
Detecting Concept Drift with Support Vector MachinesRalf Klinkenberg klinkenberg@ls8.cs.uni-dortmund.deThorsten Joachims joachims@ls8.cs.uni-dortmund.deInformatik VIII, Universit�at Dortmund, Baroper Str. 301, 44221 Dortmund, Germanyhttp://www-ai.cs.uni-dortmund.de/AbstractFor many learning tasks where data is col-lected over an extended period of time, itsunderlying distribution is likely to change. Atypical example is information �ltering, i.e.the adaptive classi�cation of documents withrespect to a particular user interest. Boththe interest of the user and the documentcontent change over time. A �ltering sys-tem should be able to adapt to such conceptchanges. This paper proposes a new methodto recognize and handle concept changes withsupport vector machines. The method main-tains a window on the training data. Thekey idea is to automatically adjust the win-dow size so that the estimated generalizationerror is minimized. The new approach is boththeoretically well-founded as well as e�ectiveand e�cient in practice. Since it does not re-quire complicated parameterization, it is sim-pler to use and more robust than comparableheuristics. Experiments with simulated con-cept drift scenarios based on real-world textdata compare the new method with otherwindow management approaches. We showthat it can e�ectively select an appropriatewindow size in a robust way.1. IntroductionMachine learning methods are often applied to prob-lems, where data is collected over an extended periodof time. In many real-world applications this intro-duces the problem that the distribution underlyingthe data is likely to change over time. For exam-ple, companies collect an increasing amount of datalike sales �gures and customer data to �nd patternsin the customer behaviour and to predict future sales.As the customer behaviour tends to change over time,the model underlying successful predictions should beadapted accordingly.

The same problem occurs in information �ltering, i.e.the adaptive classi�cation of documents with respectto a particular user interest. Information �ltering tech-niques are used, for example, to build personalizednews �lters, which learn about the news-reading pref-erences of a user or to �lter e-mail. Both the interest ofthe user and the document content change over time.A �ltering system should be able to adapt to such con-cept changes.This paper proposes a new method for detecting andhandling concept changes with support vector ma-chines. The approach has a clear theoretical moti-vation and does not require complicated parametertuning. After reviewing other work on adaptation tochanging concepts and shortly describing support vec-tor machines, this paper explains the new window ad-justment approach and evaluates it in three simulatedconcept drift scenarios on real-world text data. Theexperiments show that the approach e�ectively selectsan appropriate window size and results in a low pre-dictive error rate.2. Concept DriftThroughout this paper, we study the problem of con-cept drift for the pattern recognition problem in thefollowing framework. Each example ~z = (~x; y) consistsof a feature vector ~x 2 RN and a label y 2 f�1;+1gindicating its classi�cation. Data arrives over time inbatches. Without loss of generality these batches areassumed to be of equal size, each containing m exam-ples.~z(1;1); :::; ~z(1;m); ~z(2;1); :::; ~z(2;m); � � � ; ~z(t;1); :::; ~z(t;m); ~z(t+1;1); :::; ~z(t+1;m)~z(i;j) denotes the j-th example of batch i. For each batchi the data is independently identically distributed withrespect to a distribution Pri(~x; y). Depending on theamount and type of concept drift, the example distri-bution Pri(~x; y) and Pri+1(~x; y) between batches willdi�er. The goal of the learner L is to sequentially pre-dict the labels of the next batch. For example, after



