CIS 700/002 : Special Topics : A survey of secure middleware for the Internet of Things

Hyo Jin Jo

CIS 700/002: Security of EMBS/CPS/IoT Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania

March 31, 2017

Overview

- Introduction to IoT devices
- Security challenges of IoT environment
- Security requirements for IoT environment
- Reviews the existing IoT middleware

IoT devices

[Source : One trillion IoT devices expected by 2025: What development tools to use for development of internet connected IoT products?, Atollic.com]

[Smart bulb]

[Macchina : CAN-to-X]

What is middleware?

- These solutions are highly diverse
 - Design approaches
 - e.g., sub/pub, database
 - Implementation level
 - e.g., local or node level, global or network level
 - Implementation domains
 - e.g., WSNs, RFID, M2M, and SCADA $\!$

Security challenges of IoT

- Attack on IoT devices may have critical impact because the devices can affect the physical world
- Some IoT devices collect personal information which may lead to potential privacy concerns
- IoT devices have constrained memory and computation power compared to the traditional IT system.

Matrix of security challenges for IoT

Security Characteristic	A. Device & Har dware⊅	B. Network⊅	C. Cloud & Server-side,	
1. Confidentiality	A1. Hardware attacks♪	B1. Encryption with lo w capability devices♪	C1. Key disclosure, Data leakage♪	
2. Integrity ⊅	A2. Lack of attestation	B2. Signatures with lo w capability device♪	C2. No common devic e identity♪	
3. Availability,⊳	A3. Physical attacks♪	B3. Unreliable networ ks, DDoS, Radio jam ming,	C3. DDoS♪	
4. Authentication	A4. Lack of UI, Defaul t passwords, Hardwar e secret retrieval♪	B4. Default password s, Leakage of secret♪	C4. No common devic e identity, Insecure flo ws♪	
5. Access Control♪	A5. Physical access; Lack of local authentic ation♪	B5. Lightweight distrib uted protocol for Acce ss control.⊳	C5. Inappropriate use of traditional ACLs, W eak access control	
6. Privacy⊅	A6. Zero permission a ttack♪	B6. Profiling network I ogs, Trace location♪	C6. Data/Meta-data s haring,⊳	

Confidentiality : Device & Hardware

- Physical attacks on IoT devices are possible
- Even though some devices have a tamperproof function, attackers can often break them in many ways
 - Side-channel attacks

Engineering

Confidentiality : Device & Hardware

[Reference 1 : IoT Goes Nuclear: Creating a ZigBee Chain Reaction, eprint 2016]⊅

PRECISE

Confidentiality : Network

- Many security protocols use public key algorithms to provide confidentiality of communication channels
 – RSA, ECDSA (Elliptic Curve Digital Signature Algorithm), ...
- However, performing public key algorithms on IoT device is one of challenges

ArduinoLibs – Benchmark (Arduino UNO, 16 MHz)♪

Ed25519::sign()	5148ms	Digital signature generation
Ed25519::verify()	8196ms	Digital signature verification

[Source : https://rweather.github.io/arduinolibs/crypto.html])

Confidentiality : Network

- Vulnerabilities of protocols
 - The emergence of new protocols for IoT devices is another security challenge
- Examples
 - BLE (Bluetooth Low Energy), Protocols for smart keys

[Reference 2 : Lock It and Still Lose It – On the (In)Security of Automotive Remote Keyless Entry Systems, Usenix Security'16]

PRECISE

Confidentiality : Cloud & Server

• The company Fitbit made data about users sexual activity available and easily searchable online

[Reference 3 : Fitbit users are unwittingly sharing details of their ..., TNW News, 2011]

 Many cloud hosting systems have been forced to hand over encryption keys to the security services.

Integrity : Hardware & Device

- The challenges are in maintaining IoT device's codes and stored data
 - Smart TV, Telematics device, Smart bulb ...
 - Hacking, surveilling, and deceiving victims on Smart TV, Blackhat, 2013
 - Vulnerabilities of Android OS-Based Telematics System, Wireless personal communication, 2016
 - IoT Goes Nuclear: Creating a ZigBee Chain Reaction, eprint 2016
 ->

Integrity : Network / Cloud & Server

- Maintaining integrity of network data is related to cryptographic algorithms
 - MAC (Message Authentication Code)
 - Digital Signature (RSA, ECDSA, ...)
- Integrity of cloud & server data
 - How to maintain data integrity
 - Using hash algorithms, Regular data back-up \dots ightarrow
 - Identity management
 - Without knowing who or what created data, cloud & server cannot trust that data

Availability : Device & Hardware

- Availability of IoT devices
 - Resource consumption attacks (Consumption of battery)
 - Physical attacks on device

[Reference 4 : Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors, Usenix Security'16]

