CIS 700/002: Special Topics: Acoustic Injection Attacks on MEMS Accelerometers

Thejas Kesari

CIS 700/002: Security of EMBS/CPS/IoT Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania

24 March 2017

The Idea

- Compromise digital integrity of Capacitive MEMS
 Accelerometer
- Deliver chosen digital values

MEMS Accelerometer

- Sensing mass connected to springs that is displaced
- When accelerated, the displacement of mass creates an electrical signal due to change in capacitance
- Measured acceleration s(t) relates to the displacement of mass d(t)
 MEMS Component
- *F*=*m a*
- $F = -k \downarrow s d$

PRECISE

Prior Art

- Sensors can be tricked by maliciously fabricated physical properties
- An adversary could incapacitate drones equipped with MEMS gyroscopes using intentional sound noise
- Resonant frequency has been identified as a problem that causes the performance degradation of MEMS gyroscopes
- Acoustic interference can hence cause DoS attacks

-Yunmok Son, et. al., *Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors*, 24th USENIX, August 2015

MEMS Accelerometer

- If the acoustic frequency tuned correctly, it can vibrate the sensing mass altering sensor output
- The sensor output can also be altered in a predictable way
- Two problematic components in the signal conditioning path:
 - Insecure LPF
 - Insecure amplifier

MEMS Accelerometer

- Insecure LPF and Insecure Amplifier explain the root cause of DoS attacks
- Also, enabled design two more classes of attacks:
 - Output biasing
 - Output control

More Prior Art

- Defending against malicious acoustic interference by applying acoustic dampening materials (elastomers, microfibrous metallic cloth, felt, etc) **
- Provide physical isolation from the noise ***
- Make the actuator and sensor operate in tandem, provide a challenge-response mechanism ^*

**P. Soobramaney, *Mitigation of the Effects of High Levels of High-Frequency Noise on MEMS Gyroscopes*, Ph.D. dissertation, Auburn University, 2013
***Yunmok Son, et. al., *Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors*, 24th USENIX, August 2015
^*Y. Shoukry, et. al, *Pycra: Physical challenge-response authentication for active sensors under spoofing attacks*, in Proc. ACM CCS, 2015

More Prior Art

- Impractical increases packaging size
- Not always applicable sensor must operate with an actuator in a closed loop system
- Insufficient not an exhaustive method and cannot filter out all interference

- Additional processing is required for the electrical acceleration signals to interface with microprocessors
- Change in capacitance is converted to a voltage, amplified, filtered, and digitized
- Without stage D, aliasing can occur, enabling output biasing attacks
- Signal clipping at C can introduce a DC component into the acceleration signal, enabling output control attacks

PRECISE

Threat Model

- Attackers neither access the sensor readings directly nor physically touch the sensor
- Do not assume "lunchtime attack", but assume he is able to reverse engineer a sample device to extract the exact accelerometer model and profile its behaviour under different amplitudes and frequencies
- Attacker is able to induce sound in the vicinity of the victim device in the audible frequency range

Attack Modeling

11

- Forces from acoustic waves can also displace the mass
- True acceleration: S(t)
- Acoustic: $S \downarrow a(t)$

For acoustic frequency $F\downarrow a$, with amplitude $A\downarrow 0$ and phase \emptyset , the measured acceleration

Attack Modeling

Maximize the impact

- $s(t)=s(t)+A\downarrow 1 s\downarrow a(t)$
- Maximize the attenuation co-efficient $A \downarrow 1$
- Resonance!
- $A \downarrow 1 = 1$ at resonant frequencies

Hardware Deficiencies

- True measurements: No signal clipping occurs; LPF attenuates high frequency acoustic acceleration signals
- Fluctuating False Measurements: No signal clipping; LPF does not completely attenuate HF acoustic signals (undersampled by ADC)
- Constant Shifted False Measurements: Signal clipping occurs and introduces a non-zero DC component into the amplified signal. Secure LPF passes the DC signals and block HF.

Finding Resonant Frequency

- A sensor at rest should measure constant acceleration of 0 g along the X and Y axes and 1 g along the Z axis
- If at a particular frequency, output measurements are *fluctuating* or *constantly shifted*, then that is the resonant frequency
- By sweeping an acoustic frequency range and acquiring several acceleration measurements at each frequency, both scenarios can be observed

Finding Resonant Frequency: Results

- Both instances of the same sensor behaved identically
- Resonant frequencies can fall in a range, not a single value
- Some sensors have multiple resonant frequencies
- Some sensors have resonant frequencies which result in all combinations of *constant shifted* or *fluctuating*
- Most sensors that were not affected by acoustic interference are physically larger than those that were

- Pertains to accelerometers that experience *fluctuating* false measurements at their resonant frequencies due to insecure LPF
- To perform this attack, step one:
 - Stabilize fluctuating false measurements to constant ones by shifting the acoustic resonant frequency to induce a DC alias at the ADC. How?
 - How? Signal aliasing. Recall: Nyquist sampling theorem