batch t the learner can use any subset of the trainingexamples from batches 1 to t to predict the labels ofbatch t + 1. The learner aims to minimize the cumu-lated number of prediction errors.In machine learning, changing concepts are often han-dled by time windows of �xed or adaptive size on thetraining data (Mitchell et al., 1994; Widmer & Kubat,1996; Lanquillon, 1997; Klinkenberg & Renz, 1998) orby weighting data or parts of the hypothesis accordingto their age and/or utility for the classi�cation task(Kunisch, 1996; Taylor et al., 1997). The latter ap-proach of weighting examples has already been usedfor information �ltering in the incremental relevancefeedback approaches of Allan (1996) and Balabanovic(1997). In this paper, the earlier approach maintaininga window of adaptive size is explored. More detaileddescriptions of the methods described above and fur-ther approaches can be found in Klinkenberg (1998).For windows of �xed size, the choice of a \good"window size is a compromise between fast adaptiv-ity (small window) and good generalization in phaseswithout concept change (large window). The basicidea of adaptive window management is to adjust thewindow size to the current extent of concept drift.The task of learning drifting or time-varying conceptshas also been studied in computational learning the-ory. Learning a changing concept is infeasible, if norestrictions are imposed on the type of admissible con-cept changes,1 but drifting concepts are provably e�-ciently learnable (at least for certain concept classes),if the rate or the extent of drift is limited in particularways.Helmbold, & Long (1994) assume a possibly perma-nent but slow concept drift and de�ne the extent ofdrift as the probability that two subsequent conceptsdisagree on a randomly drawn example. Their resultsinclude an upper bound for the extend of drift maxi-mally tolerable by any learner and algorithms that canlearn concepts that do not drift more than a certainconstant extent of drift. Furthermore they show that itis su�cient for a learner to see a �xed number of themost recent examples. Hence a window of a certainminimal �xed size allows to learn concepts for whichthe extent of drift is appropriately limited.1E.g. a function randomly jumping between the valuesone and zero cannot be predicted by any learner with morethan 50% accuracy.

While Helmbold and Long restrict the extend of drift,Kuh et al. (1991) determine a maximal rate of driftthat is acceptable by any learner, i. e. a maximallyacceptable frequency of concept changes, which impliesa lower bound for the size of a �xed window for a time-varying concept to be learnable, which is similar to thelower bound of Helmbold and Long.In practice, however, it usually cannot be guaran-teed that the application at hand obeys these restric-tions, e.g. a reader of electronic news may changehis interests (almost) arbitrarily often and radically.Furthermore the large time window sizes, for whichthe theoretical results hold, would be impractical.Hence more application oriented approaches rely onfar smaller windows of �xed size or on window adjust-ment heuristics that allow far smaller window sizesand usually perform better than �xed and/or largerwindows (Widmer & Kubat, 1996; Lanquillon, 1997;Klinkenberg & Renz, 1998). While these heuristics areintuitive and work well in their particular applicationdomain, they usually require tuning their parameters,are often not transferable to other domains, and lacka proper theoretical foundation.Syed et al. (1999) describe an approach to incremen-tally learning support vector machines that handlesvirtual concept drift implied by incrementally learningfrom several subsamples of a large training set, butthey do not address the problem of (real) concept driftaddressed here.3. Support Vector MachinesThe window adjustment approach described in thispaper uses support vector machines (Vapnik, 1998)as their core learning algorithm. Support vector ma-chines are based on the structural risk minimizationprinciple (Vapnik, 1998) from statistical learning the-ory. In their basic form, SVMs learn linear decisionrulesh(~x) = signf~w � ~x+ bg = �+1; if ~w � ~x+ b > 0�1; else (1)described by a weight vector ~w and a threshold b. Theidea of structural risk minimization is to �nd a hypoth-esis h for which one can guarantee the lowest proba-bility of error. For SVMs, Vapnik (1998) shows thatthis goal can be translated into �nding the hyperplanewith maximum soft-margin.2 Computing this hyper-plane is equivalent to solving the following optimiza-tion problem.2See Burges (1998) for an introduction to SVMs.



Optimization Problem 1 (SVM (primal))minimize: V (~w; b; ~�) = 12 ~w � ~w +C nXi=1 �i (2)subject to: 8ni=1 : yi[~w � ~xi + b] � 1� �i (3)8ni=1 : �i > 0 (4)In this optimization problem, the Euclidean lengthjj~wjj of the weight vector is inversely proportional tothe soft-margin of the decision rule. The constraints(3) require that all training examples are classi�ed cor-rectly up to some slack �i. If a training example lies onthe \wrong" side of the hyperplane, the corresponding�i is greater or equal to 1. Therefore Pni=1 �i is anupper bound on the number of training errors. Thefactor C in (2) is a parameter that allows trading-o�training error vs. model complexity.For computational reasons it is useful to solve theWolfe dual (Fletcher, 1987) of optimization problem 1instead of solving optimization problem 1 directly(Vapnik, 1998).Optimization Problem 2 (SVM (dual))minimize: W (~�)=�nXi=1�i+12 nXi=1 nXj=1yiyj�i�j(~xi�~xj) (5)subject to: nXi=1 yi�i = 0 (6)8ni=1 : 0 � �i � C (7)In this paper, SV M light (Joachims, 1999) is used forcomputing the solution of this optimization problem.3Support vectors are those training examples ~xi with�i > 0 at the solution. From the solution of optimiza-tion problem 2 the decision rule can be computed as~w�~x = nXi=1 �iyi(~xi �~x) and b = yusv � ~w �~xusv (8)The training example (~xusv; yusv) for calculating bmust be a support vector with �usv < C. Finally, thetraining losses �i can be computed as �i = max(1 �yi [~w � ~xi + b] ; 0).For both solving optimization problem 2 as well as ap-plying the learned decision rule, it is su�cient to beable to calculate inner products between feature vec-tors. Exploiting this property, Boser et al. introducedthe use of kernels K(~x1; ~x2) for learning non-linear de-cision rules. Depending on the type of kernel func-tion, SVMs learn polynomial classi�ers, radial basis3SV MLight is available at http://www-ai.informatik.uni-dortmund.de/svm light

