, respectively. Fig. 1 depicts
this simple example of covariate shift where Ptrðx0ÞaPtstðx0Þ.

4.2. Prior probability shift

Prior probability shift refers to changes in the distribution of the
class variable y. It also appears with different names in the literature,
and the definitions have slight differences between them:
�
 ‘‘Change in class distributions’’ [56], the authors call it ‘‘varying
class distributions’’.
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Fig. 1. Covariate shift: Ptstðy9x0Þ ¼ Ptrðy9x0Þ and Ptrðx
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‘‘The class prior probability p(y) varies from training to test,
but pðx9yÞ remains unaltered’’ [4], denoted as ‘‘change in class
distribution’’.

�
 ‘‘Shifting priors occurs when sampling is dependent on the

class label and independent of the feature vector x’’ [14].

Storkey [49] defines prior probability shift as a case where ‘‘an
assumption is made that a causal model of the form Pðx9yÞPðyÞ is
valid, (y), the distribution P(y) changes between training and test
situations.’’ According to the definitions present in the literature,
prior probability shift is the reverse case of covariate shift. More
formally, we define it as

Definition 3. Prior probability shift appears only in Y-X pro-
blems, and is defined as the case where Ptrðx9yÞ ¼ Ptstðx9yÞ and
PtrðyÞaPtstðyÞ.

As an example, assume we have a Y-X problem with one
covariate x0 and a target y that may take the class values y¼0 and
y¼1. In the training data, Ptrðy¼ 0Þ ¼ Ptrðy¼ 1Þ ¼ 0:5 and Ptrðx09yÞ
is defined as

x0 ¼
N ð2,0:5Þ when y¼ 1

N ð�2,0:5Þ otherwise

(

Consider now that in the test data, Ptstðx09y¼ 0Þ and
Ptstðx09y¼ 1Þ remain unchanged, but the class prior probabilities
vary, taking the values Ptstðy¼ 1Þ ¼ 0:70 and Ptstðy¼ 0Þ ¼ 0:30. This
example is illustrated in Fig. 2.

Lastly, it is important to mention that prior probabilities are
closely related to cost-sensitive learning [54], so techniques from
that field are also applicable.

4.3. Concept shift

Concept shift is usually referred to as ‘‘concept drift’’ in the
literature; we propose a change in name here for consistency with
the above. Even though this type of shift was not mentioned in
[44], some other authors have studied it and proposed the
following definitions:
�
 ‘‘A changing context can induce changes in the target concepts,
producing what is known as concept drift’’ [57].

�
 ‘‘A user’s behaviors and tasks change with time’’ [34].

�
 ‘‘Changes to the definitions of the classes’’ [26].

�
 ‘‘pðy9xÞ changes between the training and test phases’’ [59],

the author used the term ‘‘functional relation change’’

�
 ‘‘Case where p(x) is not altered but, pðy9xÞ varies from training

to test’’ [4], denoted as ‘‘class definition change’’.
−2 0 2

Ptstðx0Þ. (a) Training data and (b) test data.
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Fig. 2. Prior probability shift. Training dataset with Ptrðy¼ 0Þ ¼ Ptrðy¼ 1Þ ¼ 0:5. Test dataset with Ptrðy¼ 0Þ ¼ 0:3 and Ptrðy¼ 1Þ ¼ 0:7. Class conditional data densities remain

constant: Ptstðx09y¼ 0Þ ¼ Ptrðx09y¼ 0Þ and Ptst ðx09y¼ 1Þ ¼ Ptrðx09y¼ 1Þ. (a) Training data, (b) training data density, (c) test data and (d) test data density.
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Fig. 3. Example of concept shift: data density remains constant Ptrðx0Þ ¼ Ptst ðx0Þ and Ptrðy9x0ÞaPtst ðy9x0Þ. (a) Training set and (b) test set.
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Concept shift happens when the relationship between the
input and class variables changes, which presents the hardest
challenge among the different types of dataset shift that has been
tackled so far. Formally, we define it as
Definition 4. Concept shift is defined as
�
 Ptrðy9xÞaPtstðy9xÞ and PtrðxÞ ¼ PtstðxÞ in X-Y problems.

