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Dataset shift is a very common issue wherein the input data distribution shifts over time in non-
stationary environments. A broad range of real-world systems face the challenge of dataset shift. In such
systems, continuous monitoring of the process behavior and tracking the state of shift are required in
order to decide about initiating adaptive corrections in a timely manner. This paper presents novel
methods for covariate shift-detection tests based on a two-stage structure for both univariate and
multivariate time-series. The first stage works in an online mode and it uses an exponentially weighted
moving average (EWMA) model based control chart to detect the covariate shift-point in non-stationary
time-series. The second stage validates the shift-detected by first stage using the Kolmogorov-Smirnov
statistical hypothesis test (K-S test) in the case of univariate time-series and the Hotelling T-Squared
multivariate statistical hypothesis test in the case of multivariate time-series. Additionally, several
orthogonal transformations and blind source separation algorithms are investigated to counteract the
adverse effect of cross-correlation in multivariate time-series on shift-detection performance. The
proposed methods are suitable to be run in real-time. Their performance is evaluated through
experiments using several synthetic and real-world datasets. Results show that all the covariate shifts
are detected with much reduced false-alarms compared to other methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the non-stationary environments (NSEs), assessing the
stationarity of the data generating process i.e., checking whether
shifts and drifts have affected the data generating process, is an
important challenge. Most of the pattern classification methods
are built upon the common assumption that the data distribution
remains stationary during classifier training and testing or operat-
ing stages, hereafter called the stationary hypothesis. Hence,
monitoring the validity of the stationary hypothesis over time
can be an advantageous step as it allows one to do the following:
(a) verify the system stationarity, as not only classification, but
system identification, and fault-detection methods as well are
mostly designed under the common assumption that the process
is stationary; and (b) take appropriate corrective actions, e.g.,
adaptation by updating the parameters of the classifier. Particu-
larly in the streaming data applications, the input data distribution
may shift over time during the operating phase due to the presence
of myriads of environmental non-stationarities. In literature, various
types of commonly occurring shifts and drifts have been defined [23].
The shift in the joint distribution of the multi-class data from the
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training to test stages is termed as dataset shift. The difference in the
input distribution at different time periods is called as covariate shift
[1]. Classifying the time-series data in the NSEs requires a learning
model which should be computationally efficient and able to detect
the dataset shift-point in the underlying distribution of the data
stream in real-time, so that the on-line learning remains unaffected
from spurious changes or white noise. Such a learning process in NSEs
is sometimes also called as non-stationary learning (NSL) [2].

In NSL, an efficient and effective stationarity evaluation test is
required to deal with the large class of applications without any a
priori information about the data generating process, which is
hardly available in the real-world problems. In NSEs various forms
of shifts can be found such as abrupt, transient and gradual shifts.
Detecting these shifts in the data may form part of a change
(shift)-point detection method [3]. Moreover, the correctness of
the shift-detection test can be described in terms of time delay and
detection accuracy and hence, these are the important issues in
the shift-detection literature. Based upon the time delay in
detection, shift-detection methods can be categorized into retro-
spective detection and online (or real-time) detection; for more
detail see [4-6]. In retrospective shift-detection, a window of the
data is used and therefore it has a time-delay of at least one time-
window in shift detection. In online shift-detection, a single pass
method is used to process the data. The online shift-detection
techniques may need to be performed in several key areas for the
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monitoring of streaming data, such as electroencephalography
(EEG) based brain-computer interface [7], spam-filtering [8], and
network intrusion detection [9].

Moreover, the shift-detection algorithms can be active or
passive [2]. The active shift-detection method detects the time
and severity of the shift and initiates classifier learning, if needed.
In passive shift-detection, the learner accepts that the environ-
ment may shift at any time or may be continuously shifting. So, the
passive learning algorithm then continually learns from the
environment by updating their knowledge-base (KB). If the shift
has occurred, the shift is learned. If the shift has not occurred, the
model continues learning and the existing knowledge is rein-
forced. In NSEs there are several types of dataset shift, a brief
review of dataset shift and the types of dataset shift are presented
in the next section.

A relatively large literature addresses the statistical shift-
detection methods. In the shift-detection methods, there are two
types of tests: parametric and non-parametric statistical tests.
Examples of parametric tests are the Student t-test and the Fisher
f-test [10,11]. These tests mainly address the shift in the mean and
the variance. A parametric test generally requires the availability
(or an estimate) of probability density function (pdf) of the data
generating process before and after the shift-detection. Whereas
in the non-parametric test, no strong a priori information is
required. The Mann-Whitney U-test for independent samples
and the Wilcoxon signed-rank test are the two examples of the
non-parametric tests [12]. A range of methods have demonstrated
very good shift point-detection performance by monitoring the
moving control charts and comparing the probability distributions
of the time-series samples over past and present intervals. These
methods follow different strategies such as the Shewhart charts
[13] that monitors the quality characteristics of measurements for
one observation at a time. In Cumulative SUM (CUSUM) [14] a
sequential cumulative sum technique is used and when the sum
reaches above the pre-defined threshold the shift is detected. Both,
the Shewhart and CUSUM charts only detect the large shift in the
data. However, using extended CUSUM and Computational-
Intelligence CUSUM (CI-SUSUM) in [15], the shift-detection is
presented for the univariate and multivariate input data, which
is deployed with a just-in-time (JIT) adaptive classifier in the NSEs.
This method may suffer from the time-delay and large number of
false alarms in the shift-detection, which may impact the classi-
fication accuracy of the system. The Intersection of Confidence
Interval (ICI) rule [16] is a more advanced work in the shift point-
detection test based on a hierarchical structure. The performance
of ICI is shown to be better in terms of less false alarms in
comparison to other methods, but it suffers from the time-delay
in the shift-detection. Other reported approaches are statistical
ones [17], neural network based approaches [18] and the general-
ized logarithm-ratio method [19], which also suffer from similar
limitations. Moreover, to overcome the weaknesses discussed
above, recently some researchers have proposed a different
strategy which estimates the ratio of two probability densities
without direct density estimation [20], but it also suffers from
some delay in shift-detection. Recently in [21], the shift-detection
is performed in parallel, on both the input data distribution and
the classification error i.e., covariate shift and concept shift
respectively, for monitoring recurrent concepts in the NSEs.

However, most of the aforementioned methods depend on pre-
designed parametric models such as underlying probability dis-
tribution, auto-regressive models and state-space models, for
tracking some specific statistics such as the mean, variance, and
spectrum. Thus, they are not robust against different types of shifts
because of the delay in shift-detection on account of the need for
identifying models from the past data, which may significantly
limit their range of applications in fast data streaming problems.