function (RBF) classi�ers, or two layer sigmoid neu-ral nets. Such kernels calculate an inner-product insome feature space and replace the inner-product inthe formulas above.4. Window Adjustment by OptimizingPerformanceOur approach to handling drift in the distribution ofexamples uses a window on the training data. Thiswindow should include only those example which aresu�ciently \close" to the current target concept. As-suming the amount of drift increases with time, thewindow includes the last n training examples. Pre-vious approaches used similar windowing strategies.Their shortcomings are that they either �x the win-dow size (Mitchell et al., 1994) or involve compli-cated heuristics (Widmer & Kubat, 1996; Lanquillon,1997; Klinkenberg & Renz, 1998). A �xed window sizemakes strong assumptions about how quickly the con-cept changes. While heuristics can adapt to di�erentspeed and amount of drift, they involve many param-eters that are di�cult to tune. Here, we present anapproach to selecting an appropriate window size thatdoes not involve complicated parameterization. Theykey idea is to select the window size so that the es-timated generalization error on new examples is min-imized. To get an estimate of the generalization er-ror we use a special form of ��-estimates (Joachims,2000). ��-estimates are a particularly e�cient methodfor estimating the performance of a SVM.4.1 ��-Estimators��-estimators are based on the idea of leave-one-outestimation (Lunts & Brailovskiy, 1967). The leave-one-out estimator of the error rate proceeds as follows.From the training sample S = ((~x1; y1); � � � ; (~xn; yn))the �rst example (~x1; y1) is removed. The resultingsample Sn1 = ((~x2; y2); � � � ; (~xn; yn)) is used for train-ing, leading to a classi�cation rule hn1L . This classi�-cation rule is tested on the held out example (~x1; y1).If the example is classi�ed incorrectly it is said to pro-duce a leave-one-out error. This process is repeatedfor all training examples. The number of leave-one-out errors divided by n is the leave-one-out estimateof the generalization error.While the leave-one-out estimate is usually very accu-rate, it is very expensive to compute. With a trainingsample of size n, one must run the learner n times.��-estimators overcome this problem using an upperbound on the number of leave-one-out errors insteadof calculating them brute force. They owe their name



to the two arguments they are computed from. ~� isthe vector of training losses at the solution of the pri-mal SVM training problem. ~� is the solution of thedual SVM training problem. Based on these two vec-tors | both are available after training the SVM atno extra cost | the ��-estimators are de�ned usingthe following two counts. With R2� being the max-imum di�erence of any two elements of the Hessian(i.e. R2� � max~x;~x0(K(~x; ~x) �K(~x; ~x0))),d = jfi : (�iR2� + �i) � 1gj (9)counts the number of training examples, for which thequantity �iR2� + �i exceeds one. Since the documentvectors are normalized to unit length in the experi-ments described in this paper, here R2� = 1. It isproven in Joachims (2000) that d is an approximateupper bound on the number of leave-one-out errors inthe training set. With n as the total number of train-ing examples, the ��-estimators of the error rate isErrn��(hL) = jfi : (�iR2� + �i) � 1gjn (10)The theoretical properties of this ��-estimator are dis-cussed in Joachims (2000). It can be shown that theestimator is pessimistically biased, overestimating thetrue error rate on average. Experiments show that thebias is acceptably small for text classi�cation problemsand that the variance of the ��-estimator is essentiallyas low as that of a holdout estimate using twice asmuch data. It is also possible to design similar esti-mators for precision and recall, as well as combinedmeasures like F1 (Joachims, 2000).4.2 Window Adjustment AlgorithmA window adjustment algorithm has to solve the fol-lowing trade-o�. A large window provides the learnerwith much training data, allowing it to generalize wellgiven that the concept did not change. On the otherhand, a large window can contain old data that is nolonger relevant (or even confusing) for the current tar-get concept. Finding the right size means trading-o�the quality against the number of training examples.To answer this question the window adjustment algo-rithm proposed in the following uses ��-estimates ina particular way. At batch t, it essentially tries var-ious window sizes, training a SVM for each resultingtraining set. ~z(t;1); :::; ~z(t;m) (11)~z(t�1;1); :::; ~z(t�1;m); ~z(t;1); :::; ~z(t;m) (12)~z(t�2;1); :::; ~z(t�2;m); ~z(t�1;1); :::; ~z(t�1;m); ~z(t;1); :::; ~z(t;m) (13)...