�
 Ptrðx9yÞaPtstðx9yÞ and PtrðyÞ ¼ PtstðyÞ in Y-X problems.
As an example of concept shift, consider the training dataset
with the distribution presented for the covariate shift problem. If

a concept shift takes place, the test set data distribution Ptstðx0Þ
remains constant, but Ptstðy9x0Þ is redefined, for instance, as

Ptstðy9x0Þ ¼
1

1þexp �2þ x0
0:2

� �� �
1þexp �2�x0

0:2

� �� �

Fig. 3 shows the Ptrðy9x0Þ and Ptstðy9x0Þ for a concept shift
problem.
4.4. Other types of dataset shift

Even though the shifts presented above are the most com-
monly present in real-world classification tasks, there are others
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that could in theory also happen, included here for completeness:
�

Fig
trai
Ptrðy9xÞaPtstðy9xÞ and PtrðxÞaPtstðxÞ in X-Y problems.

�
 Ptrðx9yÞaPtstðx9yÞ and PtrðyÞaPtstðyÞ in Y-X problems.
There are two main reasons these shifts are usually not
considered in the literature: they appear more rarely than the
others and, most importantly, they are so hard that we currently
consider them impossible to solve.
5. Examples of the relevance of dataset shift

The examples presented in Sections 4.1 and 4.2 were designed
to showcase as clearly as possible what covariate and prior
probability shift mean. However, they do not show why its study
is important: the negative effect dataset shift often has on
classifier performance.

This section presents new examples for both covariate shift
and prior probability shift, where the said shifts actually produce
a change in the Bayes error boundary.

Fig. 4 depicts a case of covariate shift where the shift produces a
change in the Bayes error boundary resulting in a drop in the
classifier performance. In this example, assume we have an X-Y

problem where there is one covariate x0 and a target class label y

that takes the values y¼0 and y¼1. In the training data, Ptrðx0Þ is
composed by the union of two Gaussian distributions, N ð�1:5,0:5Þ
and N ð1:5,0:5Þ, that are the data distributions of each class,
respectively. In the test data, Ptstðy9x0Þ remains unchanged, but
the Gaussian distributions that compose Ptstðx0Þ now have means
�1.5 and 0.5, respectively. Fig. 4(d) shows the difference between
the optimal decision boundary (continuous line) in the test set and
that one estimated from the training dataset (dashed line).
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. 4. Example of covariate shift with an influence on the Bayes error boundary. The

ning set. The vertical continuous line represents the optimal boundary for the test s
Fig. 5, on the other hand, shows a case of prior probability
shift. For this example, assume we have a Y-X problem with a
covariate x0 and a target y. In the training data, Ptrðy¼ 0Þ ¼
Ptrðy¼ 1Þ ¼ 0:5 and Ptrðx09yÞ is defined as

x0 ¼
N ð1:5,0:5Þ when y¼ 1

N ð�1:5,0:5Þ otherwise

(

In the test data, Ptstðx09yÞ remains unchanged, but the prior
probabilities change to Ptstðy¼ 1Þ ¼ 0:8 and Ptstðy¼ 0Þ ¼ 0:2.
Fig. 5 illustrates this problem and Fig. 5(d) highlights the
difference between the optimal decision boundary (continuous
line) and the boundary estimated in the training stage. If the class
prior probabilities differ from the ones assumed during learning,
the classifier performance will be suboptimal.
6. Causes of dataset shift

In this section we comment on some of the most common
causes of dataset shift. These concepts have created confusion at
times, so it is important to remark that these terms are factors
that can lead to the appearance of some of the shifts explained in
Section 4, but they do not constitute dataset shift themselves.

There are several possible causes for dataset shift, out of which
this section mentions the two we deem most important: Sample
selection bias and non-stationary environments. In the first one,
the discrepancy in distribution is due to the fact that the training
examples have been obtained through a biased method, and thus
do not represent reliably the operating environment where the
classifier is to be deployed (which, in machine learning terms,
would constitute the test set). This case is studied in Section 6.1,
and is the one most commonly analyzed in the literature.
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vertical dotted line represents the boundary learned by the classifier using the

et. (a) Training set, (b) training data density, (c) test set and (d) test data density.
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Fig. 5. Example of prior probability shift with an influence on the Bayes error boundary. The vertical dotted line represents the boundary learned by the classifier using the
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A typical example of this case would be the analysis of a process
where, due to cost concerns, one of the classes is sampled at a
lower rate than it actually appears.