Moreover, most of the systems also tend to generate excessive
number of false-alarms, which is an obstacle in the real-world
applications.

In order to reduce the time delay and false alarms, a two-stage
shift detection strategy is proposed in this paper. The paper
advances the work presented in [4,5] by proposing a complete
general formulation for the covariate shift-detection for both
univariate and multivariate data. The shift-detection method is
built on an exponentially weighted moving average (EWMA) chart.
It is demonstrated to outperform other approaches in terms of
non-stationarity detection with significantly reduced time delay
and false alarms. The approach is computationally efficient
because of low computational cost and less memory requirements
during online processing. So, this scheme can be deployed along
with any classifier such as k-nearest neighbor (kNN), linear
discriminant analysis (LDA), artificial neural networks (ANNs), or
support vector machines (SVMs) in an adaptive online learning
framework.

The novel contributions of the paper can be summarized as
follows:

® A complete framework for the covariate shift-detection test is
introduced for both univariate and multivariate processes. The
covariate shift-detection test is based on an EWMA model. This
shift-detection test assesses the stationarity of input data
generating process, i.e.,, only on the input data distribution,
disregarding the associated output labels. The approach is
particularly promising in covariate shift-detection with much
reduced time-delay.

® A procedure to reduce the false-alarms is proposed by a two-
stage shift-detection test structure. The two-stage test uses a
Kolmogorov-Smirnov statistical hypothesis test (K-S test) at
the second stage to validate the shifts detected by the first
stage of the test in a univariate case. In a multivariate case,
Hotelling's T-Squared statistical test is proposed. The approach
is particularly promising in reducing the false-alarms.

® A novel contribution in multivariate covariate shift-detection is
in counteracting adverse effect of cross-correlation among
multiple input processes on detection performance. To this
end, orthogonal transformation and blind source separation
techniques are investigated.

This paper proceeds as follows: Section 2 presents background
information behind dataset shift and EWMA control chart. Section 3
deals with the shift-detection algorithms for univariate and multi-
variate data. Section 4 presents the datasets used in the experiment.
Finally, Section 5 presents the results and discussion.

2. Background
2.1. Dataset shift

Assume a pattern classification problem is described by a set of
features or inputs x, a target variable y, the joint distribution
P(y, x), the prior probability P(x) and conditional probability. The
term dataset shift [22,23] was first well-defined in the workshop
of neural information processing systems (NIPS, 2006). The dataset
shift is a “case where the joint distribution of inputs and outputs
differs between training and test stage, i.e., when (Piqin(y,X)#
Prest(y,X))” [24]. Dataset shift was previously defined by various
authors giving different names to the same concept such as,
concept shift or drift [25], changes of classification [26], changing
environment [27], contrast mining [28], and fracture point [29]. In
pattern classification problems, the dataset shift is now mainly
categorized into three different types that usually occur in the
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real-world applications such as (i) covariate shift, (ii) prior prob-
ability shift, and (iii) concept shift.

2.1.1. Covariate shift

The covariate shift has been defined by different terms in the
literature. Several authors defined covariate shift as, “population
drift”, “a case where the population distribution may change over
time” [30]. In a generic way, it is defined as “covariate shift appears
only in X—Y problems, and the case where the conditional
probability in training and testing remains same (Pgqin(V|X) =
Prest(Y|X)), but the input distribution P(x) changes between training
and testing, i.e., (Pqin(X) # Prest(X))” [23]. Let us take an example of
a process where covariate shift can be seen. Assume a training
input data distribution Py, (%) is @ normal distribution with mean
and standard deviation as 2 and 1.5 respectively, i.e. [X¢qin = N (X;
2,1.5)] and the test input data distribution Pes(X) is also a normal
distribution with mean and the standard deviation as 4 and
1.5 respectively, i.e. [X¢ese = N(x; 4,1.5)]. Fig. 1 shows the covariate
shift as is given in the example above where only the mean has
changed between the training and test stages.

The problem of covariate shift can be easily found in the real-
world applications. Some of the common examples are spam
filtering [31], brain-computer interfaces (BCIs) [7], and network
intrusion detection [9]. For other types of dataset shift such as
prior probability and concept shift, readers may refer to [4,5].
There exists other shifts that could happen in theory, but we are
not discussing those as they appear rarely; for more details see
[23]. In this paper, our main focus is on the covariate shift-
detection, because the pattern classification problem is based on
the predictive model, i.e., X Y.

2.2. EWMA control chart

An exponentially weighted moving average (EWMA) control
chart [32] is a member of the family of control charts within the
statistical process control (SPC) theory. Control charts are a
graphical representation of sample statistics for SPC. The EWMA
is used in detecting small shifts in the mean of a time-series data.
The EWMA control chart overtakes other control charts because it
pools present and past data in such a way that a small shift in the
time-series can be detected more easily and quickly. Other charts,
such as the Shewhart chart [13], only consider the most current
observations by forgetting the past data. The EWMA uses a
weighting constant, lambda (1), which decides the importance of
current and historical observations.

The EWMA model is defined as
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Fig. 1. Schematic diagram for covariate shift: training dataset has normal distribu-
tion with A(x; 2,1.5), and test dataset also has normal distribution with
N(x; 4,1.5). Thus the mean of the testing data distribution has changed from that
of training, resulting in covariate shift.

where 1 is the smoothing constant (0 <1< 1), z is the exponen-
tially weighted moving average (EWMA) and x is the observation.
Moreover, the EWMA charts are used for both uncorrelated and
auto-correlated data. We are only considering the auto-correlated
data in our study and simulation because the data obtained from
NSEs in the real-world applications are often correlated.

2.2.1. EWMA model for auto-correlated data

If data contains a sequence of auto-correlated observations X,
then the EWMA statistic in Eq. (1) can be used to provide a 1-step-
ahead prediction model of auto-correlated data. Here, it is
assumed that the process observations x;, can be defined as
Eq. (2) below, which is a first-order auto-regressive integrated
moving average (ARIMA) model. In time series analysis, an ARIMA
model is a generalization of an auto-regressive moving average
(ARMA) model. These models are fitted to time-series data either
to better understand the data characteristics or to predict the
future points in the series (forecasting) [33]. Moreover, these
models can represent system dynamics wherein data show evi-
dence of non-stationary behavior. In particular, Eq. (2) describes a
non-stationary behavior, wherein the covariate x; shifts as if there
is no fixed value of the process mean.