For each window size it computes a ��-estimate basedon the result of training. In contrast to the previoussection, the ��-estimator used here considers only thelast batch, that is the m most recent training examples~z(t;1); :::; ~z(t;m).Errm��(hL)=jfi : 1� i�m ^ (�(t;i)R2�+�(t;i))�1gjm (14)This reects the assumption that the most recent ex-amples are most similar to the new examples in batcht+ 1. The window size minimizing the ��-estimate ofthe error rate is selected by the algorithm.The algorithm can be summarized as follows:� input: S training sample consisting oft batches containing m examples each� for h 2 f0; :::; t� 1g{ train SVM on examples ~z(t�h;1) ; :::; ~z(t;m){ compute ��-estimate on examples~z(t;1); :::; ~z(t;m)� output: window size which minimizes��-estimate5. Experiments5.1 Experimental SetupEach of the following data management approaches isevaluated in combination with the SVM:� \Full Memory": The learner generates its classi-�cation model from all previously seen examples,i.e. it cannot \forget" old examples.� \No Memory": The learner always induces its hy-pothesis only from the most recent batch. Thiscorresponds to using a window of the �xed size ofone batch.� Window of \Fixed Size": A window of the �xedsize of three batches is used.� Window of \Adaptive Size": The window adjust-ment algorithm proposed in the previous sectionadapts the window size to the current conceptdrift situation.The experiments are performed in an information �l-tering domain, a typical application area for learningdrifting concept. Text documents are represented asattribute-value vectors (bag of words model), whereeach distinct word corresponds to a feature whose



Table 1. Relevance of the categories in the concept change scenarios A, B, and C.Sce- Cate- Probability of being relevant for a document of the speci�ed category at the speci�ed time step (batch)nario gory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19A 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0B 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0C 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0value is the \ltc"-TF/IDF-weight (Salton & Buckley,1988) of that word in that document. Words occurringless than three times in the training data or occurringin a given list of stop words are not considered. Eachdocument feature vector is normalized to unit lengthto abstract from di�erent document lengths.The performance of a classi�er is measured by thethree metrics prediction error, recall, and precision.Recall is the probability, that the classi�er recognizesa relevant document as relevant. Precision is the prob-ability, that a document classi�ed as relevant actuallyis relevant. All reported results are estimates averagedover ten runs.The experiments use a subset of 2608 documents ofthe data set of the Text REtrieval Conference (TREC)consisting of English business news texts. Each text isassigned to one or several categories. The categoriesconsidered here are 1 (Antitrust Cases Pending), 3(Joint Ventures), 4 (Debt Rescheduling), 5 (DumpingCharges), and 6 (Third World Debt Relief). For theexperiments, three concept change scenarios are simu-lated. The texts are randomly split into 20 batches ofequal size containing 130 documents each.4 The textsof each category are distributed as equally as possibleover the 20 batches.Table 1 describes the relevance of the categories inthe three concept change scenarios A, B, and C. Foreach time step (batch), the probability of being rele-vant (interesting to the user) is speci�ed for documentsof categories 1 and 3, respectively. Documents of theclasses 4, 5, and 6 are never relevant in any of thesescenarios. In the �rst scenario (scenario A), �rst doc-uments of category 1 are considered relevant for theuser interest and all other documents irrelevant. Thischanges abruptly (concept shift) in batch 10, wheredocuments of category 3 are relevant and all others ir-relevant. In the second scenario (scenario B), again4Hence, in each trial, out of the 2608 documents, eightrandomly selected texts are not considered.