The second cause appears when the training environment is
different from the test one, whether it is due to a temporal or a
spatial change. It commonly appears, among others, in adversarial
classification problems; and it is analyzed in Section 6.3.

6.1. Sample selection bias

The term sample selection bias refers to a systematic flaw in the
process of data collection or labeling which causes training
examples to be selected non-uniformly from the population to be
modeled. In social science research, for example, there will be
subsets of the general population (students at the researcher’s
University or previous study participants) which are easier to
survey than others. These ‘‘easy’’ populations may be over-repre-
sented in the training sample, whereas ‘‘difficult’’ populations (i.e.
prisoners) may be under-represented or completely excluded.

One can imagine any number of permutations of this general
problem. If data are collected from remote sensors, for example,
the different sensors may malfunction at different rates or collect
data at different rates, meaning that certain portions of the
observation area are over-represented.

The problem of operating under sample selection bias has
received substantially more attention in other domains than it
has in the machine learning community. In the credit scoring
literature it goes by the name of reject inference, because potential
credit applicants who are rejected under the previous model are
not available to train future models [15,25].

The term has been used as a synonym of covariate shift [30]
(which is not correct, as was stated above), but also on its own as
a related problem to dataset shift. In that line, Storkey [49]
proposes the following formal definition:

Definition 5. Sample selection bias, in general, causes the data in the
training set to follow Ptr ¼ Pðs¼ 19x,yÞ, while the data in the test set
follows Ptst ¼ Pðy,xÞ. Depending on the type of problem, we have:
�
 Ptr ¼ Pðs¼ 19y,xÞPðy9xÞPðxÞ and Ptst ¼ Pðy9xÞPðxÞ in X-Y problems,

�
 Ptr ¼ Pðs¼ 19y,xÞPðx9yÞPðyÞ and Ptst ¼ Pðx9yÞPðyÞ in Y-X problems,

where s is a binary selection variable that decides whether a
datum is included in the training sample process (s¼1) or
rejected from it (s¼0).

In [37,61,14], three different types of sample selection bias
were analyzed:

Definition 6. Missing completely at random (MCAR) occurs when
the sampling method is completely independent of x and y, so
that Pðs¼ 19y,xÞ ¼ Pðs¼ 1Þ. This kind of bias does not produce any
dataset shift.

Definition 7. Missing at random (MAR) occurs when s depends on x

but conditional on x is independent of y; so that Pðs¼ 19y,xÞ ¼
Pðs¼ 19xÞ. This kind of bias can potentially produce covariate shift.

To illustrate more clearly the relationship between MAR bias
and covariate shift, note that one can ‘‘correct’’ for covariate shift
when estimating model performance by using importance-weighted

cross-validation [51]. That is to say, an unbiased estimate of the
classification loss on a set of feature vectors xi and their associated
classes yi can be obtained by weighting the loss associated with each
xi by PtstðxiÞ=PtrðxiÞ. More formally, if the k-fold cross-validation
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estimate of misclassification cost is given by

1

k

Xk

j ¼ 1

1

9F j9

X9F j9

i ¼ 1

‘ðxi,yi,ŷi Þ ð1Þ

where ‘ð Þ represents the classification loss incurred by the classi-
fication estimate ŷi

1 on the instance with covariates xi and class yi,
then a ‘‘nearly unbiased’’ estimate of the classification loss under
covariate shift can be computed as

1

k

Xk

j ¼ 1

1

9F j9

X9F j9

i ¼ 1

PtstðxiÞ

PtrðxiÞ
‘ðxi,yi,ŷi Þ ð2Þ

Here the term ‘‘nearly unbiased’’ means that the estimate
becomes unbiased as the sample size n-1. In the case of leave-
one-out cross-validation, IWCV provides an unbiased estimate of
the classification loss for a dataset with n�1 samples [51].