X =Xi-1)+ei— 01 2)

where ¢; is a sequence of independent and identically distributed
(i.i.d.) random signal with zero mean and constant variance. It
can be easily shown that the EWMA with (1=1-6) is the optimal
1-step-ahead prediction for this process [11,34].

According to [34], if X; .1 (i) is the forecast of the observation for
the period (i+1) made at the end of period i, then, the 1-step-
ahead prediction for x; is the EWMA z;_;), in Eq. (1). Fig. 2
explains it more clearly through a state diagram. For more detail
about 1-step-ahead prediction by EWMA see Appendix A where
we have derived a relationship between the EWMA and the
ARIMA models. The 1-step-ahead prediction errors err; are
calculated as

erriy =X —Zi-1) 3

Assume, that the 1-step-ahead prediction errors err; are
normally distributed with mean equals to zero. It is given in [11]
that it is possible to combine information about the statistical
control and process dynamics on a single control chart. Then, the
control limits of the chart on these errors satisfy the following
probability statement by substituting the right hand side of Eq. (3)
in the formulation below. Therefrom, the EWMA control chart on
X [34] can be derived as given below

P[—Loerr <errg <Loer]=1—a
P[—L oerr <X —2Zi—1)(i) <Loerr]=1—a
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Fig. 2. Schematic state diagram for the 1-step ahead prediction by EWMA model.
The z;_4, is the 1-step-ahead prediction for the observation xg from the state
(i—1). The 1-step-ahead prediction error is given as err = X —Z;—1).
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where o is the standard deviation of the errors, L is the control
limit multiplier, (1—«) is the confidence interval and the « is the
5% level of significance. If the EWMA is a suitable 1-step-ahead
predictor, then one could use z;_1, as the center line for the period
i with Upper Control Limit (UCL) and Lower Control Limit (LCL)
[11], defined as

UCL(D = Z(,', 1) +L0'err(,-, " (43.)

LCLGy = zi—1)—Loerr,_,, (4b)

Whenever, the x; moves out of UCL; and LCL;, the process is
said to be out of control. This method is also known as a moving
center-line EWMA control chart. The standard deviation of the
1-step-ahead error or model residuals o, may be estimated in
several ways such as the mean absolute deviation (MAD) or a
directly calculated smoothed variance [9,11].

The EWMA control chart is robust to the normality assumption
if properly designed for the t and gamma distributions [35]. So, the
EWMA chart can be employed when there is a concern about the
normality assumption. Following the above formulation, we have
designed an algorithm for the covariate shift-detection based on
the EWMA of the process observation of auto-correlated data, as
discussed in the next section.

3. Methodology

In the statistical process control theory, control charts are tools
used to determine if a process is in a state of statistical control.
Generally it is represented by three lines plotted along the
horizontal axis. The center line and two control lines (control
limits) are plotted on a control chart, which correspond to the
target value (x) and acceptable deviation (Ls) from either side of
the target value respectively, where L is the control limit multiplier
and ¢ is the standard deviation of the data generating process. The
aim of the control chart is to monitor a process behavior, such as
the shift in the data generating process. This work employs an
EWMA control chart for the covariate shift-detection. When the
process observation falls outside the EWMA control limits, the

Table 1
Algorithm SD-EWMA.

process is said to be out of control and so the covariate shift is
detected.

The proposed method works in two phases, the first phase is a
retrospective (training) phase and the second phase is an opera-
tion (testing) phase. In the training phase, the parameters are
calculated to decide the null hypothesis and it is assumed that the
training data obtained are in stationary state. In the testing phase,
the process observations are continuously monitored by the
EWMA chart and when an observation falls outside the control
limits of the control chart, the point is said to be a point of
covariate shift. In other words, the process observation falling
outside the control limit is not in the stationary state and the null
hypothesis is rejected in favor of an alternative hypothesis and the
shift is detected. An important point to note here is that we have
assumed that non-stationarity occurs due to changes in the input
distribution only. So, it is said to be a covariate shift-detection in a
non-stationary time-series. In the following sub-sections, the
designed algorithms for univariate and multivariate processes
are discussed in detail.

3.1. Shift-detection based on EWMA (SD-EWMA)

Our algorithm works in two different phases, the first phase is a
retrospective/training phase in which the parameters u,zw),agm)
are calculated followed by the operation/test phase for the
covariate shift-detection. The pseudo code of the algorithm is
given in Table 1.

The step-1 of the training phase is to obtain the sequence of
observations and the step-2 is used to calculate the mean, and set
it to z(p). Next, the EWMA statistics by Eq. (1) at step-3 is obtained.
The EWMA smoothing constant 1 is then estimated by minimizing
the sum of the squared one-step-ahead prediction error on the
training dataset, as given in the SD-EWMA algorithm at steps 4
and 5 of the training phase. Finally, at step-6 the sum of the
squared one-step-ahead prediction error divided by the length of
the training dataset is used as an initial value of o, , for the
testing data.

Input: Submit the training dataset to the training phase and compute the parameters for testing.
Receive new data in testing phase sample-by-sample and perform the check as follows.

IF (Shift detected)
THEN (Report the point of shift and initiate an appropriate corrective action)
ELSE (Continue and integrate the upcoming information).

Output: Shift-detection points.

Training Phase

1. Assign training data to x;; fori=1 to n, n is the size of training data.

2. Calculate the mean of input data (x) and assign it to z().

3. Compute the z-statistics for each observation X in training data for a range of 4 values.

Zi =X+ =Dz 1)
4. Compute 1-step-ahead prediction errors errg = X —Zi_1)

5. Estimate 2 by minimizing the sum of the squared prediction error on the training data.
6. Finally compute the sum of the square of 1-step-ahead prediction error divided by the number of observations and use it as the initial value of the variance (amz0 ) for
©

the testing phase.