�rst documents of category 1 are considered relevantfor the user interest and all other documents irrele-vant. This changes slowly (concept drift) from batch8 to batch 12, where documents of category 3 are rele-vant and all others irrelevant. The third scenario (sce-nario C ) simulates an abrupt concept shift in the userinterest from category 1 to category 3 in batch 9 andback to category 1 in batch 11.5.2 ResultsFigure 1 compares the prediction error rates of theadaptive window size algorithm with the non-adaptivemethods. The graphs show the prediction error on thefollowing batch. In all three scenarios, the full mem-ory strategy and the adaptive window size algorithmessentially coincide as long as there is no concept drift.During this stable phase, both show lower predictionerror than the �xed size and the no memory approach.At the point of concept drift, the performance of allmethods deteriorates. While the performance of nomemory and adaptive size recovers quickly after theconcept drift, the error rate full memory approach re-mains high especially in scenarios A and B. Like beforethe concept drift, the no memory and the �xed sizestrategies exhibit higher error rates than the adaptivewindow algorithm in the stable phase after the conceptdrift. This shows that the no memory, the �xed size,and the full memory approaches all perform subopti-mally in some situation. Only the adaptive windowsize algorithm can achieve a relatively low error rateover all phases in all scenarios. This is also reectedin the average error rates over all batches given in Ta-ble 2. The adaptive window size algorithm achieves alow average error rate on all three scenarios. Similarly,precision and recall are consistently high.The behavior of the adaptive window algorithm is bestexplained by looking at the window sizes it selects.Figure 2 shows the average training window ranges.The bottom of each graph depicts the time and extentof concept drift in the corresponding scenario. For
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Figure 1. Comparison of the prediction error rates for sce-nario A (top), B (middle), and C (bottom). The x-axisdenotes the batch number and the y-axis the average pre-diction error.
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Table 2. Error, accuracy, recall, and precision of all windowmanagement approaches for all scenarios averaged over 10trials with 20 batches each (standard sample error in paren-theses). Full No Fixed AdaptiveMemory Memory Size SizeScenario A:Error 20.36% 7.30% 7.96% 5.32%(4.21%) (1.97%) (2.80%) (2.29%)Recall 51.69% 74.42% 77.64% 85.35%(8.37%) (4.61%) (6.07%) (4.93%)Precision 64.67% 91.29% 87.73% 91.61%(8.38%) (5.10%) (5.93%) (5.11%)Scenario B:Error 20.25% 9.08% 8.44% 7.56%(3.56%) (1.57%) (2.00%) (1.89%)Recall 49.35% 67.22% 73.85% 76.70%(7.01%) (5.04%) (5.51%) (5.42%)Precision 65.09% 88.86% 87.19% 88.48%(6.80%) (3.67%) (4.18%) (3.89%)Scenario C:Error 7.74% 8.97% 10.17% 7.07%(3.05%) (2.84%) (3.30%) (3.16%)Recall 76.54% 63.68% 68.18% 78.17%(6.26%) (5.27%) (7.05%) (6.34%)Precision 83.15% 87.67% 79.00% 87.38%(6.69%) (7.06%) (8.09%) (6.99%)scenario A the training window increases up to theabrupt concept change after batch 10, covering almostall examples available for the current concept. Only inbatches 5 to 10 the average training set size is slightlysmaller than maximally possible. Our explanation isthat for large training sets a relatively small number ofadditional examples does not always make a \notice-able" di�erence. After the concept change in batch 10the adaptive window size algorithm now picks train-ing windows covering only those examples from afterthe drift as desired. A similar behavior is found forscenario B (Figure 2, middle). Since the drift is lessabrupt, the adaptive window size algorithm interme-diately selects training examples from both conceptsin batch 11. After su�ciently many training examplesfrom the new distribution are available, those earlierexamples are discarded. The behavior of the adaptivewindow size algorithm in scenario C is reasonable aswell (Figure 2, bottom). A particular situation occursin batch 12. Here the window size exhibits a largevariance. For 8 of the 10 runs the algorithm selectsa small training set size of one batch, while for theremaining 2 runs it selects all available training exam-ples starting with batch 1. Here there appears to bea borderline decision between accepting 2 (out of 12)batches of \bad" examples or just training on a singlebatch.
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