Under MAR bias, we have that PtrðxiÞ ¼ Pðs¼ 19xiÞPtstðxiÞ, meaning
that PtstðxiÞ=PtrðxiÞ ¼ Pðs¼ 19xiÞ

�1. Thus, ‘‘correcting’’ for MAR bias
under simple loss functions amounts to estimating Pðs¼ 19xiÞ: This
estimation can be accomplished in practice by building a classifier to
predict F : x-s, that is, building a classifier with s as the class label.
Such a construction is often feasible in practical applications. In
credit scoring, for example, we only know the class label y (default)
of applicants for whom s¼ 1 (meaning credit was approved).
However, creditors retain the application information for all appli-
cants even those for whom s¼ 0 (credit is denied) [5,61].

Effective correction of MAR bias, then, reduces to the problem
of producing a well-calibrated classifier which predicts Pðs¼ 19xiÞ

as accurately as possible. In general this is not trivial, as many
algorithms (such as Naive Bayes and Boosting) have been shown
to produce probabilities that are skewed toward 0 or 1 [41,63].

Definition 8. Missing not at random (MNAR) occurs when there is
no independence assumption between x, y and s. This kind of bias
can introduce one or more of covariate shift, prior probability
shift and concept shift.

Under MNAR bias, the selection mechanism may depend on the
class attribute as well as the observed features. The most famous
method for correcting MNAR bias comes from Heckman [28] who
shows how to estimate a linear model over both observed and
unobserved data when the dependent variable is known only for the
observed data. Specifically, assume we have linear models for both
the class variable y and the selection variable s of the form:

yi ¼ b1x1iþu1i

si ¼ b2x2iþu2i

u1,u2�Nð0,s2
u1,rÞ ð3Þ

Here the two bj are 1-by-kj model parameter vectors and the
two xji are kj-by-1 feature vectors for individual instances i. The
vector x1i contains the features upon which the class value
depends, and x2i contains the features on which the selection
process depends. Thus, in Heckman’s model, the class and selec-
tion variables are linear in some feature space with potentially
correlated Gaussian noise.

Heckman proves that with these assumptions, an unbiased
model yn for the entire dataset can be built with the following
procedure:
1.
as a
Estimate the parameters of the model si by some method such
as ordinary least squares.
1 It is worth noting that the ‘‘classification estimate’’ may be real-valued, such

n estimate of pð19xÞ.
2.
 Set li ¼fðx2ib2Þ=Fðx2ib2Þ.

3.
 Estimate the parameters of a new linear model yn which

includes l as an independent variable.
Here f and F are the standard normal PDF and CDF, respectively.
Zadrozny and Elkan [62] generalize this procedure for arbitrary
classification tasks by building one classifier to predict the
selection label s and incorporating that classifier’s predictions
into a second classifier for predicting the class label y. While this
approach has no theoretical guarantees, it was shown to be
effective in a real-world application.

For completeness sake, we have defined a fourth option to be
considered:

Definition 9. Missing at random-class (MARC) occurs when s

depends on y but conditional on y is independent of x; so that
Pðs¼ 19y,xÞ ¼ Pðs¼ 19yÞ. This kind of bias can potentially produce
prior probability shift.

Sufficient and necessary conditions for sample selection bias:
Quiñonero-Candela et al. [44] give a set of conditions that the
densities Ptr and Ptst need to satisfy in order for the classification
problem to be modeled as a sample selection bias problem,
meaning that its training and test densities can be expressed as
in Definition 5. These conditions can be stated as follows:
1.
 Support condition PtrðxÞ40-PtstðxÞ40.

2.
 Selection condition supxðPtrðx,yÞ=Ptstðx,yÞo1Þ.
The support condition simply states that any feature vector x

that can be drawn from the training distribution can also be
drawn from the test distribution. The selection condition is
slightly stronger, requiring that any pair ðx,yÞ of a feature vector
and class label that can be drawn from the Ptrðx,yÞ can also be
drawn from Ptstðx,yÞ. Fig. 6 explains this graphically. The red
histogram shows a potential test density, the black histogram is a
training density that may have been generated by sample selec-
tion bias (its density is nonzero everywhere the test density is
nonzero) and the blue histogram shows a density that must be
modeled by some other form of dataset shift.

This observation exposes a key difference between sample
selection bias and covariate shift. Even in the case (MAR) where
pðs¼ 1Þ depends only on the feature vector x, the framework of
sample selection bias imposes a stricter criterion on the relation-
ship between Ptr and Ptst than covariate shift. That is to say, there
are some instances of covariate shift that cannot arise from MAR
bias, but every instance of MAR bias can be modeled as covariate
shift (Fig. 6(a)). As such, any technique that is developed to
correct for covariate shift should also be able to correct for MAR
bias, but the reverse is not true.