Testing Phase
. For each data point x;; in the operation/testing phase,
. Compute z; = X +(1-2zi_1)
. Compute err =X —Zi_1)
. Compute the estimated variance &3, =9 err2 +(1— )&,
. Compute UCL; and LCL;:

UCLiy =2i—1) + Loerr,_,,

LCLG =Zzi_1y — Léerr, ,,

IF (LCL;, < X4 < UCLG)

2
3
4
5
6
7
8
9. THEN (Continue processing with new sample)

10. ELSE (Covariate Shift detected and Initiate an appropriate corrective action)
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In the testing phase, for each observation, use Eq. (1) to obtain
the EWMA statistics and follow the steps given in Table 1 and then
compute the UCL; and LCL; using Eqgs. (4a) and (4b). Next, check
if each observation x; falls within the control limits [UCLg, LCLg],
otherwise a shift is detected and an alarm is raised. The standard
deviation of 1-step-ahead error can be estimated in various ways
such as by directly estimating the smoothed variance [11] as given
in step 4 of the testing phase in the SD-EWMA algorithm in
Table 1, where 9 is an error smoothing constant; reference [34]
suggests that smaller values of § are preferred. As this method
mainly accounts for the shift in the mean, excessive number of
false-positives (i.e., false alarm) maybe observed in some cases. So,
to reduce the number of false-positives, a two-stage based shift-
detection test is proposed in the next section.

3.2. Two-stage shift-detection based on EWMA (TSSD-EWMA)

The proposed two-stage shift-detection based on the EWMA
test works in two stages. Using the SD-EWMA [5] method
discussed in the previous section, stage-I works in the online
mode, continuously processing the upcoming data from the data
stream. Stage-II uses a statistical hypothesis test to validate the
shift detected by stage-I. Stage-II operates in retrospective mode
and starts validation once the shift is detected by stage-I1. The two-
stage based structure for shift-detection is given in Fig. 3. The
pseudo code of the algorithm is given in Table 2.

3.2.1. Stage-I

As discussed earlier, stage-I works in two different phases:
training phase and operation or testing phase. In the first phase,
the parameters (1,7(), 04y, ) are calculated to decide the null
hypothesis. In the testing phase, as in the TSSD-EWMA algorithm
(Table 2), it is checked if each observation xg falls within the
control limits [UCLg,LCL;)], otherwise the shift is detected and
alarm is raised at stage-I. Furthermore, the shift detected by stage-
[ is passed to stage-II for validation in order to reduce the number
of false positive alarms.

3.2.2. Stage-II

Stage-II works in retrospective mode only when a shift is
detected at stage-I. In particular, to validate the shift detected by
stage-I, the available information need to be partitioned into two-
disjoint subsequences and then the statistical hypothesis test is
applied. The two-sample Kolmogorov-Smirnov test [10] is used to
validate the stationarity in the sub-sequences because of its non-
parametric nature. This test returns a test decision of null
hypothesis if the data in the subsequences are stationary with
equal means and equal but unknown variances. The Kolmogorov-
Smirnov statistics is briefly described as follows:

Dn1n2 = Supy|F1 1 (X) — F2 n2(X)] (5)

—_——— e — —

Stage-I (Online)
Shift-Detection

\
|
|
|
|
'ﬁ
|
Probable Shift Confirmed Shift | Shift Detection
|
|
|
|
|
|
)

Output

v

Stage-Il (Retrospective)
Shift-Validation

Fig. 3. Schematic diagram for the two-stage based structure for the shift-detection
test. The first stage detects covariate shift in an online mode. The detected covariate
shifts are validated at stage-II.

where sup, is the supremum and F;,i(x) and Fy,»(x) are the
empirical cumulative distribution functions on the first and second
sub-sequences respectively. The n1 and n2 are the two sub-
sequences of length pand q as nl=({i—-(p—1)):i) and
n2=((i+1):(i+q)) where i is the current observation. The null
hypothesis is rejected at level « and (H=1) is returned if

pq
—D, >K, 6
p+q ni,n2 ( )
where K, is the critical value and can be found in [36].
3.3. Multivariate shift-detection based on EWMA (MSD-EWMA)

In real-world systems, there are many situations in which the
parallel monitoring or the control of two or more co-related input
processes is necessary. In the following formulation, the input XZ)
is therefore extended to the d-dimensional case. Monitoring of
such processes independently maybe very misleading, e.g., if the
probability that a variable exceeds three-sigma control limits is
0.0027 then a false-detection rate of 0.27% is expected. However,
the joint probability that d such variables exceed their control
limits simultaneously is (0.0027)¢, which is considerably smaller
than 0.0027. So, the use of d-independent charts may provide
highly distorted outcomes.

In [37] a multivariate version of EWMA control chart is
presented. The multivariate EWMA is a logical extension of the
SD-EWMA and is defined as follows:

zh = Ax% +(1 =z _1) (7)

where the EWMA z;_1, is a vector of dimension d and 1 is the
smoothing constant (0 < 2 < 1). The quantity plotted on the control
chart is

—1
T} = 2y X 2 ®)
2
where the covariance matrix for T? statistics is
S =—J1-(1-»"1= 9
2 =5 (1% ©

where X is a covariance matrix obtained from the training dataset.
The control limit H > 0 is chosen to achieve a specified in-control
(on-target) average run length (ARL). The value of control limit H is
chosen based upon a table presented in [38]. Moreover, the value
of H depends upon the number of variables to be monitored, as the
number increases the value of H grows simultaneously. When, the
T? statistics falls outside the control limit H, the shift-point is
detected. The criteria of optimizing the smoothing parameter (1)
are related to the detection capability. In [37,39], to select the
optimal smoothing parameter 1, two methods are suggested. The
first method assumes that each variable of xﬁ.) is similar and has
the same smoothing constant. The second method assumes that
each variable of x(di) may have different characteristics requiring
appropriately matched parameters 4; selected based on the opti-
mization rule of univariate EWMA. However, the components of
xg) may often be correlated very closely and it will be very difficult
to find 4; independently. So, to make the components uncorre-
lated, an orthogonal transformation is used such that all new
components are independent of each other.

The principal component analysis (PCA) is often used to reduce
the dimensionality of the data. Moreover, the PCA is used to select
a small number of uncorrelated components, containing most of
the variability in the data [40,41]. On the other hand, a popular
class of algorithms to separate independent sources, called inde-
pendent component analysis (ICA), make the simplification that
finding independent sources out of such data can be reduced to
finding maximally non-Gaussian components. For a meaningful
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Table 2
Algorithm-TSSD-EWMA.

Input: Submit the training dataset to the training phase and compute the parameters for testing.
Receive new data in the testing phase sample-by-sample and perform the check as follows.

IF (Shift detected)
THEN (Report the point of shift and move to stage-II for validation)
ELSE (Continue and integrate the upcoming information).

Output: Shift-detection points.