Availability : Device & Hardware

Availability : Network / Cloud & Server

• Jamming attacks on network are possible

[Source : http://www2.engr.arizona.edu/~aaproano/ research.php])

- The biggest challenge is DDoS attacks on a server
 - IoT devices generate lots of connection requests to the server ${\cal Y}$

Authentication

- Hardware & Device authentication
 - The use of default passwords
 - E.g., Raspberry PI \rightarrow ID : pi , Password : raspberry
- Network authentication
 - Sybil attacks
- Cloud & Server authentication
 - Identity management
 - Mange a lot of identifier of IoT devices
 - Privacy-aware identification

Access Control

- Access control of IoT devices
 - Physical access : Lack of local access control
- Access control of Cloud/Server
 - Remote attacks using weak access control
 - The companies, Sprint and Jeep, allows a femtocell to scan vehicles and send attack messages

2013 RAM CHASSIS 5500 2014 DODGE DURANGO 2014 DODGE VIPER 2014 JEEP CHEROKEE 2014 JEEP GRAND CHEROKEE 2014 RAM 1500

[Airave 2.0 femtocell])

[Scan result]♪

[Jeep's Uconnect]♪

[Reference 5 : Remote Exploitation of an Unaltered Passenger Vehicle, Defcon 23 (2015)]

- Conditional access control
 - A doctor may view a patient's record if they are treating that patient i n the emergency room.

Privacy : Hardware & Device

- Management of permissions
 - Accelerometer and gyroscope can be used without permissions

These key stroke well identified To infer other key, context and dictionaries are used♪

PRECISE

[Reference 6 : MoLe: Motion Leaks through Smartwatch Sensors, MobiCom'15] >

Privacy : Network

- Bluetooth and WiFi systems use unique identifiers called MAC address
 - These can be identified by scanning → effectively can follow users geographically around
- TPMS (Tire Pressure Monitoring System) was used for location trace (But, Attack range is up to 40 meters)

[Reference 7 : Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring Syst em Case Study, IEEE Security and Privacy 2010].

PRECISE

Privacy : Cloud & Server

- Metadata = Surveillance by Bruce Schneier
 - Any data other than the contents of a communication
 - E.g., the time a file was created, IP address, ...
- Cross-device tracking : computer, smartphone, tablet, smart TV, and, IoT devices.

[Reference 8 :The Internet of Things that Talk About You Behind Your Back, Schneier on Security, 2016]

[Source : https://www.gizmodo.com.au]

Security & functionality requirements for IoT

- REQ1 Integrity and Confidentiality
- REQ2 Access Control
 - REQ2.1 Consent
 - REQ2.2 Policy-based access control
- REQ3 Authentication
 - REQ3.1 Federated Identity
 - REQ3.2 Secure Device Identity \rightarrow Management of secret values
 - REQ3.3 Anonymous Identities
- REQ4 Attestation
- REQ5 Summarization and Filtering
- REQ6 Context-based security and Reputation
- REQ7 IoT-specific Protocol Support

PRECISE

Middleware for IoT

- 213 papers for IoT middleware were identified
 - 54 middleware systems
 - 35 middleware systems had no published discussion or architecture for security
 - 19 middleware systems that implement or describe security architecture

Reviewed middleware systems

• 19 middleware systems are evaluated by using the following security requirements

	REQ1 -Integrity and Confidentiality	REQ2 -Access Control	REQ2.1 -Consent	REQ2.2 -Policy- based security	REQ3 - Authentication	REQ3.1 -Federated Identity	REQ3.2 -Secure Device Identity	REQ3.3 - Anonymous Identities	REQ4 -Attestation	REQ5 - Summarisation and Filtering REQ6 -Context- based security/ Reputation	REQ7 -loT-specific Protocol Support
&Cube	Y	Y			Y						Y
Device Cloud	Y	Y	Y		Y	Y					Y
DREMS	Y	Y			Y						Y
DropLock		Y	Y		Y	Y					Y
FIWARE	Y	Y	Y	Y	Y	Y					Y
Hydra/Linksmart	Y	Y			Y		Y				
Income	Y	Y		Y	Y					Y	
IoT-MP	Y				Y						
NERD	Y				Y						Y
NOS	Y	Y			Y					Y	Y
OpenIoT					Y	Y					
SensorAct		Y		Y							
SIRENA	Y				Y						
SMEPP	Y	Y			Y						
SOCRADES	Y	Y			Y						
UBIWARE				Y							
WEBINOS	Y	Y		Y	Y	Y	Y				
XMPP	Y	Y			Y	Y					
VIRTUS	Y	Y			Y	Y					

Conclusion

- Each IoT device is designed for a specific purpose
- Thus, security requirements for IoT middleware also need to be classified according to IoT applications.