6.2. Challenges in correcting sample selection bias

We have seen that many established techniques to compen-
sate for sample selection bias depend critically on the esti-
mation of the selection variable s. In the case of IWCV, we need
a well-calibrated estimate of Pðs¼ 19xÞ while the Zadrozny and
Heckman techniques require a monotonic score. In either case
if the chosen model is a poor fit, the correction procedure will
be ineffective and may degrade rather than improve model
performance [48].

If the feature sets x1 and x2 are identical (i.e. the same features
are used to estimate both s and y), then the additional variable l
may end up highly correlated with the ‘‘uncorrected’’ estimate y1.
In this case, the Heckman procedure has little power to correct for
sample selection bias. Little and Rubin [36] state that the Heckman
procedure requires ‘‘significant’’ predictive variables in x2 that are



Fig. 6. Sufficient and necessary conditions for sample selection bias. The red curve shows a test pdf and the black and blue curves show potential training pdfs. The black

density may be modeled as sample selection bias. The blue curve violates the (a) support condition and (b) selection condition. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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not in x1 in order to be effective in many cases [43]. A broader
survey of critiques to the Heckman correction can be found
in [43].

When attempting to correct MAR bias with techniques such as
importance-weighted cross-validation, one may run into trouble
if Pðs¼ 19xiÞ ¼ 0. This situation, often referred to as censorship,
arises when a deterministic procedure (such as a credit model)
determines the value of s. Censorship may be addressed by
modeling the problem as MNAR regardless of any explicit depen-
dency on the class label y [12].
6.3. Non-stationary environments

In real-world applications, it is often the case that the data is
not (time- or space-) stationary. Depending on the type of
problem, non-stationary environments can introduce different
kinds of shift:
�
 In X-Y problems, a non-stationary environment could create
changes in either P(x) or Pðy9xÞ, generating covariate shift or
concept shift, respectively.

�
 In Y-X problems, it could generate prior probability shift with

a change in P(y) or concept shift with a change in Pðx9yÞ.

One of the most relevant non-stationary scenarios involves
adversarial classification problems, such as spam filtering and
network intrusion detection. This type of problem is receiving an
increasing amount of attention in the machine learning field
[16,6,10,35], and usually copes with non-stationary environments
due to the existence of an adversary that tries to work around the
existing classifier’s learned concepts. In terms of the machine
learning task, this adversary warps the test set so that it becomes
different from the training set, thus introducing any possible kind
of dataset shift.

There are also other applications where non-stationariness
appears. They include remote sensing applications, where a
dataset collected in a given season for an area with different
terrains is employed to train the classifier but, when that classifier
is deployed, mismatches may appear due to seasonal changes or
because the new region has a different terrain distribution [3];
direct mail marketing, where the proportion of target customers
or customer profiles may vary from one city to the next; and
biometric authentication, among others.
7. Proposals in the literature for the analysis of dataset shift

In this section we give a brief overview of the different
proposals that have appeared in the literature to work under
the different types of dataset shift.

Covariate shift has been extensively studied in the literature,
and a number of proposals to work under it have been published.
Some of the most important ones include weighting the log-
likelihood function [47], importance-weighted cross-validation
[51], asymptotic Bayesian generalization error [59], discriminative
learning [9], kernel mean matching [23], or adversarial search [22].

Prior probability shift has also been studied deeply, with a
multitude of proposals appearing in the literature. There are two
main strategies when designing classifiers for expected prior
probability shift conditions:
�
 Adaptive approaches: These proposals train a classifier over the
available data and then the adapt some of its parameters accord-
ing to the (usually unlabeled) test data. This adaptation may be
done either by the end user [33,31] or automatically [46,3].

�
 Robust approaches: Base the choice of classifier on some

measure that is ideally transparent to changes in class distribu-
tion. The best known example would be ROC curve analysis
[1,42] (which has generated some controversy, see [56,20]), but
there are others too [18,2]. The automatic choice of classifier
parameters [32] can also be considered a robust approach.