Stage-I
Training Phase

1. Assign training data to x;; for i=1:n, where n is the number of observations in training data

2. Calculate the mean of x;; and set as z(g).

3. Compute the z-statistics for each observation x; in training data for a range of 4 values.

2 = X+ (1 =2z -1y

4. Estimate 4 by minimizing over the training dataset the square of 1-step-ahead prediction error: errg = X —Zi_1)-

5. Finally estimate the variance of error for the testing phase.

Testing Phase
1. For each data point X;, in the operation/testing phase
2. Compute z, = X +(1-2)zi_1,
3. Compute errg = X4 —Zi_1)
4. Estimate the variance 6z, =9 errg +(1—9)65,,
5. Compute UCLg; and LCL;:
6. UCLG =2i—1)+Léerr,
7. LCLyy =21y —Léerr, ,,
8. IF (LCLgj < Xy < UCLg))
THEN (Continue processing)
ELSE (Go to Stage-II)

Stage-II
1. For each x;

2. Wait for m observations after the time i, organize the sequential observations around time i into two partitions, one containing X — 1)), ANOther X 1.+ m)-

3. Execute the hypothesis test on the partitioned data
4.1F (H=1)
THEN (test rejects the null hypothesis): Alarm is raised
ELSE (The detection received by stage-I is a false and discarded)

representation of the multivariate data, linear transformation of
the original data is required. Using independent component
analysis (ICA) [42], a linear representation of the data is obtained
in the form of statistically independent components. Some popu-
lar ICA algorithms are Fast-ICA [42], Infomax-ICA [43] and Fully
Blind Source Separation (FBSS) [44].

The number of uncorrelated components obtained from an
orthogonal transformation such as PCA or ICA determines the
value of the smoothing constant 1. Based on the number of
components, the value for the smoothing constant is selected
from the table given in [38]. The table presents the value of 1 for a
process (x4), where d is the number of variables to be monitored. It
is suggested that the smaller values of 4 are preferred for detecting
small shifts and vice versa. Moreover, as the number of variables d
increases, the value of control limit H increases.

As we have discussed above, the EWMA control chart is robust
to the normality assumption if properly designed for the t and
gamma distributions [35]. So, the PCA is used as a pre-processing
step to reduce the dimensionality of data. The ICA is used to
identify the maximally separated independent sources and then
the multivariate shift-detection tests are used to detect the shift in
the process. We have compared performance of both the PCA and
ICA based algorithms in the experiments. As in the case of
univariate shift-detection, a two-stage based structure is devel-
oped to address the issue of false alarms.

3.4. Two-stage multivariate shift-detection based on EWMA
(TSMSD-EWMA)

The proposed two-stage multivariate shift-detection test based
on EWMA (TSMSD-EWMA) works in two-stages as in the case of
TSSD-EWMA. In stage-l, the method employs a control chart to
detect the dataset shift in the data stream. Stage-I works in an

online mode, which continuously processes the upcoming data
from the data stream. Stage-II uses a multivariate statistical
hypothesis test to validate the shift detected by stage-I and
operates in retrospective mode. A stage-wise algorithmic formula-
tion is discussed below.

3.4.1. Stage-I

In stage-I, the test works in two different phases. The first
phase is a training phase and the second phase is an operation or
testing phase. In the first phase, the parameter () defined in
Eq. (7) is calculated to decide the null hypothesis that there is no
shift in the data. In the testing phase, for each observation, Eq. (8)
is used to obtain the T? statistics. Next, it is checked if each T?
statistics for each observation xfi) falls below the control limits H,
otherwise the shift is detected and alarm is raised at stage-I. Once,
the shift is detected by stage-I, it is passed on to stage-II for
validation in order to reduce the number of false-positive alarms.

3.4.2. Stage-II

This phase works in a retrospective mode and it executes only
when a shift is detected in stage-I. In particular, to validate the
shift detected by stage-I, the available information need to be
partitioned into two-disjoint subsequences and then the statistical
hypothesis test is applied. The Hotelling T-Squared test for two
multivariate independent samples [45] is used to validate the
stationarity in the sub-sequences. The reason for choosing this test
is because it is a non-parametric method and it returns a test
decision whether the data in the subsequences are stationary with
similar means. Hotelling's T-Squared test is defined by the follow-
ing equation:

2_ o, 5\ /
HT —(ﬂ1-#z){<ﬁ+@>} (41 —2) (10)
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where uq, u, and Xy, £, are the means and the covariances of
sample 1 and sample 2 (i.e., two sub-sequences here), respectively.
The HT? is distributed as F(d,n1+n2—d—1), where n1 and n2 are
the two sub-sequences of lengths |n1| and |n2| for sample 1 and
sample 2, respectively. Moreover, sample 1 was assumed to be
stationary; the data sub-sequence n; =((i—(m-1)):1i); the data
sub-sequence n, = ((i+1) : (i+m)); here i is the current observa-
tion, d is the number of columns (i.e., variables), and F is the
F-distribution. The null hypothesis is rejected, if the HT? test
statistic is greater than the critical value from the F-distribution.

4. Datasets and feature analysis

To validate the effectiveness of the proposed algorithms, a
series of experimental evaluations have been performed on four
synthetic datasets and one real-world dataset. The datasets are
described as follows.

4.1. Synthetic data

Dataset 1 — abrupt shift (D1)

The dataset consists of 2000 data-points and the non-
stationarity occurs in the middle of the data stream, shifting from
N(x; 1,1) to N(x; 3,1), where N(x; u,06) denotes the normal
distribution with mean x and standard deviation ¢ respectively.

Dataset 2 — jumping mean (D2)

The dataset used here is the same as the toy dataset given in [6]
for detecting shift point in time-series data. The dataset is defined
as x(t) in which 5000 samples are generated (i.e. t=1,...,5000)

x(t)=0.6x(t—1)—0.5x(t — 2) + &

where ¢; is a noise with mean y and standard deviation 1.5. The
initial values are set as x(1) = x(2) = 0. A shift point is inserted at
every 100 time steps by setting the noise mean x at time t as

0 N=1
IN= Y g+ & N=2,...,49

where N is a natural number such that 100(N—1)+1 <t < 100N.