• Signal aliasing: Misinterpretation of an analog signal caused by digitizing it with inadequate sampling rate

- To perform this attack, step two:
 - Reshape the desired output signal by modulating it on top of the acoustic resonant frequency.
 - How? AM and PM
- Signal Modulation is used to transmit arbitrary information signals over another carrier signal

- $F\downarrow samp$ is fixed
- Resonant frequencies might be a range: frequency deviation $f \downarrow e$
- Acoustic frequency: $F\downarrow a = F\downarrow res + f\downarrow e$ (find $f\downarrow e$ such that the sum is still within resonance)
- Then choose AM or PM to further shape the output signal

Output Control Attack

- Applicable to accelerometers that exhibit constant shifted false measurements at their resonant frequencies due to insecure amplifiers
- To perform this attack: reshape the output signal by modulating it over resonant frequency
- Achieving fine grain control requires AM

Output Control Attack

M. 1.1	Type	Typical Usage	Resonant Frequency (kHz)			A	Attack Class‡		
wiodei			X	Y	Z	Ampitude (g)*	X	Y	Z
Bosch - BMA222E	Digital	Mobile devices, Fitness	5.1-5.35	-	9.4-9.7	1	В	_	BC
STM - MIS2DH	Digital	Pacemakers, Neurostims	ā 5		8.7-10.7	1	-	-	BC
STM - IIS2DH	Digital	Anti-theft, Industrial	_	-	8.4–10.8,	1.2	-	-	BC
STM - LIS3DSH	Digital	Gaming, Fitness	4.4-5.2	4.4-5.6	9.8-10.2	1.6	BC	BC	BC
STM - LIS344ALH	Analog	Antitheft, Gaming	2.2-6.6	2.2-5.7	2.2-5.6	0.6	В	B	B
STM - H3LIS331DL	Digital	Shock detection	-	-	11–13,	5.2	—	I	BC
INVN - MPU6050	Digital	Mobile devices, Fitness	5.35	—	-	0.75	BC	_	-
INVN - MPU6500	Digital	Mobile devices, Fitness	5.1, 20.3	5.1-5.3	-	1.9	BC	С	
INVN - ICM20601	Digital	Mobile devices, Fitness	3.8,	3.3,	3.6,	1.1	BC	BC	BC
ADI - ADXL312	Digital	Car Alarm, Hill Start Aid	3.2-5.4	2.95-4.75	9.5-10.1	1.3	В	B	BC
ADI - ADXL337	Analog	Fitness, HDDs	2.85-3.1	3.8-4.4	-	0.8	B	В	-
ADI - ADXL345	Digital	Defense, Aerospace	4.4-5.4	3.1-6.8	4.4-4.7	7.9	BC	BC	В
ADI - ADXL346	Digital	Medical, HDDs	4.3-5.1	6.1	4.95,	1.75	В	B	B
ADI - ADXL350	Digital	Mobile devices, Medical	2.5-6.3	2.5-4	2.5-6.8	1.8	В	B	B
ADI - ADXL362	Digital	Hearing Aids	4.2-6.5,	4.3-6.5,	4.5-6.5	1.4	BC	BC	BC
Murata - SCA610	Analog	Automotive				_	-		100
Murata - SCA820	Digital	Automotive	24.3	-	-	0.13	С	-	-
Murata - SCA1000	Digital	Automotive	-	—	-	-	-	-	
Murata - SCA2100	Digital	Automotive	-	-	-	-	-	_	-
Murata - SCA3100	Digital	Automotive	7.95	_	8	0.15	С	—	С

Controlling Accelerometer Output

Under resonant acoustic interference, an output biasing attack **(B)** class indicates a sensor's falsified measurements fluctuate (insecure LPF) while an output control attack **(C)** class indicates constant falsified measurements are observed (insecure amplifier)

Attacking Embedded Devices: Fitbit

https://www.youtube.com/watch?v=aedOf3cZnEI

Attacking Embedded Devices: Galaxy S5

https://www.youtube.com/watch?v=C8aZ5nBmKH0

Defence: Hardware Design

- Secure LPF: A properly designed LPF should have a cut-off frequency of less than half of the ADC sampling rate
- Secure Amplifier: Amplifier that can accept large amplitude inputs. Pre-filter acoustic resonant frequencies prior to amplification
- Use of acoustic dampening materials

Defence: Software Design

- Randomized sampling: Instead of setting ADC sampling rate fixed, sample at random intervals – prevents attacker from inducing a DC alias
- 180^o Out-of-Phase Sampling: Attenuates acceleration signals with frequencies around the resonant frequency

References

- T. Trippel, et. al., "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks", 2017
- P. Soobramaney, "Mitigation of the Effects of High Levels of High-Frequency Noise on MEMS Gyroscopes", 2013
- Yunmok Son, et. al., "Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors", 2015
- Y. Shoukry, et. al., "Pycra: Physical challenge-response authentication for active sensors under spoofing attacks", 2015