Other significant proposals in the literature have focused on
determining the existence and/or shape of dataset shift between
two datasets. Wang et al. [55] present the idea of correspondence
tracing. They propose an algorithm for the discovering of changes
of classification characteristics, which is based on the comparison
between two rule-based classifiers, one built from each dataset.
Yang et al. [60] present the idea of conceptual equivalence as a
method for contrast mining, which consists of the discovery of
discrepancies between datasets. Chawla and coworkers [14,45]
developed a statistical framework to analyze changes in data
distribution resulting in fractures between the data.

Lastly, there are some approaches that try and modify the data to
repair dataset shift. Among them, Klinkenberg [32] proposed an
example selection/weighting approach and Moreno-Torres et al. [40]
applied a GP-based feature extraction technique to repair fractures
between data originated in different biological laboratories by
finding a transformation over the data from one of the laboratories.
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8. Concluding remarks

In many practical applications of machine learning, the data
available for model-building (training data) are not strictly
representative of the data on which the classifier will ultimately
be deployed (test data). This problem, which we call dataset shift

in accordance with [44] generalizes a wide variety of researches
that are scattered throughout the machine learning literature. The
purpose of this paper is to survey and unify this research in order
to better inform future endeavors in the field.

Researchers studying the general problem of dataset shift, or
specific instances of this problem, have coined a number of different
names for it. These include concept shift [57], concept drift [57],
covariate shift [47], data fracture [14,40], reject inference [24,15], and
imprecise class distributions [2], among others. Worse still, researchers
have sometimes used different terms to refer to the same problem, or
given different definitions to the same term. To clear up this
confusion and to make future research easier, we have carefully
studied the terminology used in the literature and proposed a
common convention which attempts to capture the essence of the
terms as they are most commonly used. Specifically, we propose:
�
 Covariate shift if PtstðxÞaPtrðxÞ but Ptstðy9xÞ ¼ Ptrðy9xÞ, in accor-
dance with [47].

�
 Prior probability shift if PtstðyÞaPtrðyÞ but Ptstðy9xÞ ¼ Ptrðy9xÞ.

�
 Concept shift if PtstðxÞ ¼ PtrðxÞ but Ptstðy9xÞaPtrðy9xÞ (in X-Y

problems) or Ptstðx9yÞaPtrðx9yÞ (in Y-X problems).

�
 Dataset shift if Ptstðx,yÞaPtrðx,yÞ but none of the above hold.

Next, we survey common causes of dataset shift. Sample

selection bias [12,28,61] occurs when the training sample is
selected non-uniformly at random from the test population.
Depending on the selection criteria and the type of classification
problem, selection bias may produce covariate shift, prior prob-
ability shift, or general dataset shift. In adversarial environments
[10,16,35] such as spam detection and fraud detection, adversaries

continually adapt the test data to the output of the classification
algorithm. The adversaries try to produce data (with some
constraints) which the learner will misclassify as often as possi-
ble. This tends to produce general dataset shift as the adversary
may alter the test distribution arbitrarily. In non-stationary

environments, the dataset shift arises from a significant physical
or temporal difference between training and test data sources.
If a model trained on one continent is applied on another, for
example, arbitrary changes in data distribution may result.

Finally, we have briefly surveyed some proposals in the
literature for learning under dataset shift, either detecting that
a shift has occurred or adapting to the shift once it does occur.
We plan to expand on this in much greater detail in future work.
Acknowledgments

Jose Garcı́a Moreno-Torres is currently supported by an FPU Grant
from the Ministerio de Educación y Ciencia of the Spanish Govern-
ment. This work was supported in part by the Spanish Government’s
KEEL project (TIN2008-06681-C06-01). This work was also supported
in part by the National Science Foundation (NSF) Grant ECCS-
0926170. Lastly, the work was also partially supported by the Spanish
projects DPI2009-08424 and TEC2008-01348/TEC.
References

[1] N.M. Adams, D.J. Hand, Comparing classifiers when the misallocation costs
are uncertain, Pattern Recognition 32 (7) (1999) 1139–1147.
[2] R. Alaiz-Rodrı́guez, A. Guerrero-Curieses, J. Cid-Sueiro, Minimax regret
classifier for imprecise class distributions, Journal of Machine Learning
Research 8 (2007) 103–130.