Dataset 3 — multivariate normal shift (D3)
This dataset is a 10-dimensional normal distribution
N(x; M, ), where M is the mean vector and X is the covariance
matrix. The stream consists of 300 data points, in which the non-
stationarity occurs after generating 100 points; the mean vector M
of each variable is shifted from 0 to 1 and then back to its initial
position at 201, while the covariance matrix remains fixed X as
ro4s 03 03 03 03 03 03 03 03 0317
03 045 03 03 03 03 03 03 03 03
03 03 045 03 03 03 03 03 03 03
03 03 03 045 03 03 03 03 03 03
03 03 03 03 045 03 03 03 03 03
03 03 03 03 03 045 03 03 03 03
03 03 03 03 03 03 045 03 03 03
03 03 03 03 03 03 03 045 03 03
03 03 03 03 03 03 03 03 045 03
L03 03 03 03 03 03 03 03 03 045]

Dataset 4 — multivariate non-normal shift (D4)

This dataset is a 10-dimensional t-distribution, where M is the
mean vector and X is the covariance matrix as given in D3 dataset.
The stream consists of 300 data points, in which the non-
stationarity occurs after generating 100 points; the mean vector

M of each variable is shifted from 0 to 1 and then back to its initial
position at position 201, while the degree of freedom remains
fixed at 10.

4.2. Real-world dataset

Dataset 5 — EEG-based brain signals (D5)

The real-world data used here are from the BCI competition-III
dataset (Section 4.2) [46]. This dataset, contains 2 classes, 118 EEG
channels (0.05-200 Hz), 1000 Hz sampling rate which is down-
sampled to 100 Hz, 210 training trials, and 420 test trials. This
dataset was recorded from one healthy subject. He sat in a
comfortable chair with arms resting on armrests. The training
dataset consists of the first 3 (non-feedback) sessions. Visual cues
(letter presentation) indicated for 3.5 s required the subject to
perform (L) left hand or (F) right foot motor imageries. The
presentation of the target cues was intermitted by periods of
random length, 1.75-2.25 s, in which the subject could relax. The
test data was recorded more than 3 h after the training data.
The experimental setup was similar to the training sessions, but
the motor imagery had to be performed for 1 s only, compared to
3.5 s in the training sessions. The intermitting periods ranged from
1.75 to 2.25 s as before. For the training purposes, the data from
session-1 is used and it is assumed that it is in stationary state. For
testing phase, there are 4 sessions and blocks of 10 trials are
selected from each session of the experiment. Further, the selected
blocks are merged and passed as a data stream for testing the shift
in the non-stationary EEG time-series. It is clear from Fig. 4 that
EEG data is non-stationary over multiple sessions of a BCI experi-
ment. Moreover, from Fig. 4 we can easily mark the shift in the
mean and therefore the change in the feature distribution in the
EEG data obtained from different trainings and test sessions of a
BCI experiment. If these continuous shifts in the distribution are
detected at the time of the occurrence, then an appropriate action
could be taken to account for the dataset shifts. This real-world
dataset is a good example to validate if the proposed methods are
able to detect the covariate shifts in the data generating process.
To perform the test on the univariate and multivariate data, the
dataset has been divided into two categories, single and multi-
channels respectively.

(A) Univariate: A single channel (C3) was selected and the band-
pass filtering was performed over mu (x) band (8-12 Hz) to
extract band-power features.

(B) Multivariate: Total five channels (C3, C1, Cz, C2, and C4) are
selected and band-pass filtering was performed over the mu

1.5

— Training —
——— Testing s \

3.5 4 4.5 5
Log(bandpower)

Fig. 4. Probability density plot of the data taken from the training (red solid-line)
and testing session (blue doted-line). It is clear from the plot that, in different
sessions the distribution is changed by shifting the mean from session-to-session
transfer. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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(1) band (8-12 Hz) in each channel to extract band-power
features. Next, the data pre-processing step was performed
(i.e., data normalization, making it to zero mean by removing
the average).

5. Experimental evaluation
5.1. Evaluation metrics

On each dataset, the covariate shift-detection techniques are
evaluated by the number of false alarms and number of misses. A
false alarm is the signal of false detection or type-I error. A false-
negative is a miss and measured as type-II error. The following
keys are suggested to measure the performance of the tests:

® False positive (FP): it occurs when a test detects a shift in the
sequence when it is not there, (i.e. false alarm) or type-I error.

® False negative (FN): it occurs when a test does not detect a shift
in the sequence when it is there, (i.e. a miss) or type-II error.

® Recognition Capability Index (RCI): measures the delay in the
shift-detection process, (i.e. the number of observations pro-
cessed before reporting of the shift).

® Computation Time (CT): provides the execution time needed to
perform the shift-detection test on the entire dataset, (machine

Table 3
Simulation results of the univariate datasets.

SD-EWMA TSSD-EWMA ICI-CDT
Synthetic dataset
D1
FP (%) 0.05 0 0
FN (%) 0 0 0
RCI 0 10 60
CT (s) 0.198 0.245 0.172
D2
FP (%) 0.3 0 0
FN (%) 0 11.1 55.4
RCI 0 10 40
CT (s) 0.189 0224 0.196
Real-dataset
D5-A
FP (%) 0.08 0.0002 NA
FN (%) 0 0 NA
RCI 0 10 NA
CT (s) 0.296 0.283 NA
Table 4

Simulation results of the multivariate datasets

configuration: Intel Xeon, 3-GHz, 16-GB RAM, Windows 7 and
all unnecessary processes are terminated).

Results are given in Tables 3 and 4 for univariate and multi-
variate datasets, respectively. The NA denotes a “Not Applicable”
situation and the test cannot be run because of the lack of
available information. To assess the performance of the proposed
shift-detection tests against other shift-detection methods, the
intersection of confidence interval change detection test ICI-CDT
[47] is chosen because it is a state-of-the-art non-parametric
sequential change-point detection test, shown to provide good
performance in recent literature.

The choice of the smoothing constant /1 is an important issue in
the EWMA based shift-detection tests. In [48] a method for
selecting A is already suggested for uncorrelated observations.
Moreover, for correlated data, it is suggested in [34] to select A
that minimizes the sum of the squares of the 1-step ahead
prediction errors. In the experiments, we have used several
techniques to select the values of 1 such as minimizing the sum
of squares of 1-step-ahead prediction errors and heuristic meth-
ods, for example, a trial-and-error approach so as to minimize the
occurrences of FPs and FNs. The values of 1 selected by minimizing
the sum of squares of 1-step-ahead prediction errors has been
discussed in our papers [4,5] and these values are quite close to
the values obtained empirically using heuristic methods. In this
paper, for univariate case, the values of 1 are selected by minimiz-
ing the sum of squares of 1-step-ahead prediction errors. In the
case of multivariate data, the value of 1 has been selected based on
the design of multivariate control chart to achieve a specified in-
control (on-target) average run length (ARL). The value of control
limit H is chosen based upon a table presented in [38]. The design
parameters of the charts depend upon the number of variables to
be monitored and some a-priori knowledge about the expected
shift in the process.