[3] R. Alaiz-Rodrı́guez, A. Guerrero-Curieses, J. Cid-Sueiro, Classification under
changes in class and within-class distributions, in: Proceedings of the 10th
International Work-Conference on Artificial Neural Networks, IWANN ’09,
Springer-Verlag, Berlin, Heidelberg, 2009, pp. 122–130.

[4] R. Alaiz-Rodrı́guez, N. Japkowicz, Assessing the impact of changing environ-
ments on classifier performance, in: Proceedings of the Canadian Society for
Computational Studies of Intelligence, 21st Conference on Advances in
Artificial Intelligence, Canadian AI ’08, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 13–24.

[5] J. Banasik, J. Crook, L. Thomas, Sample selection bias in credit scoring
models, Journal of the Operational Research Society 54 (8) (2003)
822–832.

[6] M. Barreno, B. Nelson, A.D. Joseph, J.D. Tygar, The security of machine
learning, Machine Learning (2010) 121–148.

[7] M. Basu, T.K. Ho, Data Complexity in Pattern Recognition, Springer-Verlag
Inc., New York, Secaucus, NJ, USA, 2006.

[8] S. Bickel, M. Brückner, T. Scheffer, Discriminative learning for differing
training and test distributions, in: Proceedings of the 24th International
Conference on Machine Learning, ICML 2007, ACM, New York, NY, USA, 2007,
pp. 81–88.

[9] S. Bickel, M. Brückner, T. Scheffer, Discriminative learning under covariate
shift, Journal of Machine Learning Research 10 (2009) 2137–2155.

[10] B. Biggio, G. Fumera, F. Roli, Multiple classifier systems for robust classifier
design in adversarial environments, International Journal of Machine Learning
and Cybernetics 1 (2010) 27–41.

[11] C.E. Brodley, P. Uiversity, M.A. Friedl, B. Uiversity, B.P. Edu, Identifying
mislabeled training data, Journal of Artificial Intelligence Research
11 (1999) 131–167.

[12] N. Chawla, G. Karakoulas, Learning from labeled and unlabeled data: an
empirical study across techniques and domains, Journal of Artificial Intelligence
Research 23 (1) (2005) 331–366.

[14] D.A. Cieslak, N.V. Chawla, A framework for monitoring classifiers’ perfor-
mance: when and why failure occurs? Knowledge and Information Systems
18 (1) (2009) 83–108.

[15] J. Crook, J. Banasik, Does reject inference really improve the performance of
application scoring models? Journal of Banking & Finance 28 (4) (2004)
857–874.

[16] N. Dalvi, P. Domingos, Mausam, S. Sanghai, D. Verma, Adversarial classifica-
tion, in: Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04, ACM, New York, NY, USA,
2004, pp. 99–108.

[17] T.G. Dietterich, G. Widmer, M. Kubat, Special issue on context sensitivity and
concept drift, Machine Learning 32 (2) (1998).

[18] C. Drummond, R.C. Holte, Explicitly representing expected cost: an alter-
native to ROC representation, in: Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2000,
pp. 198–207.

[19] A. Farhangfar, L. Kurgan, J. Dy, Impact of imputation of missing values on
classification error for discrete data, Pattern Recognition 41 (12) (2008)
3692–3705.

[20] T. Fawcett, P.A. Flach, A response to Webb and Ting’s ‘on the application of
ROC analysis to predict classification performance under varying class
distributions’, Machine Learning 58 (1) (2005) 33–38.

[21] M. Ghannad-Rezaie, H. Soltanian-Zadeh, H. Ying, M. Dong, Selection–fusion
approach for classification of datasets with missing values, Pattern Recognition
43 (6) (2010) 2340–2350.

[22] A. Globerson, C.H. Teo, A. Smola, S. Roweis, An adversarial view of covariate
shift and a minimax approach, in: J. Quiñonero Candela, M. Sugiyama,
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M. Sugiyama, A. Schwaighofer, N.D. Lawrence (Eds.), Dataset Shift in Machine
Learning, The MIT Press, 2009, pp. 131–160.

[24] D. Hand, Reject inference in credit operations, in: Credit risk modeling:
design and application, 1998, pp. 181–190.