5.2. Results and discussion

5.2.1. Univariate shift-detection

For the dataset D1, the value of smoothing constant is obtained
as 1=0.50, by minimizing the sum of squares of the prediction
errors on training data. Table 3 shows that the performances of
SD-EWMA, TSSD-EWMA and ICI-CDT are the same in terms of FN
rate (all zeroes). The TSSD-EWMA and ICI-CDT are better by
reducing the percentage of FP. The delay in TSSD-EWMA shift-
detection is shorter than ICI-CDT. Moreover, the TSSD-EWMA is

MSD-EWMA MSD-EWMA-PCA MSD-EWMA-ICA TSMSD- EWMA TSMSD-EWMA-ICA
Synthetic dataset
D3
FP (%) 5 5.5 5 2 2.5
FN (%) 8 6 8 5 5
RCI 9 8 8 25 25
CT (s) 0.228 0.272 0.528 0.201 0.594
D4
FP (%) 4 5.5 5 5 4.5
FN (%) 15 5 15 7 9
RCI 7 8 7 25 25
CT (s) 0.213 0.251 0.677 0.202 0.647
Real-dataset
D5-B
FP (%) 44.65 25.80 37.70 37.70 28.40
FN (%) 62.40 71.16 15.81 70.50 18.13
RCI NA NA NA NA NA
CT (s) 0.347 0.698 16.612 0.597 16.462
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Fig. 5. Univariate Dataset: (a) D1: detects the covariate shift by the SD-EWMA
based test, the shifts are detected after producing every 1000 observations, and few
false-positives can also be marked near 900, 1050, 1085, and 1125 data points.
(b) D2: the covariate shift point is detected after every 100 observations.

slightly more computationally expensive than other tests. Fig. 5(a)
shows the plot of covariate shift-detection.

For the dataset D2, the value of the smoothing constant is
obtained as 1=0.40, by minimizing the sum of squares of the
prediction errors on training data. The performance of SD-EWMA
is better than that of TSSD-EWMA and ICI-CDT in terms of FN,
whereas there are some FPs with SD-EWMA. These FPs have been
reduced by the TSSD-EWMA test because of its two-stage struc-
ture. This result demonstrates the effectiveness of the TSSD-
EWMA algorithm in reducing the FP. Also, the computational
delay in TSSD-EWMA is better than ICI-CDT, which shows the
advantage of the test. The FN rate for TSSD-EWMA is large because
it missed a single shift out of total nine shifts. Fig. 5(b) shows the
plot of covariate shift-detection.

The dataset D5-A is a single channel EEG data. Now, to perform
the covariate shift-detection test, we have taken data from session
one; it contains 70 trials and the parameters are calculated in the
training phase to be used in the testing/operational phase. Next,
the test is applied on the set of trials from rest of the sessions as
discussed in Section 4.2 and the results are given in Table 3. In the
case of D5-A, the value of the smoothing constant was obtained as
A=0.05 by minimizing the sum of squares of the prediction errors
on training data which is obtained from the session-1 of the BCI
experiment. The TSSD-EWMA provided better performance than
that of SD-EWMA and ICI-CDT is not applicable due to lack of a
prior information. Fig. 7(a) shows a window of 10 s for covariate
shift-detection on the EEG data. In this window, no shift is
detected, as the solid line never crosses the control limits plotted
as dotted lines.

5.2.2. Multivariate shift-detection

In the dataset D3, the data are from a multivariate normal
distribution. The value of the H (i.e., control limit) is chosen as
suggested in [38]. For the MSD-EWMA and MSD-EWMA (ICA), the
value of H is 22.67 as there are ten variables to be monitored (i.e.,
the dimensions of the dataset) for the shift-detection. For MSD-
EWMA (PCA), the value of H is 10.58 because in PCA only first few
components are used and we have selected first two components,
so the value of control limit is smaller. For the multivariate tests

a T
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Fig. 6. Multivariate Dataset: (a) D3: detects the covariate shift by the MSD-EWMA
based test, the shift is detected after the 100th observation, and (b) D4: the
covariate shift point is detected after 100th observations. The normal distributed
data can be easily be detected over non-normal data.

such as MSD-EWMA, MSD-EWMA (PCA) and MSD-EWMA (ICA),
the performances are very closely similar as there are nearly the
same number of FPs, whereas the performances of TSMSD-EWMA
and TSSMD-EWMA with ICA are better in terms of having less
number of FPs. In the TSMSD-EWMA and TSSMD-EWMA with ICA,
the delay in shift-detection is increased. The delay is increased due
to the cardinality of the sample set used for validation in the
second stage of the test. Fig. 6(a) shows the detected shift. Lastly,
the computational time for tests with ICA has slightly increased.

For the dataset D4, the data are from a multivariate t-distribu-
tion. The limit of H is the same as in D3 for all the multivariate
tests. The performances of MSD-EWMA, MSD-EWMA-ICA, and
TSMSD EWMA-ICA are well-meaning with nearly the same num-
ber of FPs, whereas the MSD-EWMA-PCA is less accurate in
reducing the number of FPs. However, the TSMSD-EWMA with
ICA has shown a better performance over other methods with
slightly less FPs. Furthermore, the ICA approaches are slightly
more computationally expensive because of the computational
cost of the ICA algorithm. Fig. 6(b) shows the detected shift.

For the dataset D5-B the data are 5-channels of EEG data; each
channel is treated as a variable. The value of H=16.27 is selected
based upon the number of variables to be monitored. Now, to
perform the shift-detection test, we have taken data from session-
1 and assumed that it is stationary; it contains 70 trials and the
parameter X is calculated using Eq. (9). Next, the test is applied
to the rest of the sessions on a specific set of trials. From each
session, 10 trials are selected and combined so as to form a data
stream. The results of the test are given in Table 4. It has been
discussed previously that when the number of variables is
increased the performance of the system will degrade. So, the
MSD-EWMA has the worst performance with high FN and FP rates
as expected. Moreover, by using PCA, the performance of the test
has slightly improved by reducing the rate of FP. The MSD-EWMA
with ICA improves the accuracy of the result with almost 50% less
FN as compared to other methods such as MSD-EWMA and MSD-
EWMA-PCA given in Table 4. The issue of FPs again was handled by
the two-stage test and the number of FPs has been reduced.
Whereas, the TSMSD-EWMA without ICA suffers from high rate of
FNs and with ICA it shows better performance. Fig. 7(b) shows the
MSD-EWMA with ICA. This shows the advantage of using ICA for
the EEG data, as it makes the components independent and more
appropriate for the covariate shift-detection test.