[25] D. Hand, W. Henley, Statistical classification methods in consumer credit
scoring: a review, Journal of the Royal Statistical Society: Series A 160 (3)
(1997) 523–541.

[26] D.J. Hand, Rejoinder: classifier technology and the illusion of progress,
Statistical Science 21 (1) (2006) 30–34.

[27] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Transactions on
Knowledge and Data Engineering 21 (9) (2009) 1263–1284.

[28] J. Heckman, Sample selection bias as a specification error, Econometrica:
Journal of the Econometric Society (1979) 153–161.

[29] T.K. Ho, M. Basu, Complexity measures of supervised classification problems,
IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (3) (2002)
289–300.

[30] J. Huang, A.J. Smola, A. Gretton, K.M. Borgwardt, B. Schölkopf, Correcting
sample selection bias by unlabeled data, Advances in Neural Information
Processing Systems 19 (2007) 601–608.

[31] M.G. Kelly, D.J. Hand, N.M. Adams, The impact of changing populations on
classifier performance, in: Proceedings of the Fifth ACM SIGKDD International



J.G. Moreno-Torres et al. / Pattern Recognition 45 (2012) 521–530530
Conference on Knowledge Discovery and Data Mining, KDD 99, 1999,
pp. 367–371.

[32] R. Klinkenberg, Learning drifting concepts: example selection vs. example
weighting, Intelligent Data Analysis 8 (3) (2004) 281–300.

[33] M. Kubat, R.C. Holte, S. Matwin, Machine learning for the detection of oil
spills in satellite radar images, Machine Learning 30 (2–3) (1998) 195–215.

[34] T. Lane, C.E. Brodley, Approaches to online learning and concept drift for user
identification in computer security, in: Proceedings of the Fourth Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD, AAAI
Press, 1998, pp. 259–263.

[35] P. Laskov, R. Lippmann, Machine learning in adversarial environments,
Machine Learning 81 (2010) 115–119.

[36] R. Little, D. Rubin, Statistical Analysis with Missing Data, 1987.
[37] R.J.A. Little, D.B. Rubin, Statistical Analysis with Missing Data, Probability and

Statistics, second ed., Wiley, New Jersey, 2002.
[38] Z.-Y. Liu, H. Qiao, Multiple ellipses detection in noisy environments:

a hierarchical approach, Pattern Recognition 42 (11) (2009) 2421–2433.
[39] J. Luengo, S. Garcı́a, F. Herrera, A study on the use of imputation methods for

experimentation with Radial Basis Function Network classifiers handling
missing attribute values: the good synergy between rbfns and eventcovering
method, Neural Networks 23 (3) (2010) 406–418.

[40] J.G. Moreno-Torres, X. Llor�a, D.E. Goldberg, R. Bhargava, Repairing fractures
between data using genetic programming-based feature extraction: a case
study in cancer diagnosis, Information Sciences, in press, doi:10.1016/
j.ins.2010.09.018.

[41] A. Niculescu-Mizil, R. Caruana, Predicting good probabilities with supervised
learning, in: Proceedings of the ICML, ACM, 2005, pp. 625–632.

[42] F. Provost, T. Fawcett, Robust classification for imprecise environments,
Machine Learning 42 (3) (2001) 203–231.

[43] P. Puhani, The Heckman correction for sample selection and its critique,
Journal of Economic Surveys 14 (1) (2000) 53–68.

[44] J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, N.D. Lawrence, Dataset
Shift in Machine Learning, The MIT Press, 2009.

[45] T. Raeder, N.V. Chawla, Model monitor: evaluating, comparing, and monitor-
ing models, Journal of Machine Learning Research 10 (2009) 1387–1390.

[46] M. Saerens, P. Latinne, C. Decaestecker, Adjusting the outputs of a classifier to
new a priori probabilities: a simple procedure, Neural Computation 14 (1)
(2002) 21–41.

[47] H. Shimodaira, Improving predictive inference under covariate shift by
weighting the log-likelihood function, Journal of Statistical Planning and
Inference 90 (2) (2000) 227–244.
[48] R. Stolzenberg, D. Relles, Tools for intuition about sample selection bias and
its correction, American Sociological Review 62 (3) (1997) 494–507.

[49] A. Storkey, When training and test sets are different: characterizing learning
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