668
a 5
—————— UCL sereesenss LCL SD-EWMA ) ) ) )
= 45F Py = R
g o~ i S TN
3 : '
Qo »,
el
C
©
Q
>
o Y B £ o
25¢ '?‘: 1 1 1 1 1 1 1 1 ]
5500 5600 5700 5800 5900 6000 6100 6200 6300 6400 6500
Sample Number
200 } MSD-EWMA _
= Control Limit
150 | B
100 | B
ﬂ h ﬂ
, WA LA | J\
o e TP JTVINY W TE ) WV T

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 7. Real-world dataset: EEG-based brain signals (a) D5-A: univariate shift-
detection (single channel). The window shows a single trial and no shift is detected
as the solid line never crosses the red line, (b) D5-B: multivariate shift-detection
(multi-channel) with ICA. The solid line is the multivariate T? statistics, after 2000
observations, the data are from different sessions; so it has crossed the control limit
H. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

It is important to note that SD-EWMA is based on the current
observation of the data to detect the covariate-shift, so it
detects without delay and this is the main advantage of this method.
Fig. 5(a) and (b) represents the SD-EWMA based covariate shift-
detection test results for datasets D1 and D2 respectively. The solid
line is the observation plotted on the chart and the two dotted lines
are the ULC and LCL; whenever the solid line crosses the dotted line
(control limits), it is the covariate shift-point detection. The value of
smoothing constant 1 is another important issue, which we have
discussed earlier. In D5-A, for the real-world dataset, (i.e. EEG based
BCI), the smaller value of 4 is a better choice for the shift-detection
and is obtained by minimizing the sum of squares of one-step ahead
prediction errors. The smaller values of 1 avoids covariate shift-
detection resulting from noise or spurious changes through much
more intense smoothing of EEG signal. Moreover, for correlated data,
the smaller values of 2 produce smaller prediction errors, thereby
resulting in smaller estimated standard error. The SD-EWMA test
shows the issue of the occurrence of large number of FPs, which is a
concern for most of the shift-detection tests. So, the TSSD-EWMA is
used to validate the shift using the two-stage structure. It provides
promising results by reducing the number of false alarms at the
second stage. However, there is a small delay in the TSSD-EWMA
based shift-detection test.

For the multivariate shift-detection, the classical multivariate
shift-detection (MSD-EWMA) shows that if the number of variables
in the process increases, it has an adverse effect on the performance
of the test. The adverse effect leads to large rate of FN and FP.
Moreover, in the real-time applications getting high rate of false
alarms is painful. However, using PCA with MSD-EWMA the perfor-
mance of the test has slightly improved as the PCA has reduced the
dimensionality of the data. The MSD-EWMA with ICA shows good
performance for the real-world dataset. The ICA works well by
identifying the independent components in EEG based brain signals.

As a final note, we recommend TSMSD-EWMA with ICA
(Infomax) configuration as the most suitable covariate shift-
detection test for identifying a possible shift in an EEG-based
brain signals for multiple channels, as other ICA algorithms such as
fast-ICA and FBSS were found much less successful in reducing
false alarms.
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6. Conclusion

In NSL, the covariate shift-detection is an important aspect for
initiating the corrective adaptive action. This paper presented novel
methods of covariate shift-detection in the NSEs based on a two-stage
structure for both univariate and multivariate time-series. The first
stage uses an exponentially weighted moving average (EWMA) model
based control chart to detect the covariate shift-point in non-
stationary time-series. At first stage, to choose the smoothing para-
meter A optimally, the minimization of prediction of error is used for
the univariate case, and for the multivariate case the orthogonal
transformation is suggested to make the data uncorrelated. The second
stage validates the shift-detected by first stage using the Kolmogorov-
Smirnov (K-S test) statistical hypothesis test in the case of univariate
time-series and Hotelling's T-Squared multivariate statistical hypoth-
esis test in the case of multivariate time-series. The two-stage
structure helped reduce the rate of false alarm for all example data-
sets. Also the ICA (Infomax) algorithm has been found to be most
effective in counteracting the adverse effect of cross-correlation in
multivariate time-series and further improving the shift-detection
performance. The methods are found computationally more efficient
in terms of both computation time and storage size. Experimental
analysis shows that the proposed approaches perform well in a range
of non-stationary situations. This work is planned to be extended
further by employing it into pattern recognition problems along with
an appropriate classifier.

Appendix A. Relationship between EWMA and ARIMA

An autoregressive integrated moving average (ARIMA) model is
the generalization of an autoregressive moving average (ARMA)
model. These models are fitted to time series data either to better
understand the data characteristics or to predict future points in
the series (forecasting). Many non-stationary series are found to
be fitted quite well with ARIMA (0,1,1) [33].

The exponentially weighted moving average (EWMA) Eq. (A1) can
also be written in the form of an autoregressive integrated moving
average (ARIMA (0,1,1)) Eq. (2) as described in Box and Jenkins [49].

Z(i) = AX(i) —+ (l - 1)2([, 1) (Al)

Eq. (A2) below is usually denoted as IMA (1,1), where the first 1 in
the parentheses denotes difference in the series one time and the
second 1 denotes fitting a moving average parameter. Eq. (A2) can
also be represented in an autoregressive moving average form ARIMA
(0,1,1) where the number O indicates that the order of the autore-
gressive part is zero. The general form of the IMA (1,1) model is

Xi—1) =X+ €i11—0¢ (A2)

where ¢; represents a random shock referred to as white noise. The
white noise is with mean zero and some variance ¢2.

Note that for predicting x at time period (i+1) given all the
information up to and including time period i, you would obtain
Eq. (A3), since the prediction for ;1 is zero, as it is assumed to be
purely white noise.

Xi— 1) = X — O¢; (A3)

Since & = X — X3, and putting it into Eq. (A3) you will get Eq. (A4)
Xi—1)=Xi — 0o — X))

N N A4
X([,])Z(‘l*g) X(i)*g)((i) ( )

Let us denote 1=1-0, X =z_1y and z; =X;_1). Then
Xi—1)= @) Xq —({— DX
Xi- =W x5—1=Dzi_1
Z(i) = AX(l‘) —+ (1 7},)2(1‘, 1)
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Note that in comparing the equation for EWMA and IMA (1,1),
we have proved that the ARIMA (0,1,1) can be written as EWMA,
and it will provide an optimal 1-step ahead prediction.
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